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Introduction

Inverse Problems is a research area in very different domains of Applied Science. In
particular they are basic in problems of image restoration [11] which are relevant in
medicine, microscopy, seismology, astronomy etc. These problems are ill–posed in the
sense of Hadamard, i.e. the solution might lack in existence, uniqueness or continuous
dependence on data. In the past several approaches have been adopted in order to over-
come the ill–posedness: they consist in the so–called regularization theory [95, 47, 11]
and in Bayesian methods [53]. In all cases the solution of an inverse problem can lead
to the minimization of a suitable functional containing, in general, both a discrepancy
term, measuring the distance between computed and measured data, and a penalty or
regularization term, expressing the required characteristics on the solution. The trade–
off between the two is balanced by a parameter, namely beta, called regularization
parameter. Additional constraints can also be considered (e.g., the non-negativity of
the solution). Since in real applications the data we are given are discrete, one have to
translate the continuous model into a discrete one. The ill–posedness of the problems
results in ill-conditioning of the introduced numerical approximations.
In the most part of practical applications, the problems involve a large amount of data;
hence the main aim is to solve large–scale nonlinear problems. The variational formu-
lation, i.e. the minimization of opportune functionals, depends on the application, on
the type of data and on the mathematical formulation one is considering. The choice
of the discrepancy functional depends on the statistical properties of the noise affecting
the data, while the penalty functional is chosen in order to take into account a–priori
information, with the aim to preserve some features on the solution, such as sharp
edges, high contrast regions, diffuse component and so on.
For what regards the noise, in practical applications, Gaussian noise and Poisson noise
are predominant. The former one is additive and it is the starting point of the well-
known Tikhonov regularization theory for the solution of inverse and ill-posed problems
[95]. Poisson noise is also known as photon noise and it is due to errors arising in count-
ing the incoming photons. In this case the Maximum Likelihood approach [88] leads
to the minimization of a non–quadratic functional , known as Csiszar I–divergence or
Kullback–Leibler functional. In recent years (see, for example, [69, 13, 33, 49, 101] and
the references therein) it has become of increasing interest in astronomy, microscopy
and in tomography: thus in this work we will focus our discussion on Poisson noise.
The parameter β has a huge influence on the computed solution: the optimal value
of this parameter is obviously the one which permits to obtain a reconstruction the
closest possible to the original signal.. This value is not known. In the past years,
several techniques have been developed; for Gaussian noise several methods have been
studied and proposed: Morozov’s discrepancy principle [75], GCV [97], L-curve method
[58, 59, 61]. The already cited growing interest in Poisson noise gave birth to studies
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vi Introduction

regarding the choice of β even in this case [13, 33, 87].
This thesis mainly focuses on regularization techniques for Poisson data and, in par-
ticular, on Bregman iterative procedure in a image restoration framework. The basic
idea of this procedure lies in the paper by Bregman [25]: it consists in substituting the
regularization functional with its Bregman distance from the previous iterate. Osher
et al. n [79] discussed the semi convergence property of the method in the framework
of the inverse problems; this regularizing procedure was first implemented for Gaussian
noise, and then developed for Poisson noise in [28, 29]. At each step, a minimization
problem has to be solved: when an explicit solution of this problem is not available,
one has to use an iterative solver in order to obtain such a solution. In this case
the procedure can become high expensive. On the other hand, as it will be deepened
throughout the work, the Bregman procedure permits to employ an overestimation of
the regularization parameter: the obtained reconstructions are satisfying with respect
to the ones obtained by using the optimal parameter and, in some cases, the formers
are more appealing than the latters. Furthermore, this overestimation can allow to
gain a contrast enhancement, which is of fundamental importance in some practical
problems arising in Astronomical imaging framework.

The original contribution of this thesis regarding the Bregman procedure consists
in the introduction of an inexact scheme, which allows to control the inexactness with
which one solves the subproblems with an iterative solver. This scheme preserves the
main convergence property of the original procedure and, at the same time, it enables
us to have satisfactory results with a lower computational cost.
As further contribution, we analyse up to the level of software implementation two
models that permit to estimate the optimal parameter β. The first one, named Cross-
ing Model [13, 102], consists in finding the root of a function, called the discrepancy
function. The second one, called Constrained Model, is based on a constrained min-
imization problem [92]. These two models are compared with the inexact Bregman
procedure.
We will show that the three approaches, –inexact Bregman procedure, Constrained
Model and Crossing Model– in some cases are equivalent, i.e. one can obtain similar
results. Unfortunately, for High Dynamic Range imaging problems arising in an Astro-
nomical framework, the Crossing Model and the Constrained one are not able to give
the expected results, due to the high difference of intensity in the image. On the con-
trary, the inexact Bregman, thanks to the property of enhancing the contrasts, allows
to improve the reconstruction of the diffuse component, providing information of inter-
est to astronomers. We describe some applications on simulated data provided by Dr.
Andrea La Camera (DIBRIS, University of Genova) and Marcel Carbillet (University
of Nice-Sophia Antipolis).

The thesis is organized as follows.
In Chapter 1, we give the generalities of image restoration problems, providing some
details on the image formation process and on the noise arising during the data acqui-
sition; we also introduce the notation which will be used in the following. Moreover,
we resume the basics of the statistical framework lying under the whole work, focusing
particularly on the Bayesian approach and on the regularization functionals which will
be employed.

In Chapter 2, we give a survey of the optimization methods used in numerical
experiments and employed as inner solvers in Constrained Model, in Crossing Model
and in the Bregman procedure. Some of them are state–of–the–art methods for Poisson
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data, such as the EM–TV method or the ADMM approach, while others have been
developed and widely used in the recent years (e.g., Chambolle & Pock Algorithm 1
[37] or the SGP method [22]). An original contribution concerns the introduction of
a variable scaling metric in the class of ε–subgradient methods, such as the Primal
Dual Hybrid Algorithm [21]. These methods are suitable for problems with a non
differentiable regularization term. They have the feature to provide information on the
inaccuracy of the computed subgradient. Then, they are well suited as inner solvers of
an inexact Bregman procedure. The introduction of a variable metric allows to obtain
an acceleration for this class of solvers. We give the convergence proof and furthermore
we present a section of experiments to numerically evaluate this technique.

In Chapter 3 Crossing and Constrained models [102] are presented. We prove the
equivalence of these models, i.e. in a theoretical framework they provide us with the
same estimation of β and the same reconstruction; moreover, extending existing results
on smooth regularization functions, we prove the existence and the uniqueness of the
solution of Crossing Model for seminorm regularization. Furthermore, we describe the
numerical methods which allow us to exploit these models. For the first model, the
method used is based on two successive steps: the first consists in finding the interval
in which the root lies, the second is a secant phase to actually compute this root. For
Constrained Model, we analyze the Alternate Direction of Multiplier Method (ADMM),
particularly addressed for the image restoration problem [23, 49]; following [98, 63], an
adaptive procedure for the estimation of the ADMM parameter is investigated.

In Chapter 4 we present the Bregman procedure. We recall the original Bregman
procedure, with particular attention to the image restoration problem, and then we
introduce the inexact procedure. Moreover, we explain the regularization behaviour of
the exact and inexact Bregman procedure in the image restoration framework, also with
the help of two meaningful examples. The results of this chapter have been published
in [9].

Chapter 5 is devoted to numerically evaluate the procedures described in Chapters
3 and 4. The first set of experiments have the aim to compare the behaviour of the
exact and the inexact Bregman procedure, showing that the latter one provide us with
reliable reconstructions with lower computational cost. The second set of experiments
concerns a denoising problem, in which the inexact Bregman procedure seems to provide
us with better reconstructions than the ones obtained by employing the optimal value
for β. These first two sections represent a summary of the experiments reported in [9].
The third part of this chapter is devoted to compare Crossing and Constrained models
with the Bregman procedure: we observe that in some cases the three models provide
comparable results in terms of accuracy, while in others, in case of low counts images,
the Bregman procedure enables us to obtain reconstructed images that the other models
are not able to achieve. The last part regards the High Dynamic Range images, in an
Astronomical framework: this type of images are characterized by the presence of
point sources of very high intensity with respect to the rest of the image. In order
to overcome the difficulties arising from this huge contrast, we adopt a superposition
model, distinguishing the point source component from the diffuse one. We show
that the inexact Bregman procedure enable us to restore the HDR images with a
good contrast enhancement, both in case of Young Stellar Objects and of binary stars
surrounded by extrastellar materials. This part is an extension of the results in [8].
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In Appendix A one can find some useful results in Convex Analysis; such results
are widely used throughout the thesis. One can refer to the seminal works [84, 78] to
a deeper insight in this field.



Notations

◃ R+ is the set of the nonnegative real numbers: R+ = {x ∈ R|x ≥ 0}.

◃ Lower case bold letters (e.g. x) will denote vectors, upper case letters (e.g. A of
L) will denote matrices.

◃ 1 and 0 denote a vector with all entries equal to one and to zero, respectively.

◃ If x,y are two vectors belonging to Rn,
x

y
denotes the component–wise division,

provided that yi ̸= 0 for each i.

◃ If x,y are two vectors belonging to Rn, x·y denotes the component–wise product.

◃ If x,y are two vectors belonging to Rn, ⟨x,y⟩ denotes the scalar product.

◃ If x ∈ Rn, x > 0 ⇔ xi > 0 for each i. The same notation holds also for <,≥,≤.

◃ For elementary functions, such that log, exp, square root, the application of such
functions on vectors is intended component–wise. For example, if y ∈ Rn, then√
y =

(√
y1,

√
y2, . . . ,

√
yn

)t
.

◃ Mm×n(R) denotes the set of the matrices with m rows and n columns with real
elements; when m = n, we denote this set with Mn(R).

◃ Unless noted otherwise, the function ∥ · ∥ : Rn → R denotes the usual Euclidean
norm.
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Chapter 1

Generalities on Image
Restoration Problems

In many fields of Applied Science we are addressed to find an optimal solution for
problems of various type; this task consists in finding a minimum or a maximum of a
function f :

xsol = argmin
x
f(x) or xsol = argmax

x
f(x)

We can have some examples in Machine Learning (SVM) [96, 5], Signal Processing [27],
Logistic Planning [66], Data Mining [62], Image Restoration ([11, 14]). In this work
we will focus on some applications in Image Restoration problems with Poisson data,
both in deblurring and in denoising case, keeping in mind that the algorithms and the
procedures described throughout this thesis can be applied to other problems.

1.1 Basics on the Mathematical Model

The original object in which we are interested (image, acoustic sound, . . . ) can be
modeled by a function f(x), where x is a 1D, 2D or 3D dimensional vector. The data
acquisition system can be modeled by an impulse response function H which simulates
the effects the system produces on the registered image, namely g. The acquisition
process turns out to be linear in most cases, so it can be stated as

g(x) =

∫
H(x,x′)f(x′)dx′ (1.1)

where H is called Point Spread Function (PSF). Many physics systems for data acqui-
sition can be modeled by equation (1.1).

In many systems, the function H is invariant with respect to translations; hence
actually H(x,x′) is a function only of the difference x−x′ of the variables. In this case
the system and the corresponding function are called space invariants and the equation
(1.1) becomes

g(x) =

∫
H(x− x′)f(x′)dx′ (1.2)

Therefore we can write the registered data g as the convolution product of H and f :
g = H ∗ f . Hereafter, we will consider only space invariant systems.

3



4 1. Generalities on Image Restoration Problems

In some applications, a nonnegative constant background term (to which we will refer
with bg) can be added to the final image, leading to the form

g = H ∗ f + bg (1.3)

Moreover, due to the physics connected to the signal registration process, the clear data
g can be affected by some kind of noise, resulting in a blurred and noisy data gn. This
induces to see the registered data as a realization of a random variable. It will become
clearer in the forthcoming sections.

Throughout this work we will have to deal mainly with digital signals, thus we
need to use a discrete model instead of a continuous one. The original signal, once a
function, is treated now as a vector f belonging to RN . In view of (1.3), the continuous
convolution product H ∗ f can be restated in a discrete framework as the matrix-
vector product Hf , where H ∈ MM×N (R). Thus a linear discrete model for the signal
registration process is given by

g = Hf + bg1 (1.4)

where g ∈ RM . Moreover, due to the presence of noise, the detected data is a vector
gn ∈ RM , instead of g; for example, for additive noise we have gn = Hf + bg1+ υ =
g + υ, where the vector υ represents the noise contribution. In Section 1.3, we discuss
this issue.

We are giving more details about the image registration process.

◃ A digital 2D image F is a matrix belonging to Mm×n(R), where in general n ̸= m;
each element of the image is called pixel (picture element). For computational
purposes, a rectangular image is vectorized, i.e. it becomes a vector belonging to
RN , where N = mn: f = vec(F). This vector contains the data of the image
ordered by columns. The action of the vec operator is clarified below.

F =

(
1 2 3
4 5 6

)
then vec(F) =



1
4
2
5
3
6


◃ Starting from a discretized PSF and taking into account the boundary conditions,
it is possible to obtain the matrix H (see [60]). Some examples of PSF can be
found in Figure (1.1). We distinguish two cases: when H = I (where I is the
identity matrix) the data are perturbed only by noise, hence the problem we are
facing is a denoising one, while when H ̸= I, the restoration problem is called
deblurring problem.

1.2 Point Spread Function

The matrix H can be obtained by the Point Spread Function (PSF), which is the im-
pulsive response of the acquisition system, i.e., it is the registered data coming from
a point source. It models how the physics of the image recording system perturbs the



1.2 Point Spread Function 5

(a) (b) (c)

Figure 1.1: Examples of Point Spread Functions in imaging. 1.1(a): telescope; 1.1(b): motion
blur; 1.1(c): out–of–focus blur.

(a) (b) (c)

Figure 1.2: Example of the effect induced by a PSF: on the left the original image, in the
middle the blurred image using the PSF used is 1.1(a). On the right blurred image corrupted
by Poisson noise.

original signal.

When the PSF satisfies the space–invariance property, we can use the model stated
in (1.4), where the matrix–vector product Hf is a discrete convolution product. In a
discrete framework one must deal with conditions at the boundary of the image. The
main settings of these conditions are periodic boundary conditions, zero boundary con-
ditions, reflexive boundary conditions: they depend on the the type of problem or data
we are treating.
Focusing on the imaging framework, the introduction of the boundary conditions in-
duces particular structures on the imaging matrix H: these structures incorporates all
the information needed for the computation of the convolution product. We recall some
useful definitions.

Definition 1.1. Let Q be a matrix belonging to Mp×q(R).

• Q is a Toeplitz matrix when its entries are constant on each diagonal;

• Q is a circulant matrix when it is a Toeplitz matrix and each row (column) is a
periodic shift of its previous row (column);
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• Q is a Hankel matrix when its entries are constant on each antidiagonal.

This concepts are easily expandable to block matrices; hence, following [60], we have:

◃ a BCCB matrix is a block circulant with circulant blocks;

◃ a BHHB matrix is a block Hankel matrix with Hankel blocks;

◃ a BTHB matrix is a block Toeplitz matrix with Hankel blocks;

◃ a BHTB matrix is a block Hankel matrix with Toeplitz blocks.

◃ a BTTB matrix is a block Toeplitz matrix with Toeplitz blocks.

Thus, we can classify the matrix H depending on the boundary conditions employed
in the a 2D imaging problem:

� zero boundary conditions: H is a BTTB matrix;

� periodic boundary conditions: H is a BCCB matrix;

� reflexive boundary conditions: H is a sum of BCCB, BHHB, BTHB and BHTB
matrices.

For each type of imaging matrices, the computation of the discrete matrix–vector prod-
uct Hf can be efficiently obtained by discrete transforms.
Hereafter, we will focus on periodic boundary conditions; hence the appropriate trans-
form to be used is the Discrete Fourier Transform (DFT) and its inverse (IDFT). In
this way, using the convolution theorem, the matrix–vector products Hf and Htf can
be obtained in the following way

Hf = IDFT[DFT[h] ·DFT[f ]]

Htf = IDFT[DFT[h] ·DFT[f ]]

where h denotes the first column of H and α denotes the complex conjugate of any
entry of the vector α.
For deblurring problems, when the imaging matrix is approximated by the cyclic con-
volution of the object with a periodic and nonnegative PSF, standard assumptions on
the matrix H are given by the following conditions:

Hij ≥ 0 ∀i, j, Ht1 = 1, H1 > 0 (1.5)

Moreover, if H is a square matrix, a further classical condition is H1 = 1. These
hypothesis on H are commonly used in astronomy and microscopy.

For a very detailed discussion about the imaging framework, the computational
aspects of the boundary conditions and the discrete model, see [11, 12, 97, 60].
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1.3 Noise

Following [14, 11], we recall the mathematical model of data acquisition in a statistical
framework. As a consequence of the noise introduced by the detection system, the data
can be viewed as a realizations of random variables. Indeed, the noise is a random
process so that the detected value gni at each i–th pixel is a realization of a random
variable Yi; therefore, a modeling of the detection system requires a modeling of the
noise, i.e. a model of its probability density. This density depends on the original
object f∗ and therefore we denote it as

PY (gn|f∗)

where Y is a multivalued random variable whose components Yi are random variables.
In order to be able to treat such a function, the following assumptions are in general
accepted as reasonable ones.

Assumptions 1.1. The random variables Yi and Yj are pairwise statistically indepen-
dent and identically distributed (i.i.d.) for each i, j. In this way, we can write

PY (gn|f∗) =
∏
i

pY (gni|f∗) (1.6)

Assumptions 1.2. The expected value of Y is

E[Y ] = Hf∗ + bg1

1.3.1 Gaussian Noise

As already specified, in case of Gaussian or additive noise, the linear discrete model
(1.4) can be rewritten as

gn = Hf∗ + bg1+ υ

where υ is a realization of the multivalued random variable Υ. Each component Υi is
a random variable with Gaussian distribution with zero mean and standard deviation
σ.

pΥi(υi) =
1√
2πσ

exp

(
− υ2i
2σ2

)
Thus, for the multivalued random variable, we have

PΥ(υ) =
1

(2πσ)
N
2

exp

(
−∥υ∥2

2σ2

)
Then, following [11], a suitable model for PY (gn|f∗) which takes into account the
previous assumptions, is given by

PY (gn|f∗) = PΥ(Hf∗ + bg1− gn) = CN exp

(
−∥Hf∗ + bg1− gn∥2

2σ2

)
(1.7)

In this way, Y is a multivalued random variable with Gaussian distribution, whose
expected value is exactly Hf∗ + bg1. We point out that the Gaussian noise affecting
the i–th element is independent from the intensity value of the i–th component of the
data.
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1.3.2 Poisson Noise

When the image intensity is measured via the counting of incident particles (e.g. pho-
tons, γ–rays, etc), the fluctuations in the emission counting process can be described
by modeling the data as realizations of Poisson random variables: each component of
the data follows the Poisson distribution

pYi(gni) = e−λi
λ
gni
i

(gni)!
⇒ PY (gn) =

∏
i

e−λi
λ
gni
i

(gni)!

due to the assumption of independence of the data values. Since E [Y ] = Hf∗+bg1, we
assume λ = Hf∗+ bg1, so we can write the distribution probability for the multivalued
random variable Y as

PY (gn|f∗) =
∏
i

(Hf∗ + bg1)
gni
i e−(Hf∗+bg1)i

gni!
(1.8)

The influence of the noise is highly dependent on the value of the exact data: for low
counts the registered signal has an high level of noise, while for high counts the signal
is less affected by noise. This behaviour is depicted in Figure (1.3).

1.4 Data Restoration

The goal of image restoration is to restore the original data f∗ from the blurred
and noisy data gn when the structure of H is known 1. This is a problem
belonging to a wider class of problems, called inverse problems.

A naive approach to solve this problem consists in solving the equation (1.4) for f ,
obtaining the following value for the original object f∗:

H−1(gn− bg1)

An example of what we could obtain with this procedure applied on the image in Figure
1.2(c) is shown in Figure 1.4.

The direct inversion is not suitable for this kind of problems since in most cases
they are ill-posed in the sense of Hadamard [57].
For discrete data, we have to consider the ill–conditioning of the problem, expressed by
the condition number of the imaging matrix H which can be singular or nearly singular.
Due to the presence of statistical noise, the direct inversion is not viable.
Since it is physically impossible to recover the exact original data f∗, our aim is to find
an approximation f̃ of it, taking into account all the available information on H and
on the noise affecting the image.

In the early 80’s, in [88] the Maximum Likelihood Estimation approach is proposed;
successively the Bayesian Approach, described in [53], has attracted more and more
attention due to its extension of the previous model. In the following we present the
basic ideas of these two approaches.

1When the operator H is not fully known, we have to face a problem of blind deconvolution: see
[44, 17].
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(a)

(b) (c)

(d) (e)

Figure 1.3: Example of noise affecting data. In 1.3(b) Gaussian noise is present on the
original image 1.3(a); in 1.3(c) Poissonian noise had influenced the data acquisition; in
1.3(d) and 1.3(e) there are the differences between the original image and the data affected
by Gaussian and Poisson noise, respectively. As pointed out, the Gaussian noise is uniform
on the entire image, while on the contrary the other type of noise is highly dependent on the
pixels’ values.
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Figure 1.4: Attempt to reconstruct the image 1.2(a) from 1.2(c) by a naive approach.

1.4.1 Maximum Likelihood Estimation

The Maximum Likelihood Estimation approach consists in considering (1.6) as the
likelihood function. The ML estimator is a vector fML which maximize PY (gn|f).
Since the likelihood function is the product of a very large number of factors it is
convenient to take its negative logarithm: then we are led to solve a minimization
problem instead of a maximization one:

fML = argmax
f
PY (gn|f) = argmin

f
(− log(PY (gn|f)))

Within this approach, the ML estimator is exactly the searched approximation f̃ :

f̃ ≡ fML = argmin
f
ϕ0(Hf + bg1;gn) (1.9)

where ϕ0(Hf + bg1;gn) = − log(PY (gn|f)).

Definition 1.2. The function ϕ0 : f 7→ ϕ0(Hf + bg1;gn) is called fidelity functional
or fit–to–data functional: it measures the discrepancy between the given data gn and
its argument f .

Considering the data gn affected by different type of noise, we obtain different func-
tionals ϕ0.

Gaussian noise: considering (1.7), neglecting some irrelevant constants, the problem
(1.9) could be stated as

fML = argmin
f

1

2
∥Hf + bg1− gn∥2 (1.10)

i.e. it is the classical Least Squares minimization problem. It is worth noticing that this
functional is convex, and strictly convex if and only if Hf = 0 when f = 0. Moreover,
it has always a global minimum.

Poisson noise: from (1.8), using Stirling’s formula to approximate the factorial and
neglecting again some constants, (1.9) takes the form

fML = argmin
f

KL(Hf + bg1;gn) (1.11)

where

KL(x;y) =
∑
xi>0

yi log

(
yi
xi

)
+ xi − yi (1.12)
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is the Kullback–Leibler functional, with 0 log(0) = 0; this functional measures the
distance between two nonnegative probability distributions. Since in our case the data
come from Poisson random variables, it seems the right functional to be employed. We
report in our notations two useful results about the properties of the Kullback–Leibler
functional.

Proposition 1.1. [50, Prop. 2] For any y ≥ 0 we have dom(KL(·;y)) = {x >
0|KL(x;y) ≤ ∞} ̸= ∅; furthermore, the function KL(·;y) is lower semicontinuous
(l.s.c.), coercive and convex on its domain. If y > 0, KL(·;y) is also strictly convex.
If H is a linear operator such that {x|Hx > 0} ≠ ∅, we have that the function KL ◦H

KL ◦H(x;y) := KL(Hx;y)

is proper, l.s.c. and convex and moreover if H is injective, then KL ◦H is coercive. If
H is injective and y > 0, then KL ◦H is strictly convex.

Remark 1.1. Proposition 1.1 holds for KL(Hx + bg1;gn) with bg > 0. We observe
that the domain of KL ◦H is {x ∈ RN |Hx + bg1 > 0}. Under suitable assumptions,
dom(KL(Hx+ bg1;gn)) is non empty. Furthermore, for x ∈ dom(KL(Hx+ bg1;gn))
is twice continuously differentiable.

Proposition 1.2. [13] If H satisfies

Hij ≥ 0,

M∑
i=1

Hij > 0 for j = 1, . . . , N,

N∑
j=1

Hij > 0 for i = 1, . . . ,M (1.13)

the KL ◦H is coercive on the nonnegative orthant.

Proof. The assumptions imply that, if the null space of the matrix H is not trivial,
then all its elements must have at least one negative component. It follows that ∥Hx∥
is coercive on the nonnegative orthant. Indeed, it can not be zero on the intersection
of the nonnegative orthant with the unit sphere and therefore has a positive minimum
α. Since it is homogeneous of order 1, it follows ∥Hx∥ ≥ α∥x∥, x ≥ 0.

Remark 1.2. When H satisfies (1.13) and bg > 0, KL(Hx + bg1;gn) is gradient
Lipschtiz–continuous on its domain.

For both types of noise the solution is difficult to compute, since this problem is
ill–conditioned, as stated before. The computation of the Least Squares solution leads
to search for the solution of the well–known Euler equation

HtHf = Ht(gn− bg1)

and the condition number of H can be very large. On the other hand, in presence
of Poisson noise, the fit–to–data functional is highly non–linear and, furthermore, the
condition number of H can make the computation very expensive.

Due to the ill–conditioning of the problem, the basic instability of the minimizer of
the likelihood was soon recognized; in order to get a better reconstruction, the Bayesian
approach has been widely investigated.
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1.4.2 Bayesian Approach

In a complete statistical framework, one can consider also the true signal as the re-
alization of a multi–valued random variable F ; hence we can take into account the
probability density function PF (f) as a priori information. PF (f) is the so–called prior
probability distribution, or simply the prior. Introducing the marginal probability
PY (gn), we are led, via the Bayes theorem, to the conditional probability of F for a
given value gn of Y :

PF (f |gn) =
PY (gn|f)PF (f)

PY (gn)
(1.14)

In this way, some useful information (such as sharp edges, high contrasted values) on
the object can be incorporated in the a priori probability PF (f); a very common and
suitable choice for this function is given by a Gibbs distribution:

PF (f) = CN exp(−βϕ1(f)) (1.15)

with CN ∈ R, β ∈ R+; here ϕ1 includes all the available information on f∗. A reason-
able request for ϕ1 is to be convex.

In the Bayesian approach, the required approximation f̃ is computed as a maximum
a posteriori (MAP) estimator of PF (f |gn). Again we are led to search for the maximum
of a function: for computational purposes we take again the neglog of PF (f |gn), which
means to compute

f̃ = argmin
f
ϕβ(f) ≡ ϕ0(Hf + bg1;gn) + βϕ1(f) (1.16)

We have neglected some constants as CN and PY (gn), since they do not affect the
minimization procedure.

The function ϕ1 is called regularization functional: it has the role to take into
account some properties of the desired solution and to control the influence of the noise.
The parameter β is a real, positive number which balances the trade–off between ϕ0

and ϕ1: in a statistical framework it has the name of hyper parameter, while in
regularization theory it is called regularization parameter.

In presence of Gaussian or Poisson noise the ϕ0 function is differentiable, coercive
and convex, so if one chooses for ϕ1 a convex function, the function ϕβ := ϕ0 + βϕ1

has global minimizers for positive value of β. It is worthing to notice that again this
formulation does not assure us the computation of a good reconstruction: the parameter
β has a huge influence on the computation of f̃ .

1.5 Constraints

In real applications, the physics lying under the data acquisition process can require
some characteristics or constraints on the approximated solution f̃ . Hence we are led to
solve a constrained minimization problem; the requested characteristics can be modeled
by searching the solution in a convex set C ⊂ RN :

f̃ = argmin
f∈C

ϕβ(f)

Some typical examples of constraint set are the following.
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• C is the positive orthant: the requested solution must have only nonnegative
elements;

• the flux of the data remains constant after the acquisition process:∑
i

f i = c, c ∈ R

• C is a box, i.e., the elements of the computed solution satisfy box constraints:

ai ≤ f i ≤ bi, ai, bi ∈ R i = 1, . . . , N,

• C is a convex, bounded subset of RN .

Remark 1.3. An interesting point of view of the minimization procedure can be the
following: one can consider the following minimization problem

argminϕ1(f) subject to ϕ0(Hf + bg1;gn) ≤ η

i.e. searching a regularized solution within the elements that keep bounded the value
of ϕ0. Adopting a penalty approach, one can obtain the same model described before,
just multiplying both members by β:

argmin
f
ϕ1(f) +

1

β
ϕ0(Hf + bg1;gn)

The relations between the two formulations have been widely investigated.

1.6 Regularization Functionals

In this section we report the forms of the regularization function ϕ1 used in this work.

1.6.1 Tikhonov Regularization

Let L be a linear operator. The choice

ϕ1(f) =
1

2
∥Lf∥2

is known as Tikhonov regularization ([93, 94, 95]). The starting point of this kind
of regularization is the Euler Equation HtHf = Ht(gn − bg1), rising from the least
squares formulation.
The aim of this kind of regularization is to emphasize the features of smooth objects.
Current choices for L can be:

• L = I;

• L = ∇, where ∇ is the discretization of the gradient operator;

• L = ∇2, where ∇2 is the discretization of the Laplacian operator;
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More precisely, in the latter cases, in presence of a 2D square image of N pixels,
where N = m× n, we have that

∇ =

 ∇1
...

∇N


where ∇i is a 2×N matrix such that

∇if =

(
f i+1 − f i
f i+m − f i

)
Here forward difference formulae at the i–th pixel are used. Then the discrete formu-
lation is

1

2
∥∇f∥2 = 1

2

N∑
i=1

∥∇if∥2

A similar argument holds for ∇2.
It has to be pointed out that this type of regularization functionals are convex.

1.6.2 Edge–Preserving Regularization

In order to preserve sharp discontinuities in the solution, a suitable choice for ϕ1 is the
Total Variation functional [86]. The discrete version for the Total Variation of a digital
signal f can be written as

TV(f) =

N∑
i=1

∥∇if∥ (1.17)

where ∇i is the discretization of the gradient operator at the i–th pixel, as in the
Tikhonov case.
Using the notation in [97], we can express the discrete TV also as

TV(f) =

N∑
i=1

ψ
(
(f i+1 − f i)

2 + (f i+m − f i)
2
)

with ψ(t) =
√
t.

We have to notice that, also in this case, ϕ1 is a convex function. On the other hand,
the Total Variation functional is not differentiable for f such that ∇if = 0 for some
i ∈ {1, . . . , N}; hence, in order to remove the singularity of ψ at the origin, we can
introduce a generalization for this kind of function, using an approximation ψδ of ψ.
Some common choice for ψδ can be [97]

ψδ(t) =
√
t+ δ2 − δ (1.18)

ψδ(t) =


t

δ
t ≤ δ2

2
√
t− δ t > δ2

(1.19)

with δ > 0. The only requirement is that ψ′(t) > 0 for t ≥ 0. In the first case, for
δ equal to zero, we obtain the classical Total Variation. The function (1.18) has been
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considered in a general approach to edge preserving regularization [39]. In such a case
it is called Hypersurface Potential [38]

HS(f) =
N∑
i=1

ψδ

(
(fi+1 − fi)

2 + (fi+m − fi)
2
)
=

N∑
i=1

√
∥∇if∥2 + δ2 − δ (1.20)

and δ is considered as a thresholding parameter which tunes the value of the gradient
above which a discontinuity is detected.

Edge–preserving image reconstruction can be obtained also by Markov Random
Field (MRF) regularization [53, 54]. The methods which allow to deal with the HS
potential can be efficiently used when ϕ1 is a MRF function.

1.7 The regularization problem for Poisson data

When H satisfies the classical assumptions (1.5), as pointed out in Proposition 1.2, the
Kullback–Leibler function is coercive and convex; for x ∈ dom(KL ◦ H), the Hessian
takes the form

∇2KL(Hx+ bg1;gn) = Htdiag

(
gn

(Hx+ bg1)2

)
H

The kernel of ∇2KL contains the kernel of H and, under the previous assumptions on
the imaging matrix, we have that 1 /∈ Ker(∇2KL). With these preliminary results, the
subsequent Preposition assure us the existence and the uniqueness of the solution of
the variational problem

min
x≥0

ϕβ ≡ KL(Hx+ bg1;gn) + βϕ1(x) (1.21)

where the fidelity function is the Kullback–Leibler and the regularization is given by a
Tikhonov–type or edge–preserving function.
We assume bg > 0 in order to guarantee the existence of the Hessian of KL(Hx +
bg1;gn) for any x ≥ 0. This does not give any restriction since one can set bg as a very
small positive value.

Proposition 1.3. Let H satisfies (1.5) in (1.21).

(a) If ϕ1(x) =
1
2∥x∥

2, then the solution of (1.21) exists and it is unique.

(b) If ϕ1(x) =
1
2∥Lx∥

2 and Ker(L) = {α1|α ∈ R}, then the solution of (1.21) exists
and it is unique.

(c) If ϕ1(x) = HS(x) (δ > 0), then the solution of (1.21) exists and it is unique.

(d) If ϕ1(x) = TV(x), then the solution of (1.21) exists; if Ker(H) = {0} and gn > 0
the solution is unique.

Proof. In cases (a)–(c) the Hessian of ϕβ is the sum of the Hessian of the KL divergence
and ∇2ϕ1; we have to show that the intersection Ker(∇2(KL)) ∩ Ker(∇2(ϕ1)) = {0}
in order to have a positive definite Hessian matrix.

(a) Since ∇2ϕ1 = I, Ker(∇2ϕ1) = {0}, the intersection is the trivial vector space and
the conclusion holds.
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(b) Since Ker(∇2ϕ1) = Ker(LtL) = Ker(L) = {α1|α ∈ R}, the intersection Ker(∇2(KL))∩
Ker(∇2(ϕ1)) is just the null vector: ϕβ is thus strictly convex.

(c) From Definition (1.20), we haveHS(x) =
N∑
i=1

(√
Di − δ

)
, whereDi = ∥∇ix∥2 + δ2.

We define the block matrices

E(x) = diag(D
1/2
i I2), F (x) = diag

(
I2 −

1

Di
∇ixx

t∇t
i

)
for i = 1, . . . , N . The matrices E,F ∈ M2N (R) are block diagonal matrices.
Then, we can write the gradient and the Hessian of ϕ1 in terms of E and F :

∇ϕ1(x) = ∇tE(x)−1∇x, ∇2ϕ1(x) = ∇tE(x)−1F (x)∇

In particular, E(x) is diagonal with positive diagonal entries and the i–th diag-
onal block of F (x) is the difference between the identity matrix and a dyadic

product: from the definition of Di it follows that
1

Di
xt∇t

i∇ix =
∥∇ix∥2

Di
< 1.

As a consequence, from the Sherman–Morrison theorem, it follows that all the
diagonal blocks of F (x) (and hence F (x) itself) are nonsingular. Due to the last
considerations, we are going to prove that the null space of the Hessian of ϕ1 is
the set of the minimum points of ϕ1.
In fact, we have that E(x)−1F (x) is nonsingular for all x ∈ RN : this leads to
Ker(∇2(ϕ1)) = Ker(∇). Conversely, the minimum points of the convex function
ϕ1 satisfy ∇(ϕ1) = 0, that is ∇tE(x)−1∇x = 0. Hence the set of the minimum
points of ϕ1 is the subspace Ker(∇).
Since the minimum points of the HS functional are all the points xi = α, α ∈ R
for all i, we thus have Ker(∇2HS) = {α1|α ∈ R}, then the intersection between
the null space of the Hessians of ϕ0 and ϕ1 is just the zero vector: ϕβ is thus
strictly convex.

(d) In this case, see [50, Proposition 3].

The assumption gn > 0 is not very restrictive, since in real applications gn contains
also the background emission. When this does not occur, it is sufficient to set the zero
value in the given data to very small values, with no side effects.
Furthermore, the general assumption Ker(L) = {α1|α ∈ R} holds for L = ∇ or L = ∇2

when classic boundary conditions, such as periodic or reflexive ones, are imposed on
the data; for the identity operator or for zero boundary conditions the kernel is just
the trivial vector space (α = 0).



Chapter 2

Optimization Methods

In the previous chapter we have explained the way we are led to solve minimization
problems in image restoration framework. The aim of this chapter is to give a survey
on the optimization algorithms that are the state of the art in imaging applications.
We mainly focus on the case of data corrupted by Poisson noise and on the methods
that will be used in the subsequent chapters. Some algorithms (SGP) allow us to
solve the primal formulation of the minimization of a convex function while others are
employed for primal–dual formulation (AEM, PDHG, . . . ), taking into account also
the non differentiable case. Furthermore, as original contribution, we introduce a new
scaling technique with the aim of accelerating the class of the ε–subgradient methods.
The problem to be faced is

min
x∈Ω

ϕ(x) (2.1)

where ϕ is a convex real function and Ω is a closed convex set of RN .

2.1 SGP

The Scaled Gradient Projection (SGP) algorithm [22] is an optimization method be-
longing to the class of gradient projection methods, whose aim is to solve the problem
(2.1) where ϕ is continuously differentiable. Focusing on image restoration problems,
the choice of ϕβ (1.16) as ϕ in (2.1) is a special case of this formulation for differentiable
ϕ1 (Tikhonov or HS regularization, for example).

Before describing the algorithm and its properties, we recall some definitions and
features of projection operators which become useful in the forthcoming sections.

Definition 2.1. Let D a symmetric positive definite matrix, D ∈ MN (R); the function

∥ · ∥D : RN → R
∥ · ∥D : x 7→ ∥x∥D =

√
xtDx

is the norm associated to the matrix D. The projector operator PΩ,D on the closed set
Ω ⊂ Rn is defined as

PΩ,D(x) = argmin
y∈Ω

∥y − x∥2D (2.2)

When D = I, we have the standard Euclidean projection and we write PΩ,I = PΩ. In
the following lemma we state some properties of PΩ,D.

17
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Lemma 2.1. Let D be a symmetric positive definite matrix. The following relations
hold.

(a) [16, Proposition 3.7] For any x ∈ Rn, y ∈ Ω we have

(PΩ,D−1(x)− x)tD−1(y − PΩ,D−1(x)) ≥ 0 (2.3)

(PΩ,D−1(x)− x)tD−1(y − x) ≥ ||x− PΩ,D−1(x)||2D−1

(2.4)

(b) For any x,y ∈ Rn we have

∥PΩ,D−1(x)− PΩ,D−1(y)∥D−1 ≤ ∥x− y∥D−1

(c) [22, Lemma 2.1] Let L a positive number such that ∥D∥ = λmax(D) ≤ L and

∥D−1∥ =
1

λmin(D)
≤ L, where λmax and λmin are the maximum and the minimum

eigenvalue of D, respectively; then

∥PΩ,D−1(x)− PΩ,D−1(y)∥ ≤ L∥x− y∥

Proof. The optimality conditions of the minimum problem (2.2) yield part (a). Part
(b) is a consequence of the first inequality in (a) and of the Cauchy–Schwartz inequality.
For part (c), thanks to (b), we have

∥PΩ,D−1(x)− PΩ,D−1(y)∥D−1 ≤ ∥x− y∥D−1

≤
√
λmax(D−1)∥x− y∥

=

√
1

λmin(D)
∥x− y∥

≤
√
L∥x− y∥

and

∥PΩ,D−1(x)− PΩ,D−1(y)∥D−1 ≥
√
λmin(D−1)∥PΩ,D−1(x)− PΩ,D−1(y)∥

=

√
1

λmax(D)
∥PΩ,D−1(x)− PΩ,D−1(y)∥

≥
√

1

L
∥PΩ,D−1(x)− PΩ,D−1(y)∥

and then we have the result.

In the past years, several algorithms have been developed with the aim to perform
in a easy and non–expensive way (in terms of computational cost) the projection even
in case of sets of particular structures ([45, 26, 72]).
The subsequent lemma characterizes the action of the projection operator on stationary
points for the problem (2.1).
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Lemma 2.2. A vector x∗ is a stationary point for (2.1) if and only if

x∗ = PΩ,D−1(x∗ − αD∇ϕ(x∗))

for any positive scalar α and any symmetric definite positive matrix D.

Proof. Let α ∈ R+ and D be a symmetric positive definite matrix. Assume that
x∗ = PΩ,D−1(x∗ − αD∇ϕ(x∗)); from the definition of the projection operator we have

(x∗ − x∗ + αD∇ϕ(x∗))tD−1(x∗ − x) ≤ 0

α (D∇ϕ(x∗))tD−1(x∗ − x) ≤ 0

∇ϕ(x∗)t(x∗ − x) ≤ 0

∀ x ∈ Ω. The last one is exactly the stationarity condition for (2.1). On the other
hand, let us assume that x∗ ∈ Ω is a stationary point for (2.1) and suppose x =
PΩ,D−1(x∗ − αD∇ϕ(x∗)), x ̸= x∗. Then, from (2.3), we have

(x− x∗ + αD∇ϕ(x∗))tD−1(x− x∗) ≤ 0

that is
∥x− x∗∥2D−1 + α∇ϕ(x∗)t(x− x∗) ≤ 0

which yields

∇ϕ(x∗)t(x− x∗) ≤ −
∥x− x∗∥2D−1

α
< 0

which gives a contradiction with the stationarity assumptions on x∗.

When x̃ is not a stationary point, PΩ,D−1(x̃ − αD∇ϕ(x̃)) − x̃ can be exploited as a
descent direction of ϕ at x̃. This is the basic idea for the SGP method. The main steps
of SGP are reported as Algorithm 1.

The direction dk in Step 3 is a descent direction for the function ϕ at xk . Moreover,
if the succession {xk} is bounded, then {dk} is bounded too [22, Lemma 2.4]. Further-
more, using the following theoretical results we can state a convergence theorem for
the SGP method.

Lemma 2.3. Assume that the subsequence {xk}k∈K ,K ⊂ N is converging to a point
x∗ ∈ Ω. Then, x∗ is a stationary point of (2.1) if and only if

lim
k∈K

∇ϕ(xk)tdk = 0.

Lemma 2.4. Let x∗ ∈ Ω be an accumulation point of the sequence {xk} such that
lim
k∈K

xk = x∗, for some K ⊂ N. If x∗ is a stationary point of (2.1), then x∗ is an

accumulation point also for the sequence {xk+r}k∈K for any r ∈ N. Furthermore,

lim
k∈K

∥dk+r∥ = 0, ∀ r ∈ N.

The proofs of the previous lemmas can be found in [22]; thanks to these results, the
following theorem holds. For sake of completeness we report the proof in our notations.
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Algorithm 1: SGP

Choose the starting point x0 ∈ Ω, set the parameters γ, θ ∈ (0, 1), 0 < αmin < αmax and
fix a positive integer M .
For k = 0, 1, 2, . . . do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and the scaling matrix Dk;

Step 2. Projection: yk = PΩ,D−1(xk − αkDk∇ϕ(xk)); if yk = xk, then stop, declaring xk is
a stationary point;

Step 3. Descent direction: dk = yk − xk;

Step 4. Set λk = 1 and ϕmax = max
0≤j≤min{k,M−1}

ϕ(xk−j)

Step 5. Backtracking loop:
if ϕ(xk + λkd

k) ≤ ϕmax + γλk∇ϕ(xk)tdk

go to STEP 6;
Else

set λk = θλk and go to STEP 5;

Step 6. Set xk+1 = xk + λkd
k

Proposition 2.1. [22, Theorem 2.1] Assume that the level set Ω0 = {x ∈ Ω|ϕ(x) ≤
ϕ(x0)} is bounded. Every accumulation point of the sequence {xk} generated by the
SGP algorithm is a stationary point for ϕ in (2.1).

Proof. Since every iterate xk lies in Ω0, the sequence {xk} is bounded and has at least
one accumulation point. Let x∗ ∈ Ω be such that lim

k∈K
xk = x∗ for a set of indexes

K ⊂ N. Let us consider separately the two cases

a. inf
k∈K

λk = 0;

b. inf
k∈K

λk = ρ > 0.

Case a.
Let K1 ⊂ K be a set of indexes such that lim

k∈K1

λk = 0. This implies that, for k ∈ K1, k

sufficiently large, the backtracking rule fails to be satisfied at least once. Thus, at the
penultimate step of the backtracking loop, we have

ϕ

(
xk +

λk
θ
dk

)
> ϕ(xk) + γ

λk
θ
∇ϕ(xk)tdk,

hence

ϕ

(
xk +

λk
θ
dk

)
− ϕ(xk)

λk
θ

> γ∇ϕ(xk)tdk. (2.5)

By the mean value theorem, we have that there exits a scalar tk ∈
[
0,
λk
θ

]
such that

the left hand side of (2.5) is equal to ∇ϕ(xk + tkd
k)tdk. Thus, the inequality (2.5)

becomes
∇ϕ(xk + tkd

k)tdk > γ∇ϕ(xk)tdk. (2.6)
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Since αk and Dk are bounded, it is possible to find a set of indexes K2 ⊂ K1 such that
lim
k∈K2

αk = α∗ and lim
k∈K2

Dk = D∗. Thus the sequence {dk}k∈K2 converges to the vector

d∗ = (PΩ,D−1
∗
(x∗ − α∗D∗∇ϕ(x∗))− x∗)

and, furthermore, tkd
k → 0 when k diverges, k ∈ K2. Taking limits in (2.6) as

k → ∞, k ∈ K2, we obtain
(1− γ)∇ϕ(x∗)td∗ ≥ 0.

Since (1−γ) > 0 and∇ϕ(xk)tdk < 0 for all k, then we necessarily have lim
k∈K2

∇ϕ(xk)tdk =

∇ϕ(x∗)td∗ = 0. Then, by Lemma 2.3, we conclude that x∗ is a stationary point.
Case b.
Let us define the point xℓ(k) as the point such that

ϕ(xℓ(k)) = ϕmax = max
0≤j≤min(k,M−1)

ϕ(xk−j).

Then, for k > M − 1, k ∈ N, the following condition holds:

ϕ(xℓ(k)) ≤ ϕ(xℓ(k)−1) + γλℓ(k)−1∇ϕ(xℓ(k)−1)tdℓ(k)−1. (2.7)

Since the iterates xk, k ∈ N belong to a bounded set, the monotone non-increasing
sequence {ϕ(xℓ(k))} admits a finite limit L ∈ R for k ∈ K. Let K3 ⊂ K be a set of
indexes such that lim

k∈K3

λℓ(k)−1 = ρ1 ≥ ρ > 0 and lim
k∈K3

∇ϕ(xℓ(k)−1)tdℓ(k)−1 exists (recall

that, from [22, Lemma 2.4], the sequence {dk}k∈N is bounded); taking limits on (2.7)
for k ∈ K3 we obtain

L ≤ L+ γρ1 lim
k∈K3

∇ϕ(xℓ(k)−1)tdℓ(k)−1,

that is
lim
k∈K3

∇ϕ(xℓ(k)−1)tdℓ(k)−1 ≥ 0.

Recalling that ∇ϕ(xk)tdk < 0 for any k, the previous inequality implies that

lim
k∈K3

∇ϕ(xℓ(k)−1)tdℓ(k)−1 = 0. (2.8)

Then, by the Lemma 2.3, (2.8) implies that every accumulation point of the sequence
{xℓ(k)−1}k∈K3 is a stationary point of (2.1). Let us prove that the point x∗ is an
accumulation point of {xℓ(k)−1}k∈K3 .
The definition of xℓ(k) implies that k −M + 1 ≤ ℓ(k) ≤ k. Thus we can write

∥xk − xℓ(k)−1∥ ≤
k−ℓ(k)∑
j=0

λℓ(k)−1+j ∥d(ℓ(k)−1+j)∥, k ∈ K. (2.9)

Let K4 ⊂ K3 be a subset of indexes such that the sequence {xℓ(k)−1}k∈K4 converges
to an accumulation point x̄ ∈ Ω. Recalling that, from (2.8) and Lemma 2.3, x̄ is a
stationary point of (2.1), we can apply Lemma 2.4 to obtain that lim

k∈K4

∥d(ℓ(k)−1+j)∥ = 0

for any j ∈ N. By using (2.9) we conclude that

lim
k∈K4

∥xk − xℓ(k)−1∥ = 0. (2.10)
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Since

∥x∗ − xℓ(k)−1∥ ≤ ∥xk − xℓ(k)−1∥+ ∥xk − x∗∥

and lim
k∈K

xk = x∗, then (2.10) implies that x∗ is an accumulation point also for the

sequence {xℓ(k)−1}k∈K3 . Hence, we conclude that x∗ is a stationary point of (2.1).

We remark that SGP method is working for any symmetric definite positive matrix
Dk and for any positive scalar αk, consequently the setting of these two parameters can
be done dependently on the model which is considered in the application.
In the following we describe the choices made for image restoration problems with data
corrupted by Poisson noise:

ϕ(x) = ϕβ(x) ≡ KL(Hx+ bg1;gn) + βϕ1(x)

2.1.1 Scaling Matrix

The introduction of a variable scaling matrix Dk has two main goals: reduce computa-
tional costs and improve the rate of convergence. A classical way to perform these tasks
is to choose a diagonal matrix Dk = diag(dk1, d

k
2, . . . , d

k
N ) such that Dk approximates

the inverse of the Hessian of ϕβ:

dki =

(
∂2ϕβ(x

k)

(∂xi)2

)−1

, i = 1, . . . , N

Since the computation of the Hessian could be very expansive, a suitable choice is
to take an approximation of it.

When β = 0 (i.e. no regularization term), a classical choice is :

dki = min

{
L,max

{
1

L
, xki

}}
, i = 1, . . . , N

with L > 0. For a theoretical discussion, see [22].
In presence of a regularization term, following [67], a strategy for a convenient choice
for Dk is based on a splitting of the gradient of ϕβ. We consider a splitting of the
gradient of ϕ1:

−∇ϕ1(x) = U(x)− V (x)

with U(x) ≥ 0, V (x) > 0 for any x. Since ϕ0(Hx+ bg1;gn) ≡ KL(Hx+ bg1;gn), its

gradient is Ht

(
1− gn

Hx+ bg1

)
. Consequently a splitting of the complete gradient of

the function ϕβ is

−∇ϕβ(x;y) =

(
Ht gn

Hx+ bg1
+ βU(x)

)
−
(
Ht1+ βV (x)

)
A suitable choice in this case is the following [101]

dki = min

{
L,max

{
1

L
,

xk
i

Ht1+ βV (xk
i )

}}
, i = 1, . . . , N
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2.1.2 Steplength Selection

The steplength α has a huge impact on the convergence rate; hence the selection of this
parameter had become of great interest in the past years. As described in [22], SGP
method exploits the properties of Barzilai–Borwein rules [6]:

α1
k =

sk−1D−1
k D−1

k sk−1

(sk−1)tD−1
k zk−1

, α2
k =

(sk−1)tDkz
k−1

(zk−1)tDkDkzk−1
(2.11)

where sk = xk − xk−1 and zk = ∇ϕβ(x
k)−∇ϕβ(x

k−1). Using the original ideas in [6],
we recall the algorithm described in [22] to choose in a suitable way the steplength α
in our problem setting.

Algorithm 2: ABB Steplength Selection

if k = 0
set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1) and a nonnegative integer M .

else
if (sk−1)tD−1

k zk−1 ≤ 0
α1
k = αmax

else

α1
k = max

{
αmin,min

{
(sk−1)tD−1

k D−1
k sk−1

(sk−1)tD−1
k zk−1

, αmax

}}
if (sk−1)tDkz

k−1 ≤ 0
α2
k = αmax

else

α2
k = max

{
αmin,min

{
(sk−1)tDkz

k−1

(zk−1)tDkDkzk−1
, αmax

}}
if

α2
k

α1
k
≤ τk

αk = min
{
α2
j , j = max {1−M} , . . . , k

}
, τk+1 = 0.9τk

else
αk = α1

k, τk+1 = 1.1τk

Algorithm 2 describes an updating strategy based on an alternating rule for the
steplength [52] which is very efficient in applications.

Another choice for the steplength updating is the strategy recently proposed in [81]
(see [51] for unconstrained optimization). The principal aim of this strategy is to ac-
quire second order information by considering a small number (namely m) of gradients
computed in the previous iterations. These gradients enable to determine approxi-
mations of eigenvalues of the Hessian matrix, named Ritz values. The reciprocal of
these values are used as steplengths. We refer to [51, 81] for further details. In [81]
it is shown that the SGP version exploiting this Ritz–like steplength selection strategy
shows a better efficiency compared to the alternating Barzilai–Borwein rules.

2.2 EM–TV

In this section, we recall the well–known EM–TV method [30]. Such a method al-
lows to compute the approximate solution of a deblurring problem by Total Variation
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regularization from data corrupted by Poisson noise:

min
x≥0

KL(Hx+ bg1;gn) + βTV(x)

The general procedure is described in Algorithm 3.

Algorithm 3: EM–TV

Choose β and x0.
For k = 0, 1, 2, . . . do the following steps:

Step 1. xk+ 1
2 = xkHT gn

Hxk + bg1

Step 2. xk+1 = argmin
x

1

2

∥∥∥∥∥x− xk+ 1
2√

xk

∥∥∥∥∥
2

+ βTV(x)



The first step (the computation of xk+ 1
2 ) is the EM [53] step (known in astronomic

field as Lucy–Richardson algorithm [70, 83]), while the second step consists in the so-
lution of a weighted ROF model [86]. Since an iterative solver is used for finding the
solution of the TV step, the whole procedure consists in two innested cycles: this fact
can be quite expansive in term of computational cost. Thus the effectiveness of EM–TV
is strongly dependent on the performance of the inner solver for xk+1. A well–known
method for the solution of the ROF model is developed in [3]; for other solvers, see
[35, 104].

2.3 AEM

The aim of extragradient methods is to compute the saddle point of a function F :

min
x∈X

max
y∈Y

F (x, y)

where X and Y are two closed and convex sets and F is a smooth convex–concave
function on D = X × Y. Starting from x0 ∈ X, y0 ∈ Y, a sequence of iterates can be
generated by the following formulae:

yk = PY

(
yk + αk∇yF (x

k,yk)
)

(2.12)

xk+1 = PX

(
xk − αk∇xF (x

k,yk)
)

(2.13)

yk+1 = PY

(
yk + αk∇yF (x

k+1,yk)
)

(2.14)

(2.15)
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The steplength αk is adaptively chosen; indeed, we define

Ak =
∥∇xF (x

k+1,yk)−∇xF (x
k,yk)∥

∥xk+1 − xk∥

Bk =
∥∇yF (x

k+1,yk)−∇yF (x
k,yk)∥

∥xk+1 − xk∥
(2.16)

Ck =
∥∇yF (x

k+1,yk)−∇yF (x
k+1,yk)∥

∥yk − yk∥
The convergence to a saddle point of F is assured when αk is chosen in a bounded
interval [αmin, αmax], 0 < αmin < αmax so that the following conditions hold{

1− 2αkAk − 2α2
kB

2
k ≥ ε

1− 2αkCk ≥ ε
(2.17)

where ε is a small fixed value in (0, 1). The following lemma allows to prove the
convergence property in Proposition 2.2.

Lemma 2.5. [73] Let Ω ⊂ RN be a non empty, closed convex set, w, z ∈ Rn and
u ∈ Ω. Then

∥PΩ(z)− u∥2 ≤ ∥z− u∥2 − ∥PΩ(z)− z∥2 (2.18)

Proposition 2.2. [20, Theorem 1] Assume that F is convex with respect to x and
concave with respect to y in the domain D and that there exists a saddle point of F
in D. Let {xk,yk} be the sequence generated by (2.12), with αk ∈ [αmin, αmax] and
satisfying (2.17). Then {xk,yk} converges to a saddle point of F in D.

Proof. Let (x∗,y∗) ∈ D a saddle point of F . By applying (2.18) to (2.14), setting
z = yk + αk∇yF (x

k+1,yk) and u = y∗ we obtain

∥yk+1 − y∗∥2 ≤

≤ ∥yk + αk∇yF (x
k+1,yk)− y∗∥2 − ∥yk+1 − yk − αk∇yF (x

k+1,yk)∥2

= ∥yk − y∗∥2 + 2αk⟨∇yF (x
k+1,yk),yk − y∗⟩+

−∥yk+1 − yk∥2 + 2αk⟨∇yF (x
k+1,yk),yk+1 − yk⟩

= ∥yk − y∗∥2 − ∥yk+1 − yk∥2 + 2αk⟨∇yF (x
k+1,yk),yk+1 − y∗⟩

(2.19)

Similarly, from (2.12) and (2.18) with z = yk+αk∇yF (x
k,yk) and u = yk+1 we have

∥yk − yk+1∥2 ≤

≤ ∥yk + αk∇yF (x
k,yk)− yk+1∥2 − ∥yk − yk − αk∇yF (x

k,yk)∥2

= ∥yk − yk+1∥2 + 2αk⟨∇yF (x
k,yk),yk − yk+1⟩+

−∥yk − yk∥2 + 2αk⟨∇yF (x
k,yk),yk − yk⟩

= ∥yk − yk+1∥2 − ∥yk − yk∥2 + 2αk⟨∇yF (x
k,yk),yk − yk+1⟩

Adding and subtracting 2αk⟨∇yF (x
k+1,yk),yk − yk+1⟩ to the right-hand side of the

previous inequality, one obtains

∥yk − yk+1∥2 ≤

≤ ∥yk − yk+1∥2 − ∥yk − yk∥2 + 2αk⟨∇yF (x
k+1,yk),yk − yk+1⟩

+2αk⟨∇yF (x
k,yk)−∇yF (x

k+1,yk),yk − yk+1⟩
(2.20)
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Summing (2.19) and (2.20) yields

∥yk+1 − y∗∥2 ≤

≤ ∥yk − y∗∥2 − ∥yk − yk+1∥2 − ∥yk − yk∥2+

+2αk⟨∇yF (x
k+1,yk),yk − y∗⟩+

+2αk⟨∇yF (x
k,yk)−∇yF (x

k+1,yk),yk − yk+1⟩

(2.21)

Since F is concave with respect to the variable y, we have

⟨∇yF (x
k+1,yk),y∗ − yk⟩ ≥ F (xk+1,y∗)− F (xk+1,yk)

Then, adding and subtracting 2αk⟨∇yF (x
k+1,yk),yk⟩, we have in (2.21)

∥yk+1 − y∗∥2 ≤

≤ ∥yk − y∗∥2 − ∥yk − yk+1∥2 − ∥yk − yk∥2+

+2αk⟨∇yF (x
k,yk)−∇yF (x

k+1,yk),yk − yk+1⟩+

+2αk⟨∇yF (x
k+1,yk),yk − yk⟩+ 2αk{F (xk+1,yk)− F (xk+1,y∗)}

(2.22)

Let now consider the definition of xk+1 in (2.13). Invoking again (2.18) with z =
xk + αk∇yF (x

k,yk) and u = x∗ we can write

∥xk+1 − x∗∥2 ≤

≤ ∥xk − αk∇xF (x
k,yk)− x∗∥2 − ∥xk+1 − xk + αk∇xF (x

k,yk)∥2

= ∥xk − x∗∥2 − ∥xk+1 − xk∥2+

+2αk⟨∇xF (x
k,yk),x∗ − xk⟩ − 2αk⟨∇xF (x

k,yk),xk+1 − xk⟩

By the convexity of F with respect to the variable x we have

⟨∇xF (x
k,yk),x∗ − xk⟩ ≤ F (x∗,yk)− F (xk,yk)

thus we can write

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2 +
+2αk{F (x∗,yk)− F (xk,yk)− ⟨∇xF (x

k,yk),xk+1 − xk⟩}

Summing and subtracting 2αkF (x
k+1,yk) to the right hand side in the last inequality

and observing that the convexity implies also that

F (xk+1,yk)− F (xk,yk) ≤ ⟨∇xF (x
k+1,yk),xk+1 − xk⟩

we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2 +
+2αk{F (x∗,yk)− F (xk+1,yk) +

+⟨∇xF (x
k+1,yk)−∇xF (x

k,yk),xk+1 − xk⟩}
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Now we recall that the saddle point (x∗,y∗) satisfies

F (x∗,yk) ≤ F (x∗,y∗) ≤ F (xk+1,y∗)

which leads to the following inequality

∥xk+1 − x∗∥2 ≤

≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2 + 2αk{F (xk+1,y∗)− F (xk+1,yk)}+

+2αk⟨∇xF (x
k+1,yk)−∇xF (x

k,yk),xk+1 − xk⟩
(2.23)

Summing the inequalities (2.22) and (2.23) and adding and subtracting 2αk⟨∇yF (x
k+1,yk),yk−

yk⟩ yields

∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2 ≤

≤ ∥xk − x∗∥2 + ∥yk − y∗∥2 − ∥xk+1 − xk∥2 − ∥yk − yk+1∥2+

−∥yk − yk∥2+

+2αk⟨∇xF (x
k+1,yk)−∇xF (x

k,yk),xk+1 − xk⟩+

+2αk⟨∇yF (x
k,yk)−∇yF (x

k+1,yk),yk − yk+1⟩+

+2αk{F (xk+1,yk)− F (xk+1,yk) + ⟨∇yF (x
k+1,yk),yk − yk⟩}+

+2αk⟨∇yF (x
k+1,yk)−∇yF (x

k+1,yk),yk − yk⟩

≤ ∥xk − x∗∥2 + ∥yk − y∗∥2 − ∥xk+1 − xk∥2 − ∥yk − yk+1∥2+

−∥yk − yk∥2+

+2αk⟨∇xF (x
k+1,yk)−∇xF (x

k,yk),xk+1 − xk⟩+

+2αk⟨∇yF (x
k,yk)−∇yF (x

k+1,yk),yk − yk+1⟩+

+2αk⟨∇yF (x
k+1,yk)−∇yF (x

k+1,yk),yk − yk⟩

where the last inequality follows from the concavity of F with respect to y. By the
Cauchy-Schwartz inequality, we obtain

∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2 ≤

≤ ∥xk − x∗∥2 + ∥yk − y∗∥2 − ∥xk+1 − xk∥2 − ∥yk − yk+1∥2+

−∥yk − yk∥2+

+2αk∥∇xF (x
k+1,yk)−∇xF (x

k,yk)∥∥xk+1 − xk∥+

+2αk∥∇yF (x
k,yk)−∇yF (x

k+1,yk)∥∥yk − yk+1∥+

+2αk∥∇yF (x
k+1,yk)−∇yF (x

k+1,yk)∥∥yk − yk∥

(2.24)

Now we recall that, since the projection operator is non-expansive, we can write

∥yk+1 − yk∥ = ∥PY(y
k + αk∇yF (x

k+1,yk))− PY(y
k + αk∇yF (x

k,yk))∥
≤ αk∥∇yF (x

k+1,yk)−∇yF (x
k,yk)∥ (2.25)
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Using the inequality (2.25) in (2.24) and recalling the definitions (2.17), we obtain

∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2

≤ ∥xk − x∗∥2 + ∥yk − y∗∥2 − ∥yk − yk+1∥2+

−(1− 2αkCk)∥yk − yk∥2+

−
(
1− 2αkAk − 2α2

kB
2
k

)
∥xk+1 − xk∥2

(2.26)

By the hypothesis (2.17), the coefficients (1 − 2αkAk − 2α2
kB

2
k) and (1 − 2αkCk) are

strictly positive and bounded away from zero. Thus, we must have that

lim
k

∥yk − yk+1∥ = 0

lim
k

∥yk − yk∥ = 0

lim
k

∥xk+1 − xk∥ = 0

Then there exists a point (x̄, ȳ) ∈ D such that xk converges to x̄ and yk, yk converges
to ȳ. Consider now a subsequence {αkj}j such that limj αkj = ᾱ > 0. Taking the
limit for j → ∞, by continuity of the projection operator and by the definition of the
sequences xk, yk, yk, we have

ȳ = PY(ȳ + ᾱ∇yF (x̄, ȳ))

x̄ = PX(x̄− ᾱ∇xF (x̄, ȳ))

Thus, we can conclude that (x̄, ȳ) is a saddle point of F .

The well–posedness of the method and the convergence property is assured when a
steplength parameter satisfying (2.17) exists; the scheme of AEM method is depicted
in Algorithm 4.

Now we focus on image restoration framework, considering the problems related to
KL-TV and KL-HS. The primal–dual formulation of

min
x∈X

ϕβ ≡ KL(Hx+ bg1;gn) + βϕ1(x)

for ϕ1(x) given by (1.17) or (1.20) is the saddle point problem

min
x∈X

max
y∈Y

F (x,y) ≡ KL(Hx+ bg1;gn) + βytMx

where X = {x ∈ RN : x ≥ η, η ≥ 0}; for TV regularization, Mx and Y are given by

Mx = ∇x, ∇ =
(
∇t

1, . . . ,∇t
N

)t
Y =

{
y ∈ R2N |

√
y22i+1 + y22i ≤ 1, i = 1, . . . , N

}
(2.27)

while for Hypersurface regularization we have

Mx =

(
∇x
δ1

)
Y =

{
y ∈ R3N |

√
y22i+1 + y22i + y22N+i ≤ 1, i = 1, . . . , N

}
(2.28)

Under the assumption that 1 /∈ Ker(H), ϕβ is coercive (see Proposition 1.2). Thus we
can restrict the variable x in a bounded subset of X and invoke the min–max theorem
[84] to ensure the existence of a saddle point for F (x,y).
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Algorithm 4: AEM

Choose the starting point (x0,y0) ∈ D, set the parameters ε, θ ∈ (0, 1) αmax > 0.
For k = 0, 1, 2, . . . do the following steps

Step 1. Choose α < αmax;

Step 2. Compute tentative points:

y+ = PY

(
yk + α∇yF (x

k,yk)
)

x+ = PX

(
xk − α∇xF (x

k,y+)
)

A =
∥∇xF (x

+,y+)−∇xF (x
k,y+)∥

∥x+ − xk∥

B =
∥∇yF (x

+,yk)−∇yF (x
k,yk)∥

∥x+ − xk∥

Ck =
∥∇yF (x

+,yk)−∇yF (x
+,y+)∥

∥yk − y+∥

α =



min

{√
A2+2B2(1−ε)−A

2B2 , 1−ε
2C

}
B > 0, C > 0

min
{

1−ε
2A , 1−ε

2C

}
A > 0, C > 0, B = 0

1−ε
2C A = 0, C > 0, B = 0
1−ε
2A A > 0, C = 0, B = 0

α otherwise

Step 3. Check convergence condition:
If α ≤ α

αk = α;

yk = y+;

xk+1 = x+

else
α = min{α, θα} adn go to STEP 2;

Step 4. Set yk+1 = PY

(
yk + αk∇yF (x

k+1,yk)
)

2.4 PIDAL & PIDSplit+

Recently in [50, 87] a suitable version of the Alternating Direction Multiplier Method
(ADMM) has been proposed for deblurring images corrupted by Poisson noise. The
ADMM is designed for solving the minimization problem

min
x
f1(x) + f2(Mx) (2.29)

being M a linear operator and x ∈ RN . By introducing the constraint Mx = w, (2.29)
can be formulated as the constrained problem

min
x,w

f1(x) + f2(w) subject to Mx = w (2.30)

or equivalently as

min
x,w

f1(x) + f2(w) +
1

2γ
∥Mx−w∥2 s.t. Mx = w (2.31)
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The augmented Lagrangian of this last formulation is

max
p

min
x,w

f1(x) + f2(w) + pt(Mx−w) +
1

2γ
∥Mx−w∥2 (2.32)

where p is the Lagrange multiplier of the equality constraint. Redefining p → γp, the
basic idea of the iterative procedure is given in Algorithm 5 [15].

Algorithm 5: ADMM

Choose γ > 0, select x0, w0 =Mx0 and p0 = 0
For k = 0, 1, 2, . . . do the following steps

Step 1. xk+1 ∈ argmin
x
f1(x) +

1

2γ
∥Mx−wk + pk∥22

Step 2. wk+1 ∈ argmin
w

f2(w) +
1

2γ
∥Mxk+1 −w + pk∥22

Step 3. pk+1 = pk + (Mxk+1 −wk+1)

In [87, 50], the function ϕβ(x;gn) = KL(Hx+ bg1;gn) + βTV(x) is treated con-
sidering

f1(x) = ⟨0,x⟩, f2(Mx) = KL(Hx+ bg1;gn) + βTV(x) + ix≥0(x)

where ix≥0 is the indicator function of the nonnegative orthant and M is given by

Mx =

 H
∇
I

x =

 w(1) − bg1

w(2)

w(3)


The Algorithm 5 formulated for the above problem is the so-called PIDSplit+ [87],
also called PIDAL–TV in [50]:
It’s worth to stress that the computation of xk+1 and wk+1 are easier than they appear;
in fact, we have

xk+1 = (I+HtH+∇t∇)−1
(
Ht(wk

(1) − bg1− pk
(1)) +∇t(wk

(2) − pk
(2)) + (wk

(3) − pk
(3))
)

thus xk+1 is available by solving a linear system of equations. Moreover,

wk+1
(1) =

1

2

(
pk
(1) +Hxk+1 + (bg − γ)1

)
+
1

2

(√(
pk
(1) +Hxk+1 + (bg − γ)1

)2
+ 4γgn

)
wk+1

(2) = shrinkγβ

(
pk
(2) +∇xk+1

)
wk+1

(3) = max
{
0,pk

(3) + xk+1
}

where shrinkρ is the shrinkage operator of parameter ρ:

shrinkρ(q) =


qi − ρ

qi

|qi|
|qi| ≥ ρ, i = 1, . . . , N

0 otherwise
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Algorithm 6: PIDAL–TV or PIDSplit+

Choose γ, β > 0, x0 = gn; w0
(1) = Hx0 − bg1; w0

(2) = ∆x0; w0
(3) = x0; p0 = 0.

For k = 0, 1, 2, . . . do the following steps

Step 1. xk+1 = argmin
x

1

2γ
∥(Ht;∇t; I)tx−wk − bg1+ pk∥2

Step 2. wk+1
(1) = argmin

w
(1)

KL(w(1);gn) +
1

2γ
∥Hxk+1 + bg1−w(1) + pk

(1)∥
2

Step 3. wk+1
(2) = argmin

w
(2)

β
∑
i

∥(w(2))i∥+
1

2γ
∥∇xk+1 −w(2) + pk

(2)∥
2

Step 4. wk+1
(3) = argmin

w4
ix≥0(x

k+1) +
1

2γ
∥xk+1 −w(3) + pk

(3)∥
2

Step 5. pk+1
(1) = pk

(1) + (Hxk+1 + bg1−wk+1
(1) )

Step 6. pk+1
(2) = pk

(2) + (∇xk+1 −wk+1
(2) )

Step 7. pk+1
(3) = pk

(3) + (xk+1 −wk+1
(3) )

The greatest computational cost of this algorithm is hence the computation of xk+1:
however, under suitable assumptions on the boundary conditions, the linear system can
be solved by discrete transforms (e.g., DFT or DCT).
When the regularization term is the Hypersurface Potential (1.20) the ADMM approach
can be easily adapted by using the following linear constraint:

H
∇
0
I

x =


w(1) − bg

w(2)

w̃(2) − δ

w(3)


where w(2) =

(
w(2)

w̃(2)

)
. In Algorithm 6 the only modification concerns the computa-

tion of wk+1
(2) and pk+1

(2) :

wk+1
(2) = argmin

w
(2)

β
∑
i

ψδ

(
∥(w(2))i∥

2
)
+

1

2γ

∥∥∥∥( ∇
0

)
xk+1 −w(2) +

(
0
δ1

)
+ pk

(2)

∥∥∥∥2
pk+1
(2) = pk

(2) +

((
∇
0

)
xk+1 −wk+1

(2) +

(
0
δ1

))

2.5 Chambolle & Pock’s algorithm

The methods presented in [37] have the aim to solve the saddle point problem

min
x

max
y

{f1(x)+ < Mx,y > −f∗2 (y)} (2.33)

being f1, f
∗
2 two proper, convex, l.s.c. functions; f∗2 denotes the conjugate of f2 (see

Appendix A). It’s worth to notice that this problem is the primal–dual formulation of

min
x
f1(x) + f2(Mx)
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strictly connected with the formulation presented in Section 2.4. Algorithm 7 shows
the scheme of the well–known Chambolle & Pock Algorithm 1 [37].

Algorithm 7: Chambolle & Pock Algorithm 1

Choose τ, σ > 0, θ ∈ [0, 1], (x0,y0) and set x0 = x0.
For k = 0, 1, 2, . . . do the following steps

Step 1. yk+1 = (I + σ∂f∗2 )
−1

(yk + σMxk)

Step 2. xk+1 = (I + τ∂f1)
−1

(xk − τM tyk+1)

Step 3. xk+1 = xk+1 + θ(xk+1 − xk)

In this scheme ∂F denotes the subdifferential of the function F and (I +σ∂F )−1 is
the resolvent operator of F (see Appendix A and [84]).

Let X × Y be a subset of dom(f1) × dom(f∗2 ); the partial primal–dual gap is given
by

GX×Y(x,y) = max
y′∈Y

< y′,Mx > −f∗2 (y′) + f1(x)

−min
x′∈X

< y,Mx′ > −f∗2 (y) + f1(x
′)

For sake of completeness, we recall the convergence theorem and its proof in a
discrete framework for the choice θ = 1 [37].

Proposition 2.3. [37, Theorem 1] Let L = ∥M∥ and assume there exists a saddle point
(x∗,y∗) for the problem (2.33). Choose θ = 1, τσL2 < 1 and let xk,xk,yk defined as
in the Algorithm 7. Then

(a) for any k, yk,xk remains bounded:

∥yk − y∗∥2

2σ
+

∥xk − x∗∥2

2τ
≤ C

(
∥y0 − y∗∥2

2σ
+

∥x0 − x∗∥2

2τ

)
where C ≤ (1− τσL)−1.

(b) If we let xK =
1

K

K∑
k=1

xk and yK =
1

K

K∑
k=1

xk for any bounded X×Y ⊂ dom(f1)×

dom(f∗2 ) the the partial primal-dual gap has the following bound

GX×Y(xK ,yK) ≤ 1

K
sup

(x,y)∈X×Y

∥y0 − y∥2

2σ
+

∥x0 − x∥2

2τ

Moreover, the weak cluster points of (xk,yk) are saddle points for (2.33).

(c) There exists a saddle point (x,y) such that xk → x and yk → y.

Proof. Consider the general form

yk+1 = (I + σ∂f∗2 )
−1(yk + σMx)

xk+1 = (I + τ∂f1)
−1(xk − σM ty)
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We have

yk − yk+1

σ
+Mx ∈ ∂f∗2 (y

k+1)

xk − xk+1

σ
−M ty ∈ ∂f1(x

k+1)

From the convexity of f∗2 and f1

f∗2 (y) ≥ f∗2 (y
k+1) + ⟨y

k − yk+1

σ
,y − yk+1⟩+ ⟨Mx,y − yk+1⟩

f1(x) ≥ f1(x
k+1) + ⟨x

k − xk+1

σ
,x− xk+1⟩ − ⟨y,M(x− xk+1)⟩

From

⟨y
k − yk+1

σ
,y − yk+1⟩ = −∥y − yk∥2

2σ
+

∥y − yk+1∥2

2σ
+

∥yk − yk+1∥2

2σ

⟨x
k − xk+1

τ
,x− xk+1⟩ = −∥x− xk∥2

2τ
+

∥x− xk+1∥2

2τ
+

∥xk − xk+1∥2

2τ

and summing both above inequalities, we have

∥y − yk∥2

2σ
+

∥x− xk∥2

2τ
≥

≥ (⟨Mxk+1,y⟩+ f1(x
k+1)− f∗2 (y))− (⟨Mx,yk+1⟩ − f∗2 (y

k+1) + f1(x)) +

+
∥y − yk+1∥2

2σ
+

∥yk − yk+1∥2

2σ
+

∥x− xk+1∥2

2τ
+

∥xk − xk+1∥2

2τ
+

+ ⟨Mx,y − yk+1⟩ − ⟨y,M(x− xk+1)⟩ − ⟨Mxk+1, y⟩+ ⟨Mx,yk+1⟩

Adding and subtracting ⟨Mxk+1,yk+1⟩, we obtain

∥y − yk∥2

2σ
+

∥x− xk∥2

2τ
≥

≥ (⟨Mxk+1,y⟩+ f1(x
k+1)− f∗2 (y))− (⟨Mx,yk+1⟩ − f∗2 (y

k+1) + f1(x)) +

+
∥y − yk+1∥2

2σ
+

∥yk − yk+1∥2

2σ
+

∥x− xk+1∥2

2τ
+

∥xk − xk+1∥2

2τ
+

+ ⟨M(x− xk+1),y − yk+1⟩+ ⟨(yk+1 − y),M(x− xk+1)⟩

This inequality pays an important role in proving convergence.

∥y − yk∥2

2σ
+

∥x− xk∥2

2τ
≥

≥ (⟨Mxk+1,y⟩+ f1(x
k+1)− f∗2 (y))− (⟨Mx,yk+1⟩ − f∗2 (y

k+1) + f1(x)) +

+
∥y − yk+1∥2

2σ
+

∥yk − yk+1∥2

2σ
+

∥x− xk+1∥2

2τ
+

∥xk − xk+1∥2

2τ
+

+ ⟨M(x− xk+1), y − yk+1⟩+ ⟨(yk+1 − y),M(x− xk+1)⟩ (2.34)
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The choice θ = 1 leads to the extragradient step

x = 2xk − xk−1, y = yk+1

Then we have〈
M(x− xk+1),y − yk+1

〉
+
〈
(yk+1 − y),M(x− xk+1)

〉
=

〈
M(2xk − xk−1 − xk+1),y − yk+1

〉
=

〈
M(xk − xk+1),y − yk+1

〉
+
〈
M(xk − xk−1),y − yk + yk − yk+1

〉
=

〈
M(xk − xk+1),y − yk+1

〉
+
〈
M(xk − xk−1),y − yk

〉
+
〈
M(xk − xk−1),yk − yk+1

〉
Using 2ab ≤ αa2 +

b2

α
, for any α > 0, we have:

L∥xk − xk−1∥∥yk − yk+1∥ ≤ Lατ

2τ
∥xk − xk−1∥2 + Lσ

2ασ
∥yk − yk+1∥2

where we can choose α =
√
σ/τ , so that Lατ = Lσ/α =

√
στL < 1. We obtain

∥y − yk∥2

2σ
+

∥x− xk∥2

2τ
≥

≥ (⟨Mxk+1,y⟩+ f1(x
k+1)− f∗2 (y))− (⟨Mx,yk+1⟩ − f∗2 (y

k+1) + f1(x)) +

+
∥y − yk+1∥2

2σ
+

∥x− xk+1∥2

2τ
+

+(1−
√
στL)

∥yk − yk+1∥2

2σ
+

∥xk − xk+1∥2

2τ
−
√
στL

∥xk − xk−1∥2

2τ
+

+⟨M(xk − xk+1),y − yk+1⟩+ ⟨M(xk − xk−1),y − yk⟩ (2.35)

Summing up from 0 to K − 1, we have

⟨M(xK − xK−1),yK − y⟩+

+

K−1∑
0

(⟨Mxk+1,y⟩+ f1(x
k+1)− f∗2 (y))− (⟨Mx,yk+1⟩ − f∗2 (y

k+1) + f1(x)) +

+
∥y − yK∥2

2σ
+

∥x− xK∥2

2τ
+

+(1−
√
στL)

K∑
1

∥yk−1 − yk∥2

2σ
+ (1−

√
στL)

K−1∑
1

∥xk − xk−1∥2

2τ
+

+
∥xK − xK−1∥2

2τ
≤

≤ ∥y − y0∥2

2σ
+

∥x− x0∥2

2τ

Since

⟨M(xK − xK−1),yK − y⟩ ≥ −∥xK − xK−1∥2

2τ
− τσL2 ∥y − yK∥2

2σ
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we finally obtain

K−1∑
0

(⟨Mxk+1,y⟩+ f1(x
k+1)− f∗2 (y))− (⟨Mx,yk+1⟩ − f∗2 (y

k+1) + f1(x)) +

+(1− στL2)
∥y − yK∥2

2σ
+

∥x− xK∥2

2τ
+

+(1−
√
στL)

K∑
1

∥yk−1 − yk∥2

2σ
+ (1−

√
στL)

K−1∑
1

∥xk − xk−1∥2

2τ
≤

≤ ∥y − y0∥2

2σ
+

∥x− x0∥2

2τ

If we choose as (x,y) a saddle point (x∗,y∗), it follows that the first summation is
nonnegative and part (a) follows (the sequences are bounded):

(1− στL2)

(
∥y∗ − yK∥2

2σ
+

∥x∗ − xK∥2

2τ

)
≤

≤ ∥y∗ − y0∥2

2σ
+

∥x∗ − x0∥2

2τ

In X× Y, the partial primal–dual gap behaves as O(1/K). Let

xK =
1

K

K∑
i=1

xi, yK =
1

K

K∑
i=1

yi

From the convexity of f1 and f∗2 it follows

(⟨MxK ,y⟩+ f1(xK)− f∗2 (y)) − (⟨Mx,yK⟩ − f∗2 (yK) + f1(x))

≤ 1

K

(
∥y − y0∥2

2σ
+

∥x− x0∥2

2τ

)
Since (xK ,yK) is a bounded sequence, there exists a cluster point (x∗,y∗); since f1
and f∗2 are convex and l.s.c., it follows that for K → ∞ we have

(⟨Mx∗,y⟩+ f1(x
∗)− f∗2 (y))− (⟨Mx,y∗⟩ − f∗2 (y

∗) + f1(x)) ≤ 0

Then (x∗,y∗) is a saddle-point. Part (b) is hence proved.
For part (c), we observe that (xk,yk) is bounded (first part), so that a subsequence
(xkn ,ykn) converges to some limit (x,y) (strongly, since X and Y are finite-dimensional
space). From the above inequalities, xk − xk−1 → 0 and yk − yk−1 → 0; in particular,
(xkn−1,ykn−1) converges to (x,y) ; then (x,y) is a fixed point of the iteration, that is
a saddle-point of the problem. If we consider (2.35) with (x,y) = (x,y) and we sum
from kn to K − 1, we have

∥y − yK∥2

2σ
+

∥x− xK∥2

2τ
+

+(1−
√
στL)

K∑
kk+1

∥yk−1 − yk∥2

2σ
+ (1−

√
στL)

K−1∑
kn

∥xk − xk−1∥2

2τ
+

+
∥xK − xK−1∥2

2τ
− ∥xkn − xkn−1∥2

2τ
≤

≤ ∥y − ykn∥2

2σ
+

∥x− xkn∥2

2τ
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which leads, for K → ∞, to

∥y − yK∥2

2σ
+

∥x− xK∥2

2τ
≤ ∥y − ykn∥2

2σ
+

∥x− xkn∥2

2τ

i.e. (xK ,yK) → (x,y) for K → ∞.

This method is an extrapolated version of the Arrow–Hurwicz algorithm [2]. Fur-
thermore, under more strictly assumption on f1 and f∗2 , it is possibile to develop ac-
celerated schemes.

Algorithm 7 can be employed in image restoration framework for Poisson data.
For denoising problems, where H = I, we can set f1(x) = KL(x + bg1;gn) + ix≥0,
and f2(Mx) = βTV(x) or f2(Mx) = βHS(x) and M is given by (2.27) or (2.28),
respectively.
Following [92, 103], for deblurring problems when a TV regularization is required, we

can set f1(x) = ix≥0, f2(w) = KL(w(1);gn) + β
∑

i ∥(w(2))i∥, where w =

(
w(1)

w(2)

)
and the following constraint holds:

Mx =

(
H
∇

)
x = w −

(
bg1
0

)
(2.36)

We start the Chambolle & Pock method from the x iterate; then the extrapolation
STEP 3 of Algorithm 7 is applied on the dual variable; the computation of yk+1

requires to solve the problem

min
y
f∗2 (y) +

1

2σ

∥∥∥∥y −
[
yk + σ

(
H
∇

)
xk+1

]∥∥∥∥2
which can be formulated as [103]

min
y

max
w

⟨y,w⟩ − f2(w) +
1

2σ

∥∥∥∥y −
[
yk + σ

(
H
∇

)
xk+1

]∥∥∥∥2
Then we have

yk+1 = yk + σ(Mxk+1 −w)

where

w = argmin
w

f2(w) +
σ

2

∥∥∥∥w − 1

σ

(
yk − σMxk+1

)∥∥∥∥2
Finally, starting from the x iterate and making the extrapolation step on the dual
variable, each step of the algorithm takes the following form:

xk+1 = max{0,xk − τ(Ht(2yk
(1) − yk−1

(1) ) +∇t(2yk
(2) − yk−1

(2) ))}

wk+1
(1) = argmin

w
(1)

KL(w(1);gn) +
σ

2

∥∥∥∥w(1) −
1

σ

(
yk
(1) + σ

(
Hxk+1 + bg1

))∥∥∥∥2
wk+1

(2) = argmin
w(2)

β
∑
i

∥(w(2))i∥+
σ

2

∥∥∥∥w(2) −
1

σ

(
yk
(2) + σ∇xk+1

)∥∥∥∥2
yk+1
(1) = yk

(1) + σ(Hxk+1 + bg1−wk+1
(1) )

yk+1
(2) = yk

(2) + σ(∇xk+1 −wk+1
(2) )

(2.37)
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When the regularization term is theHS functional, this approach can be easily extended
by considering the following constraint instead of (2.36): H

∇
0

x =

 w(1) − bg1

w(2)

w̃(2) − δ1


which leads to

xk+1 = max{0,xk − τ(Ht(2yk
(1) − yk−1

(1) ) +∇t(2yk
(2) − yk−1

(2) ))}

wk+1
(1) = argmin

w
(1)

KL(w(1);gn) +
σ

2

∥∥∥∥w(1) −
1

σ

(
yk
(1) + σ

(
Hxk+1 + bg1

))∥∥∥∥2
wk+1

(2) = argmin
w

(2)

β
∑∥∥∥(w(2))i

∥∥∥+ σ

2

∥∥∥∥w(2) −
1

σ

(
yk
(2) + σ

[(
∇
0

)
xk+1 +

(
0
δ1

)])∥∥∥∥2
yk+1
(1) = yk

(1) + σ(Hxk+1 + bg1−wk+1
(1) )

yk+1
(2) = yk

(2) + σ(∇xk+1 −wk+1
(2) )

ỹk+1
(2) = ỹk

(2) ++σ(δ1− w̃k+1
(2) )

(2.38)

where w2 =

(
w(2)

w̃(2)

)
and y2 =

(
y(2)

ỹ(2)

)
.

2.6 PDHG with variable metric

The methods we are going to present have the aim to solve the problem (2.1) where
ϕ : RN → R ∪ {−∞,∞} is a convex, proper, l.s.c. function and Ω is a convex, closed
non–empty subset of RN . We are interested in the case when ϕ is not differentiable and
the projection on the constraint set is easy to compute. We assume that the solution
set Ω∗ is not empty.
First of all, we recall the definition of ε–subdifferential and of ε–subgradient.

Definition 2.2. Let ϕ a proper convex function on Rn. The ε–subdifferential of ϕ at
x ∈ dom(ϕ), defined for ε ≥ 0, is the set

∂εϕ(x) = {w ∈ Rn|ϕ(z) ≥ ϕ(x)+ < w, z − x > −ε, ∀z ∈ Rn}

An element of ∂εϕ(x) is called an ε–subgradient of ϕ at x.

When ε = 0, we have the definition of subdifferential and subgradient.

The methods we investigate belongs to the class of ε–subgradient methods, which
have the general form

xk+1 = PΩ

(
xk − αku

k
)

(2.39)

where uk ∈ ∂εkϕ(x
k) for εk ≥ 0, αk is the stepsize and PΩ is the projection on Ω.

When εk = 0 for any k, we obtain the subgradient methods. In [80, 48] the general case
in which εk > 0 is introduced and developed; recently, under different assumptions,
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convergence results are shown in [1, 65, 68, 90]. A typical assumption on the sequence
{εk} is

lim
k→∞

εk = 0 (2.40)

and, in this case, the subgradient and the ε–subgradient have very similar convergence
properties.
In literature different choices for αk are discussed:

(R1) the constant stepsize rule αk = α > 0;

(R2) the Polyak rule

αk = ck
ϕ(xk)− ϕ∗

∥uk∥2
, or αk = ck

ϕ(xk)− ϕ∗

max{1, ∥uk∥2}
, ck ∈ (0, 2)

where ϕ∗ is the minimum of ϕ

(R3) the Ermoliev or diminishing, divergent series stepsize rule, which includes any
sequences {αk} such that

αk > 0, lim
k→∞

αk = 0,
∞∑
k=0

αk = ∞ (2.41)

(R4) the diminishing, divergent series, square summable stepsize rule, which, in addi-

tion to (2.41), also requires
∞∑
k=0

α2
k <∞.

(R5) the dynamic or adaptive stepsize rule

αk =
ϕ(xk)− ϕk

∥uk∥2
, or αk =

ϕ(xk)− ϕk

max{1, ∥uk∥2}
(2.42)

where ϕk is an adaptively computed estimate of ϕ∗; several further variants of
this rule, which can be considered as an approximation of (R2) when ϕ∗ is not
known, depend on how ϕk is defined.

In literature we can find convergence results for each of these selection strategies;
for the constant stepsize (R1) in [15, 77] the sequence {ϕ(xk)} is proved to convergence
to a suboptimal value, i.e. lim inf

k→∞
ϕ(xk) ≤ ϕ∗ + Cα, being C > 0. Choosing αk as

shown in (R3) and (R5) one can obtain lim
k→∞

ϕ(xk) = ϕ∗ and min
x∗∈Ω∗

∥x∗−xk∥ → 0 (with

the assumption εk = 0 in the latter case). Finally, the convergence of the sequence
{xk} to a solution x∗ can be proved in the cases (R2), with εk = 0, and (R4) [1, 68].

The key property that the stepsize parameter has to induce on the iterates (2.39)
which is exploited in the standard convergence analysis for subgradient methods is the
quasi-Féjer monotonicity with respect to the solution set Ω∗

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + ηk ∀x∗ ∈ Ω∗

for some nonnegative sequence {ηk} such that
∑
ηk <∞ (see [7, 41]).
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In the smooth case the stepsize αk has the role to ensure a sufficient decrease on
the objective function, as we pointed out in section 2.1. The approaches shown (and
others similar) are difficult to extend to subgradient methods, since in the latter ones
αk plays a quite different role than in the smooth case.

In the same section mentioned above, we reported the results concerning the con-
vergence properties when a scaling matrix is introduced in the iteration. We propose a
similar approach, considering a scaled or a variable metric ε–subgradient method

xk+1 = PΩ,D−1
k

(
xk − αkDku

)
(2.43)

whereDk is a symmetric positive definite matrix and the stepsize αk is chosen as in (R4)
or (R5). Before giving the main convergence results regarding this particular choices,
we state the following lemma.

Lemma 2.6. Let {Lk} be a sequence of positive numbers such that L2
k = 1+γk, γk ≥ 0,

where

∞∑
k=0

γk <∞. Let θk =

k∏
j=0

L2
j for any k ≥ 0. Then the sequence {θk} is bounded.

Proof. We want to show that there exists a constant M > 0 such that θk ≤ M for all
k ≥ 0. By the monotonicity of the logarithm, this is true if and only if log(θk) ≤ log(M).
By definition of θk we have

log(θk) =

k∑
j=0

log(L2
j ) ≤

∞∑
j=0

log(L2
j ) (2.44)

Thus, if the series on the right hand side of (2.44) converges, the quantities θk are
bounded for all k. We observe that, since L2

k = 1 + γk, where γk → 0 as k diverges,

by the known limit lim
k→∞

log(1 + γk)

γk
= 1, the series

∞∑
j=0

log(L2
j ) and

∞∑
j=0

γj have the

same behaviour. Thus, since by hypothesis the latter one is convergent, the result
follows.

Using the previous Lemma and the properties of the projection operator stated in
Lemma 2.1, we are able to prove the following theorem.

Proposition 2.4. Assume that the set of the solutions Ω∗ of (2.1) is nonempty. More-
over, assume that there exists a positive constant ρ such that ∥uk∥ ≤ ρ for any k and a
sequence of positive numbers {Lk} such that ∥Dk∥ ≤ Lk, ∥D−1

k ∥ ≤ Lk, with 1 ≤ Lk ≤ L
for some positive constant L, for all k ≥ 0. If the following conditions holds

lim
k→∞

εk = 0 (2.45)

∞∑
k=0

αk = ∞ (2.46)

∞∑
k=0

α2
k <∞,

∞∑
k=0

εkαk <∞ (2.47)

L2
k = 1 + γk,

∞∑
k=0

γk <∞ (2.48)
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then, the sequence {xk} generated by the iteration (2.43) converges to a solution of
(2.1).

Proof. For all k let us define zk = xk −αkDku
k. By Lemma 2.1 part (b), we have that

∥xk+1 − xk∥D−1
k

= ∥PX,D−1
k
(zk)− PX,D−1

k
(xk)∥D−1

k

≤ ∥zk − xk∥D−1
k

= ∥αkDku
k∥D−1

k

= αk∥uk∥Dk
≤ αkL

1
2
k ∥u

k∥2

≤ αkL
1
2
k ρ (2.49)

Then, thanks to Lemma 2.1, for any x̃ ∈ Ω∗ we can write

α2
kLkρ

2 +∥xk − x̃∥2
D−1

k

− ∥xk+1 − x̃∥2
D−1

k

≥

≥ ∥xk+1 − xk∥2
D−1

k

+ ∥xk − x̃∥2
D−1

k

− ∥xk+1 − x̃∥2
D−1

k

= 2(xk − x̃)tD−1
k (xk − xk+1)

= 2(xk − x̃)tD−1
k (xk − zk) + 2(xk − x̃)tD−1

k (zk − xk+1)

= 2αk(x
k − x̃)tuk + 2(xk − zk)tD−1

k (zk − xk+1) + 2(zk − x̃)tD−1
k (zk − xk+1)

= 2αk(x
k − x̃)tuk + 2(xk − zk)tD−1

k (zk − xk+1) +

+2(zk − x̃)tD−1
k (zk − PX,D−1

k
(zk))

≥ 2αk(x
k − x̃)tuk + 2(xk − zk)tD−1

k (zk − xk+1)

= 2αk(x
k − x̃)tuk + 2(xk − zk)tD−1

k (zk − xk) + 2(xk − zk)tD−1
k (xk − xk+1)

= 2αk(x
k − x̃)tuk − 2(xk − zk)tD−1

k (xk − zk) + 2αk(x
k − xk+1)tuk

≥ 2αk(x
k − x̃)tuk − 2Lkα

2
k∥uk∥2 − 2αk∥xk − xk+1∥ · ∥uk∥

≥ 2αk(x
k − x̃)tuk − 2Lkα

2
k∥uk∥2 − 2α2

kLk∥uk∥2

≥ 2αk(x
k − x̃)tuk − 4α2

kLkρ
2 (2.50)

≥ 2αk(ϕ(x
k)− ϕ(x̃)− εk)− 4α2

kLkρ
2

≥ −2αkεk − 4α2
kLkρ

2

≥ −2Lkαkεk − 4α2
kLkρ

2

where the first inequality follows from (2.49), while we use Lemma 2.1 part (a) in the
second one, the definition of zk and the Cauchy–Schwartz inequality in the third one,
the assumption ∥Dk∥ ≤ Lk, ∥D−1

k ∥ ≤ Lk and the fact that ∥xk+1 − x∥ ≤ αkLk∥uk∥ in
the fourth one, the bound ∥uk∥ ≤ ρ in the fifth one, the definition of ε-subgradient in
the sixth one, the fact that x̃ ∈ Ω∗ in the seventh one and the inequality Lk ≥ 1 in the
last one.
Upon rearranging terms, this yields

∥xk+1 − x̃∥2
D−1

k

≤ ∥xk − x̃∥2
D−1

k

+ 5Lkα
2
kρ

2 + 2Lkαkεk (2.51)

Since we have

∥xk+1 − x̃∥2
D−1

k

≥ λmin(D
−1
k )∥xk+1 − x̃∥2 ≥ 1

Lk
∥xk+1 − x̃∥2

∥xk − x̃∥2
D−1

k

≤ λmax(D
−1
k )∥xk − x̃∥2 ≤ Lk∥xk − x̃∥2

(2.52)
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we can also write

∥xk+1 − x̃∥2 ≤ L2
k∥xk − x̃∥2 + 5L2

kα
2
kρ

2 + 2L2
kαkεk

≤ L2
k∥xk − x̃∥2 + σL2

kα
2
k + 2L2

kαkεk

where σ = 5ρ2.
By repeatedly applying the previous inequality we obtain

∥xk+1 − x̃∥2 ≤ L2
k∥xk − x̃∥2 + σL2

kα
2
k + 2L2

kαkεk

≤ L2
k(L

2
k−1∥xk−1 − x̃∥2 + σL2

k−1α
2
k−1 + 2L2

k−1αk−1εk−1) + σL2
kα

2
k + 2L2

kαkεk

≤ θk0∥x0 − x̃∥2 + σ
k∑

j=0

θkjα
2
j + 2

k∑
j=0

θkjαjεj (2.53)

where θkj =
∏k

i=j L
2
i , j ≤ k. Since L2

i ≥ 1 we have 1 ≤ θkj ≤ θkj−1 ≤ θk0 , which implies

∥xk+1 − x̃∥2 ≤ θk0∥x0 − x̃∥2 + σθk0

k∑
j=0

α2
j + 2θk0

k∑
j=0

αjεj

≤ M

∥x0 − x̃∥2 + σ
k∑

j=0

α2
j + 2

k∑
j=0

αjεj


where the last inequality follows from Lemma 2.6. Thus, by conditions (2.47), the
sequence {xk} is bounded.
In order to show that {xk} converges to a solution of (2.1), we now consider inequality
(2.50), which, in view of (2.52), results in

∥xk+1 − x̃∥2 ≤ L2
k∥xk − x̃∥2 + 5L2

kα
2
kρ

2 − 2αkLk(x
k − x̃)tuk

≤ L2
k∥xk − x̃∥2 + σL2

kα
2
k + 2αkLk(x̃− xk)tuk

By repeatedly applying the previous inequality we obtain

∥xk+1 − x̃∥2 ≤ θk0∥x0 − x̃∥2 + σ
k∑

j=0

θkjα
2
k + (2.54)

+2
k∑

j=0

θ̃kjαj(x̃− xj)tuj

where θ̃kj = θkj /Lj . Since x̃ ∈ Ω∗ and uj ∈ ∂εkf(x
j), for all j ≥ 0 we have

ϕ(xj) ≥ ϕ(x̃) ≥ ϕ(xj) + (x̃− xj)tuj − εj (2.55)

Hence, (x̃− xj)tuj ≤ εj for all j ≥ 0.
Now, we show that (x̃− xj)tuj → 0 for j → ∞. To this end, assume by contradiction
that (x̃− xj)tuj < −ε for some ε > 0. Then, by inequality (2.55) we obtain

∥xk+1 − x̃∥2 ≤ M∥x0 − x̃∥2 + σM

k∑
j=0

α2
k − 2

ε

L

k∑
j=0

αj
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where we applied the inequalities 1 ≤ θkj ≤ θkj−1 ≤ θk0 ≤ M , 1 ≤ Lk ≤ L. Then,
taking limits for k → ∞, by assumption (2.46) we have an absurdum. Thus, there
exists a subsequence {xki} such that lim

i
(x̃− xki)tuki = 0. Then, from (2.55) and the

assumption (2.47) it follows that lim
i
ϕ(xki) = ϕ∗. Since {xk} is bounded, {xki} is also

bounded and, thus it has an accumulation point x∞. By the continuity of ϕ(x) and by
inequality (2.55) we can conclude that x∞ ∈ Ω∗.
Now we show that the whole sequence {xk} converges to x∞. Let δ > 0; since x∞ is
an accumulation point of {xk} and from (2.47), there exists a positive integer mδ such

that ∥x∞ − xmδ∥2 ≤ δ/(3M),

∞∑
j=mδ

α2
k < δ/(3σM) and

∞∑
j=mδ

αkεk < δ/(6M). Then, for

any k > mδ, using the same arguments as in (2.53), we obtain

∥xk − x∞∥2 ≤ θk−1
mδ

∥xmδ − x∞∥2 + σ

k−1∑
j=mδ

θk−1
j α2

j + 2

k−1∑
j=mδ

θk−1
j αjεj

≤ M∥xmδ − x∞∥2 + σM
∞∑

j=mδ

α2
j + 2M

∞∑
j=mδ

αjεj

≤ δ

Since δ can be chosen arbitrarily small, then {xk} converges to x∞.

We discuss some issues about Proposition (2.4), relating these results with the recent
literature, in particular with the papers [42, 43] and [76].

Remark 2.1. From equation (2.51), observing that

∥xk+1 − x̃∥2
D−1

k

≥ λmin(D
−1
k )∥xk+1 − x̃∥2

=
λmin(D

−1
k )

λmax(D
−1
k+1)

λmax(D
−1
k+1)∥x

k+1 − x̃∥2

≥ λmin(D
−1
k )λmin(Dk+1)∥xk+1 − x̃∥2

D−1
k+1

≥ 1

LkLk+1
∥xk+1 − x̃∥2

D−1
k+1

we obtain

∥xk+1 − x̃∥2
D−1

k+1

≤ ζk∥xk − x̃∥2
D−1

k

+ ξζkα
2
k + 2Lζkαkεk

where ζk =
√
(1 + γk)(1 + γk+1) and ξ = 5Lρ2. By the assumptions made on {γk}, the

sequence {ζk} is bounded. We can also set ζk = 1+ηk, with ηk =
√

(1 + γk)(1 + γk+1)−
1, and observe that the series

∑
ηk and

∑
γk have the same behaviour, thanks to the

limit lim
z→0

(
√
1 + z − 1)/z = 1/2. Then, since the assumption (2.48), we can conclude

that
∑

ηk is a convergent series.

Thus, the sequence {xk}k∈N is quasi-Fejér monotone with respect to Ω∗ relative to
{D−1

k }, in the sense of [42, Definition 3.1] and we could apply Proposition 3.2 in [42]

(see also [43]) to obtain that {∥xk − x̃∥D−1
k
} converges and, thus, {xk} is bounded.
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Remark 2.2. Variable metric was introduced also in [76, Chapter 5] in the context
of subgradient methods for unconstrained problems (i.e. Ω = Rn). In this case, set-
ting Dk = BkB

T
k , the scaling matrices are assumed to satisfy ∥B−1

k+1Bk∥ ≥ 1 and
∞∏
k=0

∥B−1
k+1Bk∥2 <∞. Even if the second condition is verified under the assumptions of

Proposition 2.4, we observe that the requirement ∥B−1
k+1Bk∥ ≥ 1 restricts the choice of

the scaling matrix, strictly connecting the metrics adopted in two successive iterates.

We introduce also a variant of the method (2.43), obtained by modifying the stepsize
αk.

Corollary 2.1. Let {xk} a sequence chosen as

xk+1 = PΩ,D−1
k

(
xk − αk

max(1, ∥uk∥Dk
)
Dku

k

)
(2.56)

such that the assumptions of Proposition 2.4 are satisfied. Then, {xk} converges to a
solution of problem (2.1).

Proof. Let us define ᾱk =
αk

max(1, ∥uk∥Dk
)
. From the inequalities

1 ≤ max(1, ∥uk∥Dk
) ≤ max(1, L

1
2 ρ)

it follows that ∑
ᾱk =

∑ αk

max(1, ∥uk∥Dk
)
≥ 1

max(L
1
2 ρ, 1)

∑
αk = ∞

∑
ᾱ2
k =

∑ α2
k

max(1, ∥uk∥Dk
)2

≤
∑

α2
k <∞∑

ᾱkεk =
∑ αk

max(1, ∥uk∥Dk
)
εk ≤

∑
αkεk <∞

Then, we can invoke Proposition 2.4 to obtain the result.

2.6.1 Scaled ε–subgradient level algorithm

A critical point of the implementation of the methods (2.43) and (2.56) is the selec-
tion of the steplength parameter. The principal aim is to obtain good performances,
but it is still an open problem since these methods are quite sensitive to the option
implemented. Borrowing the ideas of [24] and [56], in this section we describe a level
algorithm that allows to adaptively compute a stepsize αk of the form (2.42) in the
iteration (2.56). In our scheme we introduce the use of the ϵ-subgradient of f at the
current iterate (instead of the subgradient) and a variable metric. The resulting scheme
is detailed in Algorithm 8, whose underlying assumption is that, for any given ϵk ≥ 0,
we are able to provide an element uk of the set ∂ϵkf(x

k) such that lim
k→∞

εk = 0.

In Algorithm 8, ϕrec
k = min

j=0,...,k
ϕ(xj). The index l represents the number of times ϕlev

has been updated and k(l) is the iteration at which the udpating occurred. Finally, σk
is the cumulative path length between two successive updating of ϕlev.
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Algorithm 8: SSL

Choose B > 0, ν1, ν2 ∈ (0, 1), ϕrec
−1 = ∞, εrec−1 = 0; k = 0, l = 0, k(l) = 0, δ0 > 0; choose

x0 ∈ Ω.
For k = 0, 1, 2, . . . do the following steps

Step 1. Computation of ϕ(xk)

Step 2. if ϕ(xk) < ϕrec
k−1

ϕrec
k = ϕ(xk)

else
ϕrec
k = ϕrec

k−1

Step 3. if ϕ(xk) < ϕrec
k(l) − ν1δl

k(l + 1) = k, σk = 0, δl+1 = δl, l = l + 1 and go to Step 5

Step 4. if σk > B
k(l + 1) = k, σk = 0, δl+1 = ν2δl, l = l + 1

Step 5. Set ϕlev
k = ϕrec

k(l) − δl.

Step 6. Update the stepsize and compute the new iterate

αk =
ϕ(xk)− ϕlev

k

max(1, ∥uk∥Dk
)
;

xk+1 = PX,D−1
k

(
xk − αkDk

uk

max(1, ∥uk∥Dk
)

)
(2.57)

Step 7. σk+1 = σk + αk and go to Step 1.

The idea of the procedure is the following: Steps 2–5 have the aim to compute an
estimation of the optimal value ϕ∗, which is employed to create a target value for the
successive iterates, which the algorithm tries to approach to; if the procedure leads
the sequence ϕ(xk) close to this target value or the iterates follow a long path without
approaching it, the target level is updated. In the first case, i.e. when the condition at
Step 3 is satisfied, ϕlev

k is reduced at Step 5 by diminishing the best value obtained
ϕrec by the quantity δl; in the other case, if the inequality at Step 4 is satisfied, δl is
reduced and, consequently, ϕlev

k is increased.

The main difference between the proposed procedure and the square summable se-
quence considered in Proposition 2.4 is that the former one does not necessarly converge
to zero.

In the rest of this section we prove that the sequence {f(xk)}, where xk is computed
by Algorithm 8, converges to the minimum of f , using similar techniques as in [77].
Before giving the main result, we recall the following technical lemma.

Lemma 2.7. Assume that the set Ω∗ of the solutions of (2.1) is nonempty. Assume
that there exists a positive constant ρ such that ∥uk∥ ≤ ρ and a sequence of positive
numbers {Lk} such that ∥Dk∥ ≤ Lk, ∥D−1

k ∥ ≤ Lk, with 1 ≤ Lk ≤ L for some positive
constant L, for all k ≥ 0. Given B > 0 and {εk} such that εk → 0 as k → ∞ in
Algorithm 8, we have l → ∞ and δl → 0 as l → ∞.
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Proof. Assume by contradiction that l takes only a finite number of values, say l =
0, 1, ..., l. In this case, we have σk + αk = σk+1 ≤ B for all k ≥ k(l), so that we have
lim
k→∞

αk = 0. But this is impossible, since for all k ≥ k(l) we have

αk =
ϕ(xk)− ϕlev

k

max(1, ∥uk∥Dk
)
≥ (1− ν1)

δl

max(1, L
1
2 ρ)

> 0

Hence l → ∞. Let δ = lim
l→∞

δl. If δ > 0, then from Steps 3 and 4 of Algorithm 8, it

follows that for all l large enough we have δl = δ. Given µ > 0, for l large enough, we
have µ < ν1δ and, consequently, we can write

ϕrec
k(l+1) − µ ≤ ϕrec

k(l) − ν1δ

ϕrec
k(l+1) − ϕrec

k(l) ≤ −ν1δ + µ < 0

implying that inf
k≥0

ϕ(xk) = −∞; this is a contradiction, since ϕ(x) is bounded below.

Using the Lemma above and exploiting the results of the convergence proof of the
previous Proposition, we can state the following result, which can be considered as a
generalization of Proposition 2.7 in [77], which only deals with the case Dk = I, εk = 0
for all k.

Proposition 2.5. Under the same assumptions of the previous Lemma, if L2
k = 1+γk,

with

∞∑
1

γk <∞, for SSL we have ϕ̃ = inf
k≥0

ϕ(xk) = ϕ(x∗), with x∗ ∈ Ω∗.

Proof. The first part of the proof aims to show that
∑

j αj = ∞ and runs as Proposition
2.7 in [77]. For sake of completeness, we report below the detailed derivation of the
result.
From the previous Lemma, δl → 0 as l → ∞. Let S = {l ∈ {1, 2, ...}, δl = ν2δl−1}.
Then, from Step 4 and 6 of Algorithm 8, we obtain

σk = σk−1 + αk−1 =
k−1∑

j=k(l)

αj

so that k(l + 1) = k and l + 1 ∈ S whenever

k−1∑
j=k(l)

αj > B at Step 4. Hence

k(l)−1∑
j=k(l−1)

αj > B ∀l ∈ S

and since the cardinality of S is infinite, we have

∞∑
k=k(l)

αk ≥
∑

l≥l,l∈L

k(l)−1∑
j=k(l−1)

αj >
∑

l≥l,l∈S

B = ∞ (2.58)

Now in order to obtain a contradiction, assume that ϕ̃ > ϕ(x∗), so that for some ỹ ∈ Ω
and some η > 0

ϕ̃− η ≥ ϕ(ỹ) (2.59)
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Since δl → 0 and εk → 0, there are a large enough l and a large enough k such that, for
all l ≥ l and k(l) ≥ k, we have δl <

η
2 and εk <

η
2 ; then for all k ≥ k̃ = max{k(l), k}

ϕlev
k − εk = ϕrec

k(l) − εk − δl > ϕ̃− η ≥ ϕ(ỹ)

From this inequality, by Lemma 2.1 (iii), the definition of ε-subgradient, the definition
of αk we obtain

∥xk+1 − ỹ∥2
D−1

k

≤ ∥xk − ỹ∥2
D−1

k

− 2
αk

max(1, ∥uk∥Dk
)
(ϕ(xk)− ϕ(ỹ)− εk) + α2

k

≤ ∥xk − ỹ∥2
D−1

k

− 2
αk

max(1, ∥uk∥Dk
)
(ϕ(xk)− ϕlev

k − εk) + α2
k

≤ ∥xk − ỹ∥2
D−1

k

− α2
k

In view of (2.52) with x̃ = ỹ and Lk ≥ 1, we can write

∥xk+1 − ỹ∥2 ≤ L2
k∥xk − ỹ∥2 − α2

k (2.60)

By repeatedly applying the previous inequality we obtain

∥xk+1 − ỹ∥2 ≤ θk
k̃
∥xk̃ − ỹ∥2 −

k∑
j=k(l̄)

θkj+1α
2
j

where θkj = L2
j · ... · L2

k; since 1 ≤ θkj ≤ θk0 ≤M we have

∞∑
j=k̃

α2
j ≤M∥xk̃ − ỹ∥2

and consequently
∞∑
j=k̃

α2
k <∞. Then αk → 0 as k → ∞ and, from (2.58),

∞∑
j=k̃

αk = ∞.

Now we show that
∑

αkεk < ∞. Indeed, since εk → 0 as k → ∞, there exists k̄ such

that 2εk < η for k ≥ k̄, where η is such that (2.59) holds. We consider the inequality

∥xk+1 − ỹ∥2
D−1

k

≤ ∥xk − ỹ∥2
D−1

k

+ α2
k − 2

αk

max(1, ∥uk∥Dk
)
(uk)

t
(xk − ỹ) (2.61)

For the convexity of ϕ, the inequality (2.59) and inequality 2εk < η, we have

ϕ(xk) + (uk)
t
(ỹ − xk)− εk ≤ ϕ(ỹ) ≤ ϕ̃− η ≤ ϕ(xk)− 2εk

Then we have
(uk)

t
(ỹ − xk) ≤ −εk

Using this inequality in (2.61), we obtain

∥xk+1 − ỹ∥2
D−1

k

≤ ∥xk − ỹ∥2
D−1

k

+ α2
k − 2

αkεk
max(1, ∥uk∥Dk

)

Using the same arguments as above, we obtain

∥xk+1 − ỹ∥2 ≤ L2
k∥xk − ỹ∥2 + L2

kα
2
k − 2

αkεk

max(1, L
1
2 ρ)
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By repeatedly applying the previous inequality we have

∥xk+1 − ỹ∥2 ≤ θkk̄∥x
(k̄) − ỹ∥2 + θkk̄

k∑
j=k

α2
j −

2

max(1, L
1
2 ρ)

k∑
j=k̄

αjεj

≤ M

∥xk̄ − ỹ∥2 +
k∑

j=k̄

α2
j

− 2

max(1, L
1
2 ρ)

k∑
j=k̄

αjεj

Then we have

∞∑
j=k̄

αjεj ≤
M

2
max(1, L

1
2C)

∥xk̄ − ỹ∥2 +
∞∑
j=k̄

α2
j

 <∞

According to Corollary 2.1 we have ϕ̃ = ϕ∗ that contradicts (2.59).

The SSL algorithm can be generalized by introducing a variable path bound B and
different strategies for the updating of δl (see [77] for some examples).

2.6.2 Scaled Primal–Dual Hybrid Gradient Method

We present here an application of the previous SSL algorithm when ϕ is the sum of
two convex, proper l.s.c functions, namely ϕ = f1 + f2 ◦M , such that diam(dom(f∗2 ))
is finite and where M is a suitable matrix; the problem (2.1) becomes hence

min
x∈Ω

f1(x) + f2(Mx) (2.62)

We propose a Scaled Primal–Dual Hybrid Gradient (SPDHG) method for the solution
of (2.62):

yk+1 = (I + τk∂f
∗
2 )

−1(yk + τkMxk) (2.63)

xk+1 = PΩ,D−1
k
(xk − αkDk(w

k +M tyk+1)) (2.64)

where wk ∈ ∂δkf1(x
k), for some δk ≥ 0, {τk} and {αk} are the dual and primal

steplength sequences respectively. The results that allows us to classify this method as
a ε–subgradient method is the following lemma.

Lemma 2.8. [21, Lemma 1] Let yk+1 defined as in (2.63). Then, yk+1 ∈ dom(f∗2 ) and,

thus, M tyk+1 ∈ ∂σk
(f ◦M)(xk), where σk = f2(Mxk) + f∗2 (y

k+1) − (yk+1)
t
Mxk. If

there exists a positive number D such that diam(dom(f∗2 )) ≤ D, then σk ≤ (2τk)
−1D2.

Proof. From (2.63) we have

yk+1 = argmin
y
f∗2 (y) +

1

2τk
∥y −

(
yk + τkMxk

)
∥2

= argmin
y
f∗2 (y)− ⟨y,Mxk⟩+ 1

2τk
∥y − yk∥2
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Then

f∗2 (y
k+1)− ⟨yk+1,Mxk⟩ ≤ f∗2 (y

k+1)− ⟨yk+1,Mxk⟩+ 1

2τk
∥yk+1 − yk∥2

= min
y
f∗2 (y)− ⟨y,Mxk⟩+ 1

2τk
∥y − yk∥2

≤ min
y
f∗2 (y)− ⟨y,Mxk⟩+ 1

2τk
D2

≤ −f2(Mxk) +
1

2τk
D2

which results in σk = f∗2 (y
k+1)− ⟨yk+1,Mxk⟩+ f2(Mxk) ≤ 1

2τk
D2.

Then, for the additivity of the ε–subgradient (see Appendix A), we have uk = wk +
M tyk+1 ∈ ∂εkϕ(x

k), being ϕ = f1 + f2 ◦M .

We develop two implementation of the SPDHG method, using the above obser-
vation and the results of the previous section; in the first case, prefixed sequences
{τk}, {αk}, {Lk} are selected: the following corollary, based on Lemma 2.8 and Propo-
sition 2.4, states some conditions on these sequences to guarantee the convergence of
{xk} to a point x∗ ∈ Ω∗.

Corollary 2.2. Let {xk} be the sequence generated by iteration (2.63)-(2.64). Assume
that wk ∈ ∂δkf1(x

k) and that there exists ρ > 0 such that ∥wk∥ ≤ ρ for all k. Let the
steplength sequences {τk}, {αk} and the scaling matrix bounds {Lk} satisfy

αk = O

(
1

kp

)
,

1

τk
= O(k−p), Lk =

√
1 + O

(
1

kq

)
1

2
< p ≤ 1, q > 1. (2.65)

Moreover, assume that δk converges to zero at least as τ−1
k . If the set of the solutions

of (2.1) is nonempty and diam(dom(f∗2 )) is finite, then, the sequence {xk} converges
to a solution of (2.1).

Proof. As observed above, we have uk = wk+M tyk+1 ∈ ∂εkϕ(x
k), where εk = δk+σk.

Since diam(dom(f∗2 )) is finite, we can apply Lemma 2.8 obtaining σk ≤ (2τk)
−1D2. By

the assumption (2.65) on τk and on δk we obtain that εk = O
(

1
kp

)
and, as a consequence,

αkεk = O

(
1

k2p

)
. Since 1

2 < p ≤ 1 and q > 1, all assumptions (2.45)–(2.48) of Theorem

2.4 are satisfied and we obtain the result.

On the other hand, we can employ the SSL procedure to dynamically compute the

stepsize αk; in this case, a sequence Lk =
√
1 + γk, with

∑
γk <∞ has to be provided.

For sake of simplicity we consider the case δk = 0, thus σk = f2(Mxk)− (yk+1)
t
Mxk+

f∗2 (y
k+1) is controlled by the dual stepsize τk (see Lemma 2.8).

Proposition 2.5 allows to conclude that the sequence {f1(xk) + f2(Mx)} generated by
SPDHG method combined with SSL algorithm converges to the minimum of the objec-
tive function in (2.62), as stated in the following Corollary, under the same boundedness
assumptions as in Corollary 2.2. In Figure 2.1 the idea beyond the entire procedure is
shown.
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Figure 2.1: Behaviour of the ϕ, ϕrec and ϕlev in the first 15 iterations of the Algorithm 8
for the test-problem micro described in Section 2.7. The blue line refers to the objective
function’s values ϕ(xk), the magenta one represents the recorded minimum values ϕrec

k ; the
red line is the target value ϕlev

k at each iteration. The ϕlev values are used as an estimate of
the minimum value ϕ∗; the procedure tries, at each k–step, to lead the objective function to
the estimate ϕlev. We can observe that in the first 6 iterations this estimate is too low; thus
the procedure at each step computes a greater value for ϕlev. Once the objective function is
near the current ϕlev value (for example at the 12–th iteration), the algorithm decreases the
estimate of the minimum in order to force the minimization of ϕ. If the new estimate results
to be too low (iteration 13–th and the subsequents), then the procedure again increases ϕlev.

Corollary 2.3. Let {xk} be the sequence generated by Algorithm 8. Here uk = wk +
M tyk+1 in (2.57), wk ∈ ∂f1(x

k) and yk+1 is computed as in (2.63). Assume that
lim
k→∞

τk = ∞, Lk =
√
1 + γk with

∑
γk < ∞ and that there exists ρ > 0 such that

∥uk∥ ≤ ρ. If the set of the solutions of (2.1) is nonempty and diam(dom(f∗2 )) is finite,
then the sequence {f1(xk) + f2(Mxk)} converges to f1(x

∗) + f2(Mx∗), with x∗ ∈ Ω∗.

Proof. Since wk ∈ ∂f1(xk), by Lemma 2.8 we have uk ∈ ∂εkf(xk), where εk =

f1(Mxk) + f∗1 (y
k+1) − yk+1tAxk. Since diam(dom(f∗1 )) is finite, we can apply the

second part of Lemma 2.8 obtaining εk ≤ (2τk)
−1D2, for a positive constant D such

that diam(dom(f∗1 )) ≤ D. Since limk→∞ τk = ∞, we have limk→∞ ϵk = 0 and by
Theorem 2.5 we obtain the result.

2.6.3 Application to image restoration

We apply the SPDHG method to deblurring problems from data corrupted by Pois-
son noise. We assume that the detected image is the vectorized square image of
dimension N , where N = n2. We employ the Total Variation regularization: we

set f1(x) = KL(Hx + bg1;gn), f2(Mx) = βTV(x) = β
∑
i

∥∇ix∥ where Mx =

∇x, ∇ =
(
∇t

1, . . . ,∇t
N

)t
as in (2.27) and Ω is the nonnegative orthant. In this case,
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we have

wk = ∇KL(Hxk + bg1;gn) = Ht

(
1− gn

Hxk + bg1

)
Thus δk = 0. Furthermore, the resolvent operator for f2 is just the projection on the
set Y ⊂ R2N , defined in (2.27). In order to devise a suitable scaling matrix Dk, we use
a strategy similar to the one presented in section 2.1.1. We split the ε–subgradient of
the objective function in two nonnegative parts, such that

uk = V (xk)− U(xk) V > 0, U ≥ 0

and we define the diagonal entries of the matrix Dk as the projection of
xk

V (xk)
on

the set [L−1
k , Lk]

N . This strategy has the advantage to agree with the non negativity
constraints and strongly depends on the form of uk.

We have to find a decomposition of uk = ∇KL(Hx + bg1;gn) + βM tyk+1 as the
difference of two non negative terms. Thanks to the hypothesis (1.13) on the matrix
H, the gradient of the Kullback–Leibler can be split in

UKL(x
k) = Ht1, VKL(x) = Ht gn

Hxk + bg1

It remains to compute a decomposition of the βM tyk+1 term: it could be done by
writing it as a function depending on xk. Let’s consider the dual variable y ∈ R2N as

y =


y1

y2
...

yN


where yi ≡

(
y2i−1

y2i

)
∈ R2×N , for i = 1, . . . , N . The updating rule (2.63) can be

written as

yk = yk + τkβMxk

yk+1 = Sky
k

where Sk is a diagonal 2N × 2N matrix with the following diagonal entries

(Sk)2i−1,2i−1 = (Sk)2i,2i =
1

max{1, ∥yk
i ∥}

, i = 1, ..., N (2.66)

If the method is initialized with y0 = 0, the dual variable can be written as

y0 = 0

y1 = βτ0S0Mx0

y2 = βS1(τ0S0Mx0 + τ1Mx1)

y3 = βS2(τ0S1S0Mx0 + τ1S1Mx1 + τ2Mx2)

...

yk+1 = β
k∑

j=0

τjS̃
k
jMxj
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where

S̃k
j =

k∏
i=j

Si

As a consequence, the ε-subgradient of f2 ◦M employed in (2.64) can be expressed as

βM tyk+1 = β2
k∑

j=0

τjM
tS̃k

jMxj (2.67)

The following lemma, which directly follows from the definition of M , indicates a
possible decomposition of each term in the summation at the right hand side of (2.67)
as the difference between a positive and a nonnegative term.

Lemma 2.9. Every matrix–vector product of the form M tSMx where S is a 2N ×2N
diagonal matrix with positive entries such that S2ℓ,2ℓ = S2ℓ−1,2ℓ−1 = sℓ, ℓ = 1, · · · , N ,
x ≥ 0, can be decomposed as

M tSMx = VS(x)− US(x)

where

(VS(x))i,j = (2si,j + si,j−1 + si−1,j)xi,j ≥ 0

(US(x))i,j = si,j(xi+1,j + xi,j+1) + si,j−1xi,j−1 + si−1,jxi−1,j ≥ 0

with the correspondence

sℓ ≡ si,j , j = ⌊(ℓ− 1)/n⌋+ 1, i = ℓ− ⌊(ℓ− 1)/n⌋ · n

where ⌊·⌋ denotes the integer quotient.

Proof. SinceM =

 ∇1
...

∇N

, the matrixM tSM can be expressed in the following way:

M tSM = s1∇t
1∇1 + ...+ sN∇t

N∇N

We observe that when ℓ is related to the pair (i, j), i = ℓ − ⌊(ℓ − 1)/n⌋ · n, j =
⌊(ℓ− 1)/n⌋+1, with i, j ̸= n, the matrix product Dℓ = ∇t

ℓ∇ℓ is a N ×N matrix whose
entries are zero except for the following components:

• on the main diagonal: (Dℓ)ℓ,ℓ = 2,(Dℓ)ℓ+n,ℓ+n = 1;

• off-diagonal nonzero entries: (Dℓ)ℓ,ℓ+1 = −1, (Dℓ)ℓ+1,ℓ = −1, (Dℓ)ℓ,ℓ+n = −1,
(Dℓ)ℓ+n,ℓ = −1.

With a similar argument, it is possible to show that Dℓ for ℓ related to a pair (i,N) or
(N, j) also has positive entries only in two positions on the main diagonal and negative
values in four off-diagonal positions. For example, the nonzero entries of DN are:
(DN )n,n = 1, (DN )n,N = −1, (DN )N−n,N−n = 1, (DN )N−n,N = −1, (DN )N,N−n = −1,
(DN )N,N = 2.
Consequently, in view of the relation between ℓ and the pair (i, j), each ℓ-th diagonal
entry of M tSM is obtained by the following terms:
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• si,j∇t
i,j∇i,j = 2si,j

• si−1,j∇t
i−1,j∇i−1,j = si−1,j

• si,j−1∇t
i,j−1∇i,j−1 = si,j−1

Then, M tSMx can be written as V (x)− U(x), where V (x) is given by

(VS(x))i,j = (2si,j + si−1,j + si,j−1)xi,j

while (U(x))i,j is obtained by the negative contribution of Di,j , Di,j−1 and Di−1,j :

(U(x))i,j = si,j(xi+1,j + xi,j+1) + si−1,jxi−1,j + si,j−1xi,j−1

Hence, the subgradient uk can be splitted out in two parts U(xk) ≥ 0, V (xk) > 0, with

V (xk) = Ht1+ β2
k∑

j=0

τjVS̃k
j
(xj) (2.68)

It is worth to notice that since the matrix Dk is diagonal and the constraint set Ω is the
nonnegative orthant, the projection PΩ,D−1

k
is simply the usual Euclidean projection

PΩ.

Remark 2.3. Introducing the following auxiliary vectors:

pk
i,j = (pk−1

i,j + β2τkx
k
i,j)s

k
i,j (2.69)

qk
i,j = (qk−1

i,j + β2τkx
k
i,j)s

k
i−1,j (2.70)

rki,j = (rk−1
i,j + β2τkx

k
i,j)s

k
i,j−1 (2.71)

for i, j = 1, ..., N

it can be shown that the computation of the sum in the second term of (2.68) can be
written as

β2
k∑

j=0

τjVS̃k
j
(xj) = 2pk + qk + rk (2.72)

For sake of simplicity, we limit ourselves to show that this is true for k = 0, 1.
Indeed, from Lemma 2.9 and from (2.69)–(2.71) we have

V R(x0)i,j = β2τ0(VS0x
0)i,j

= β2τ0(2s
0
i,j + s0i−1,j + s0i,j−1)x

0
i,j

= 2p0
i,j + q0

i,j + r0i,j

V R(x1)i,j = β2τ0(VS0S1x
0)i,j + β2τ1(VS1x

1)i,j

= β2τ0(2s
0
i,js

1
i,j + s0i−1,js

1
i−1,j + s0i,j−1s

1
i,j−1)x

0
i,j +

+β2τ1(2s
1
i,j + s1i−1,j + s1i,j−1)x

1
i,j

= 2(β2τ0s
0
i,jx

0
i,j + β2τ1x

1
i,j)s

1
i,j +

+(β2τ0s
0
i−1,jx

0
i,j + β2τ1x

1
i,j)s

1
i−1,j +

+(β2τ0s
0
i,j−1x

0
i,j + β2τ1x

1
i,j)s

1
i,j−1

= 2(p0
i,j + β2τ1x

1
i,j)s

1
i,j + (q0

i,j + β2τ1x
1
i,j)s

1
i−1,j + (r0i,j + β2τ1x

1
i,j)s

1
i,j−1

= 2p1
i,j + q1

i,j + r1i,j
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The entire procedure for the SPDHG algorithm is shown in Algorithm 9. The stepsize
selection strategies presented above could be employed in SPDHG: the choice of prefixed
sequences requires that the assumptions of Corollary 2.2 are satisfied.

Algorithm 9: SPDHG

Choose the starting point x0 ∈ X and set y0 = 0, p(−1) = q(−1) = r(−1) = 0. Choose
the sequences {αk}, {τk}, {γk}.
FOr k = 0, 1, 2, . . . do the following steps

Step 1. Compute yk = yk + βτkMxk;

Step 2. Compute skℓ = 1
max{1,∥yk

ℓ
∥} , ℓ = 1, ..., n and define Sk as in (2.66);

Step 3. Dual update: yk+1 = Sky
k;

Step 4. Auxiliary vectors update for the decomposition:

pk
i,j = (pk−1

i,j + β2τkx
k
i,j)s

k
i,j

qk
i,j = (qk−1

i,j + β2τkx
k
i,j)s

k
i−1,j

rki,j = (rk−1
i,j + β2τkx

k
i,j)s

k
i,j−1

for i, j = 1, ..., N

Step 5. Compute the positive part of the decomposition:

V (xk) = Ht1+ (2pk + qk + rk)

Step 6. Compute the scaling matrix:

Lk =
√

1 + γk

(Dk)ℓ,ℓ = min

{
Lk,max

{
L−1
k ,

xkℓ
V (xk)ℓ

}}
Step 7. Primal update: xk+1 = P≥0(x

k − αkDk(∇f1(xk) + βM tyk+1)).

2.7 Numerical Comparison

In this section we compare the numerical behavior of some of the algorithms presented
above for the solution of the deblurring problem

argmin
x≥0

ϕβ(x) ≡ KL(Hx+ bg1;gn) + βTV(x)

The regularization parameter has been empirically chosen by solving the minimiza-
tion problem for different values of β with very high accuracy and selecting the one
corresponding to the minimum relative ℓ2 distance from the original image x∗. The
parameter found is denoted by βopt.

The tested algorithms are

• PDHG[21] - Algorithm 9 with the choice Dk = I; αk is a priori sequence such
that ∑

k

αk = ∞,
∑
k

α2
k <∞
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i.e. is a diminishing, divergent series and square summable sequence.

• SPDHG - Algorithm 9; αk is an a priori diminishing, divergent series and square
summable sequence, as in the previous case.

• SL - Algorithms 8 with Dk = I and uk = ∇KL(Hx+bg1;gn)+βM tyk+1, where
yk+1 is given in (2.63).

• SSL - Algorithms 8; in this case, Dk is given by Algorithm 9.

• CP - Algorithm 7; (Chambolle & Pock method taylored for image deblurring
problem (2.38). In our setting τσ = 0.1, θ = 1; here 0.1 is an estimate of
1/∥M tM∥, where M is given in (2.36)).

• PIDSplit+ - Algorithm 6 (PIDSplit+ method, with γ =
a

β
, with a ∈ R+).

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Test problems for numerical comparison: in the first row the original images are
shown, while in the second one the perturbed ones are presented.

The data set on which the algorithms are tested is is given by three different problems
(see Figure 2.2):

◃ cameraman: the classical cameraman 256 × 256 image; the blurring is due to a
Gaussian PSF with standard deviation 1.3, truncated at the 9× 9 central pixels.
The values of the exact image lie in the interval [7, 253], while the perturbed and
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noisy image gn ranges between 3.5 and 249.5; the bg value is set to 0. The relative
ℓ2 distance of gn from the exact data is 0.1290. The value of βopt is 0.005.

◃ phantom: this 256 × 256 image is the Shepp–Logan phantom generated by the
Matlab function phantom; the original image ranges in [0, 1000], it is blurred by a
Gaussian PSF of standard deviation 3 and truncated at the central 9× 9 pixels.
A constant background value of 10 is added to the blurred image; the values of gn
lie in [1, 934]. The relative ℓ2 distance of the perturbed image form the original
one is 0.4661. The value of βopt is 0.00526.

◃ micro: the original image is the confocal microscopy phantom of size 128 × 128
described in [99] multiplied by 10; the PSF is the one used in [99], truncated at
the 9× 9 central pixels. Here the background value is set to 0, the original image
pixels are in the range [10, 690], while gn has values in [1, 778]. The relative
ℓ2 relative distance between the original and perturbed images is 0.1442 . The
computed βopt is 0.0477.

k ek Ek time

phantom

PDHG *3000 0.1775 0.3140 68.72
SPDHG 847 0.0157 0.2331 21.54
SL *3000 0.2745 0.3822 75.63
SSL 1725 0.0025 0.2323 53.05
CP 405 0.0223 0.2361 14.15
PIDSPLIT+ 351 0.0154 0.2370 18.47

k ek Ek time k ek Ek time

cameraman micro

PDHG 1462 0.0032 0.0872 34.81 2141 0.0289 0.0750 12.43
SPDHG 914 0.0007 0.0875 24.01 550 0.0094 0.0720 3.66
SL 327 0.0257 0.0880 7.52 1549 0.0696 0.0979 9.35
SSL 316 0.0021 0.0872 8.23 916 0.0130 0.0715 6.25
CP 280 0.0038 0.0872 9.33 1926 0.0283 0.0748 17.87
PIDSPLIT+ 199 0.0023 0.0873 10.56 281 0.0112 0.0720 3.54

Table 2.1: Relative reconstruction error corresponding to the stopping criterion (2.73) with
tol = 10−6. The asterisk denotes that the condition (2.73) was not met in the first 3000
iterations.

In order to evaluate the behaviour of the procedures, we have computed the minimum
ϕ̃ of ϕβopt and the corresponding minimum argument x̃ by running 100000 iterations
of PIDSplit+ algorithm. Then, we evaluate the progress toward this solution at each
iteration in terms of the l2 relative error from the minimum point and the relative
difference from the optimal value

ek =
∥xk − x̃∥

∥x̃∥
fk =

∥ϕ(xk)− ϕ̃∥
∥ϕ̃∥

Following the assumptions of Corollaries 2.2 and 2.3, we choose the sequences of
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PDHG

τk αk γk

cameraman 0.9 + 10−2k (0.04 + 10−5k)−1 -
micro 0.9 + 10−3k (0.04 + 10−4k)−1 -

phantom 0.9 + 10−3k (0.2 + 10−5k)−1 -

SPDHG

τk αk γk

cameraman 0.5 + 5 · 10−3k (0.5 + 10−5k)−1 1013k−2

micro 0.4 + 10−5k (0.4 + 10−5k)−1 1013k−2

phantom 0.5 + 10−4k (0.5 + 10−5k)−1 1013k−2

SL SSL PIDSplit+ CP

τk γk τk γk a σ τ

cameraman 0.5 + 5 · 10−2k - 0.7 + 5 · 10−3k 1013k−2 5 100 0.001
micro 0.9 + 10−3k - 0.4 + 10−5k 1013k−2 50 10 0.01

phantom 0.9 + 10−3k - 0.9 + 10−4k 1013k−2 50 1000 0.0001

Table 2.2: Parameter settings.

parameters as follows

τk = t1 + t2k, αk =
1

t3 + t4k
, γk =

t5
k1+t6

In order to illustrate the effectiveness of the methods, the values ti have been manually
optimized for each test problem to obtain a faster decrease of ek . The same manual
procedure has been adopted also for the parameters of CP and PIDSplit+ (see Table
2.2). Moreover, for the initialization of both SL and SSL, we adopt the rule δ0 =

0.9f(x0), while the other parameters are ν1 = ν2 = 0.5, B = 0.9∥u0∥∥D0∥
1
2∞.

In the first numerical experiment we force the algorithms to perform 3000 iterations, in
order to compare the convergence rate of the methods; the results obtained are depicted
in Figure 2.4. From our numerical experience, it seems that introducing the scaling
can give an acceleration towards the solution, with both steplength αk strategy choices.
Moreover, we observe that the best results are reached by setting the initial values for
the scaling matrix very large (see Table 2.2). It is worth noticing that the adaptive
choice for αk combined with the proposed scaling strategy seems to work well, reaching
results which are close to the ones obtained by tuning these parameters in the optimal
way. Indeed, SPDHG and its non scaled version PDHG are very sensitive to the choice
of τk and αk: depending strongly their performances on these parameters, it is quite
difficult to devise a general strategy. Moreover, it is worth mentioning that also the
effectiveness of PIDSplit+ and CP depends on the choice of the relative parameters.
In the second experiment in order to show the behaviour of the proposed methods in
image restoration framework, we employ the following stopping criterion:

|ϕβ(x
k+1)− ϕβ(x

k)|
|ϕβ(xk+1)|

≤ tol and

k∑
i=k−4

|ϕβ(x
i+1)− ϕβ(x

i)|
|ϕβ(xi+1)|

≤ 10tol (2.73)
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(a) (b) (c)

Figure 2.3: Reconstructed images obtained with SPDHG method.

with tol = 10−6 and β = βopt. The numerical results are presented in Table 2.1, where
we show the relative reconstruction error Ek:

Ek =
∥xk − x∗∥

∥x∗∥

where x∗ is the original image. In Figure 2.3 the reconstructed images obtained with
SPDHG are shown. These results are coherent with those in [18], where scaled gradient
methods show to be more effective in providing a good reconstruction than nonscaled
ones.
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Figure 2.4: First numerical experiment. In the first row the results concerning the cameraman
test problem are shown, while in the second one the plots refer to the phnatom problem and,
finally, in the third one the plots regard the micro test problem. In the first column, for each
problem, the behaviour of the relative minimization error is depicted, while in the second
one the plots are related to the behaviour of the relative distance from the minimum function
value.



Chapter 3

Numerical Methods for
Parameter Estimation in Poisson
Data Inversion

The parameter β that appears in the variational problem

min
x
ϕβ(x) ≡ ϕ0(Hx+ bg1;gn) + βϕ1(x)

has a crucial role. As already shown in the previous chapters, we define the optimal
parameter as the value for β which gives the minimum reconstruction error. This value
is not known, hence we need some methods in order to estimate this value: in this
chapter we propose two different methodologies which have exactly this aim for data
corrupted by Poisson noise. The first one is based on solving a discrepancy equation
[13], while the other one is based on a constrained approach. We prove the equivalence
of these models, i.e. we show that they theoretically provide us with the same estimate
for β; moreover, we propose a numerical method based on the algorithm by Dai and
Fletcher [45] to solve the discrepancy equation and a particular implementation of the
ADMM method to solve the constrained model.

3.1 Two Estimation Models

We consider the linear model
Hx+ bg1 = gn

where the assumptions (1.5) hold. As already shown, in order to recover the original
signal x∗ we have to solve

min
x
ϕβ(x) ≡ KL(Hx+ bg1;gn) + βϕ1(x) (3.1)

As shown in [101], the expected value for KL(Hx∗ + bg1;gn) is N/2, being N the
dimension of x. Therefore, if we define the normalized discrepancy function

DH(x;y) =
2

N
KL(Hx+ bg1;gn) (3.2)

and we denote as xβ the solution of (3.1), we can introduce the following model for the
selection of β, equivalent to require that the discrepancy corresponding to the selected
minimizer is close to that of the true source image.

59
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Model 1. Select the value of β such that

DH(xβ;gn) = η (3.3)

where xβ ≥ 0 is the minimizer of (3.1) and η is a given number close to one. If β is a
solution of the equation (3.3), then x = xβ is called solution of Model 1. We will also
denote Model 1 as the Crossing Model

It has been remarked by several authors [33, 34, 92] that the approach of Model
1 can lead to highly time-consuming computations since it can require the solution of
several minimization problems; therefore a Constrained Model has been proposed and
formulated as follows.

Model 2. For a given η, solve the problem

min
x≥0

ϕ1(x), subject to DH(x;gn) ≤ η. (3.4)

Any solution x̄ of this problem is called solution of Model 2. It is obvious that in such
a case only one minimization is required.

We show the relations between the two models: using and extending results proved
in [92], we prove that the two models have the same solutions for a suitable class of
potential functions. Moreover we report and extend results, proved in [13], concerning
Model 1.
In the following we denote by levαf(t) the level set of a function f , i.e. {t|f(t) ≤ α}.

3.1.1 Relations Between Penalized and Constrained Convex Prob-
lems

For a unified treatment of the cases we are investigating it is convenient to set

ϕ1(x) = R(Lx), (3.5)

where R(t) is a convex and nonnegative function and L is a suitable matrix. We recall
that any seminorm on Rn can be written as ∥L · ∥, and therefore it can be referred to
by the notation (3.5).

In order to have notations close to those used in [92], we set τ = ηN
2 and λ = 1

β .
Moreover we introduce the quantities

τ0 = min
x≥0

KL(Hx+ bg1;gn), (3.6)

τL = min
x≥0

x∈Ker(L)

KL(Hx+ bg1;gn),

where Ker(L) is the null space of the matrix L in (3.5).
We consider the following problems, strictly connected to the Models (3.3) and (3.4)
respectively:

min
x≥0

R(Lx) + λKL(Hx+ bg1;gn), λ ≥ 0, (3.7)

and

min
x≥0

R(Lx), subject to KL(Hx+ bg1;gn) ≤ τ, (3.8)
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with τ ≥ τ0. The regularization functionals considered in the previous chapters, such
as the Tikhonov regularization, the Total Variation and the Hypersurface potential,
belong to the class of functional of type (3.5); in all the three cases, the function
R satisfies a set of general assumptions, applicable to other regularization functions
such as, for example, ∥Lx∥1 or Markov Random Field regularizations. We denote as
Assumption REG the following assumptions, also satisfied by any seminorm:

• R : Rp → R is a proper, convex, continuous function, such that R(t) ≥ 0 and
R(t) = 0 ⇔ t = 0;

• the level sets levαR(t) of R(t) are nonempty and bounded for α ≥ 0;

• L ∈ Rp×N , p ≥ N .

Under Assumption REG, it is evident that Ker(L) is the set of minimum points of
R(Lx).
Theoretical results about the relations between the convex problems (3.7) and (3.8)
can be found in [64]; we point out that, when the minimizer of a general penalized
problem λF (x) + G(x) is not unique, F (x) can assume different values at the mini-
mum points; furthermore, it may happen that the multiplier of the constrained problem

min
x∈levτ (F (x))

G(x) is not unique [40].

In [92], the authors specialize these general results to the problems (3.7) and (3.8),
devising the conditions that assure their equivalence when R(Lx) is a seminorm and
gn > 0. The discussion can be easily extended to a differentiable R(Lx) satisfying the
Assumption REG (as, for example, Tikhonov-like regularization or Hypersurface po-
tential). For sake of completeness, we report these results, requiring only Assumption
REG for R(Lx).

Proposition 3.1. [92, Th. 3.2] Let H ∈ RM×N be such that

K = {x ≥ 0 : Hx+ bg1 > 0} ≠ ∅ (3.9)

and

{x ≥ 0} * Ker(H). (3.10)

We assume L ∈ Rp×N with Ker(L)∩Ker(H) = {0} and R(Lx) satisfying the Assump-
tion REG. Then we have

i) the problems (3.7) with λ ≥ 0 and (3.8) with τ ≥ τ0 have a solution;

ii) under the assumption gn > 0, if x̂ and x̃ are solution of (3.7) for a given λ > 0,
then R(Lx̂) = R(Lx̃) and Hx̂ = Hx̃, i.e. KL(Hx̂ + bg1;gn) = KL(Hx̃ +
bg1;gn);

iii) let

argmin
x≥0

KL(Hx+ bg1;gn) ∩Ker(L) = ∅

and τ0 < τ < τL; under the assumption gn > 0, if x̂ and x̃ are solution of (3.8)
for a given τ , then R(Lx̂) = R(Lx̃) and Hx̂ = Hx̃, with KL(Hx̂ + bg1;gn) =
KL(Hx̃+ bg1;gn) = τ .
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In presence of nonzero background, the assumption (3.10) allows to exclude the trivial
case when the nonnegative orthant is a subset of Ker(H). Obviously, when H satisfies
the conditions (1.5), the assumptions (3.9) and (3.10) hold. Under the assumptions
of Proposition 3.1, using the same arguments of the proof of Lemma 3.3 in [92], it
is possible to state that each solution x̄ of (3.7) does not belong to Ker(L) and the
following relation with λ̄ holds :

λ̄ =
⟨p1, Lx̄⟩〈

gn

Hx̄+ bg1
− 1,Hx̄

〉 (3.11)

where p1 ∈ ∂R(Lx̄), .
When R(Lx) is a seminorm, i.e. R(Lx) = ∥Lx∥, since x̄ ̸∈ Ker(L) and ∥p1∥∗ = 1
(where ∥ · ∥∗ is the dual norm of ∥ · ∥), we have ⟨p1, Lx̄⟩ = ∥Lx̄∥ > 0 and, consequently,

λ̄ =
R(Lx̄)〈

gn

Hx̄+ bg1
− 1,Hx̄

〉 (3.12)

Then, for part ii) of Proposition 3.1, in the case of the seminorm regularization, λ̄ is
uniquely determined.
When R(Lx̄) is differentiable, p1 = ∇tR(t)|t=Lx̄ and the equation (3.11) can be written
as:

λ̄ =
⟨∇tR(t)|t=Lx̄, Lx̄⟩〈

gn

Hx̄+ bg1
− 1,Hx̄

〉 (3.13)

Then, as in the previous case, for differentiable R(t) satisfying the Assumption REG,
λ̄ is uniquely determined.
In particular, for Tikhonov-like regularization,

< ∇tR(t)|t=Lx̄, Lx̄ >=< x̄,∇xR(Lx̄) >= ∥Lx̄∥2

For HS regularization, taking into account the expression of the gradient [19], we have

< ∇tR(t)|t=Lx̄, Lx̄ >=
N∑
i=1

x̄tLt
iLix̄√

∥Lix̄∥2 + δ2

Using part iii) of Proposition 3.1 and the above relation between the value of λ̄ and the
corrisponding solutions of problem (3.7) the following theorem states the relationship
between problems (3.7) and (3.8).

Proposition 3.2. [92, Theorem 3.4] Let H ∈ RM×N be such that (3.9)-(3.10) hold
and L ∈ Rp×N with Ker(L) ∩Ker(H) = {0}. Let

argmin
x≥0

KL(Hx+ bg1;gn) ∩Ker(L) = ∅

and τ0 < τ < τL. When R(Lx) is a seminorm regularization or a differentiable function
satisfying the Assumption REG, if x̄ is a solution of (3.8), then there exists a unique
λ̄ > 0 such that x̄ is a solution of (3.7).
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In conclusion Proposition 3.2, combined with part ii) and part iii) of Proposition 3.1,
states that Model 2 has solutions and that they are all the solutions of Model 1.

For suitable differentiable regularizations, the previous results can be established
under assumptions weaker than those of the previous Proposition 3.2: more precisely
one can remove the assumption that all the values of gn are strictly positive. Before
introducing these results, we recall the conditions for the existence and uniqueness of
the solution of the problem (3.7) for λ > 0 in some special cases and we extend part
iii) of Proposition 3.1.
Let I1 = {i |gni > 0} and I2 = {1, 2, ...,M} − I1. The cardinality of I1 is denoted
by M1. We denote by gnI1 the vector of nonzero entries of gn and by HI1 and HI2

the submatrices of H given by the rows with indexes in I1 and I2, respectively. The
following Lemma is a generalization of Proposition (1.3) cases (a)–(c).

Lemma 3.1. Let H ∈ RM×N be such that the assumptions (3.9)-(3.10) hold and
L ∈ Rp×N . Let Ker(L) ∩Ker(HI1) = {0}, I1 ̸= ∅. If R(Lx) satisfies the Assumption
REG and R(t) is a differentiable function with positive definite Hessian, then the
problem (3.7) for λ > 0 has a unique solution.

Proof. Under the assumption

Ker(L) ∩Ker(HI1) = {0}

I1 ̸= ∅ and λ > 0, we prove that the objective function of the problem (3.7) is strictly
convex by showing that the intersection between the null spaces of the Hessian of
KL(Hx + bg1;gn) and R(Lx), i.e. the null space of the Hessian of the objective
function, is trivial.
Indeed we have that Ker(∇2KL(Hx + bg1;gn)) = Ker(HI1). On the other hand, the
Hessian matrix of R(Lx) is given by Lt∇2R(Lx)L. Since ∇2R(t) is positive definite
for any t, Ker(∇2R(Lx)) = Ker(L) = {x = argmin

x
R(Lx)}. As a consequence of the

assumption Ker(L)∩Ker(HI1) = {0}, the objective function is strictly convex and the
minimum point is unique.

Lemma 3.1 holds for Tikhonov-like regularization, HS potential and Markov random
field functions.
Under the assumptions of Lemma 3.1, the following relation between λ and the unique
solution x̂ of the problem (3.7) holds:

λ =
⟨∇tR(t)|t=Lx̂, Lx̂⟩〈

gnI1

HI1 x̂+ bg1
,HI1 x̂

〉
− ⟨1,Hx̂⟩

, (3.14)

Furthermore, part iii) of Proposition 3.1 can be restated under more general assump-
tions.

Proposition 3.3. Let H ∈ RM×N be such that the assumptions (3.9)-(3.10) hold,
L ∈ Rp×N and let R(Lx) satisfy Assumption REG. Let

argmin
x≥0

KL(Hx+ bg1;gn) ∩Ker(L) = ∅

and τ0 < τ < τL; under the assumption

Ker(L) ∩Ker(HI1) = {0}, I1 ̸= ∅
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if x̂ and x̃ are solution of (3.8), then R(Lx̂) = R(Lx̃) and

KL(Hx̂+ bg1;gn) = KL(Hx̃+ bg1;gn) = τ

with HI1 x̂ = HI1 x̃ and ⟨1M−M1 ,HI2 x̃⟩ = ⟨1M−M1 ,HI2 x̂⟩.

Proof. When x̂ and x̃ are two solutions of problem (3.8), it is evident that R(Lx̂) =
R(Lx̃). We have to prove that KL(Hx̂+bg1;gn) = τ for any solution x̂ of the problem.
Since x̂ is a solution of (3.8), levτ (H)∩ ix≥0 ̸= ∅ and R(Lx) is continuous on its domain
Rn, there exists w ∈ Lt∂R(Lx̂) (or w = Lt∇R(Lx̂) if R(Lx) is differentiable) and a
nonnegative scalar µ [84, §28] such that

(w + µ∇KL(Hx̂+ bg1;gn))x̂ = 0

w + µ∇KL(Hx̂+ bg1;gn) ≥ 0

x̂ ≥ 0 (3.15)

µ(KL(Hx̂+ bg1;gn)− τ) = 0

KL(Hx̂+ bg1;gn) ≤ τ

µ ≥ 0

Let w = Ltp for a suitable p ∈ ∂R(t)|t=Lx̂ (or p = ∇tR(t)|t=Lx̂). Since τ < τL,
x̂ ̸∈ Ker(L), and, consequently, w is different from 0 (indeed argminR(Lx) = Ker(L)).
Then, if KL(Hx̂+ bg1;gn) < τ , since µ(KL(Hx̂+ bg1;gn)− τ) = 0, it follows µ = 0;
therefore ⟨w, x̂⟩ = 0 and the problem is reduced to the minimum of R(Lx) on the
nonnegative orthant. Then x = 0 is a solution as well as x̂. But 0 ∈ Ker(L) and
0 ̸∈ levτKL(Hx+ bg1;gn). Then KL(Hx̂+ bg1;gn) = τ .
Now, we prove that, if x̂ and x̃ are solutions of (3.8), then HI1 x̂ = HI1 x̃; we write
x̂ = x̂1 + x̂2 and x̃ = x̃1 + x̃2 with x̂1, x̃1 ∈ R(Ht

I1), x̂1 ̸= x̃1 and x̂2, x̃2 ∈ Ker(HI1).
Let x = µx̂+ (1− µ)x̃, where µ ∈ (0, 1) is chosen so that x ≥ 0. Then

KL(Hx+ bg1;gn) = KL(HI1(µx̂+ (1− µ)x̃) + bg1;gnI1) +

+⟨1M−M1 ,HI2(µx̂+ (1− µ)x̃) + bg1⟩ =
= KL(HI1(µx̂1 + (1− µ)x̃1) + bg1;gnI1) +

+µ⟨1M−M1 ,HI2 x̂+ bg1⟩+
+(1− µ)⟨1M−M1 ,HI2 x̃+ bg1⟩ < (3.16)

< µ(KL(HI1 x̂1 + bg1;gnI1) + ⟨1M−M1 ,HI2 x̂⟩) +
+(1− µ)(KL(HI1 x̃1 + bg1;gnI1) +

+⟨1M−M1 ,HI2 x̃+ bg1⟩)
= µτ + (1− µ)τ = τ

where the strict inequality follows from the strict convexity of KL(HI1x + bg1;gnI1)
on R(Ht

I1). Then we have KL(Hx+ bg1;gn) < τ . On the other hand, we obtain

R(Lx) = R(µLx̂+ (1− µ)Lx̃) ≤
≤ µR(Lx̂) + (1− µ)R(Lx̃) = (3.17)

= R(Lx̃) = R(Lx̂)

so that x should be a minimizer of (3.8). This is impossible since any minimizer has to
fulfill KL(Hx+ bg1;gn) = τ .
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Finally, since KL(Hx̂+bg1;gn) = KL(Hx̃+bg1;gn) = τ and HI1 x̂ = HI1 x̃, it follows

⟨1M−M1 ,HI2 x̃⟩ = ⟨1M−M1 ,HI2 x̂⟩ (3.18)

Following the same arguments used in [92] for proving Proposition 3.2, Proposition 3.3
enables to extend the results of Proposition 3.2 to the case gn ≥ 0 for differentiable
regularization functions satisfying Lemma 3.1.

Proposition 3.4. Let H ∈ RM×N be such that the assumptions (3.9)-(3.10) hold and
L ∈ Rp×N . Let

Ker(L) ∩Ker(HI1) = {0}

I1 ̸= ∅. Let argmin
x≥0

KL(Hx + bg1;gn) ∩ Ker(L) = ∅, and τ0 < τ < τL. Assume that

R(Lx) satisfies Assumption REG and R(t) is a differentiable function with positive
definite Hessian. If x̄ is a solution of (3.8), then there exists a unique λ̄ > 0 such that
x̄ is a solution of (3.7).

3.2 Existence and uniqueness of the solution of the Dis-
crepancy equation

In [13], conditions for the existence and uniqueness of the solution of the discrepancy
equation (3.3) are devised for denoising and deblurring of images corrupted by Poisson
noise, when ϕ1(x) ≡ R(Lx) is the Tikhonov–like regularization or the HS potential.

Using the previous results, the discrepancy equation can be used also when R(Lx) is
a seminorm regularization. We recall that xβ denotes a solution of the penalized prob-
lem (3.1). The following proposition states the conditions assuring the well-definiteness
of the function DH(x;gn) for gn > 0.

Proposition 3.5. Let H ∈ RM×N be such that (3.9)-(3.10) hold and L ∈ Rp×N with
Ker(L) ∩ Ker(H) = {0}. When gn > 0 and R(Lx) satisfies the Assumption REG,
DH(xβ,gn) is well defined for β > 0.

Proof. Given β > 0, Proposition 3.1 assures that the problem (3.7) with λ = 1
β has at

least a solution and, if we consider two different solutions of the problem x̂ and x̃, we
have KL(Hx̂+ bg1;gn) = KL(Hx̃+ bg1;gn). Therefore for all β > 0, DH(xβ;gn) is
well defined.

Finally, Proposition 3.6 establishes the uniqueness of the solution of Model 1 for
seminorm regularization (i) and restates the results already obtained in [13] (ii).

Proposition 3.6. Let H ∈ RN×M be such that (3.9)-(3.10) hold and L ∈ Rp×N with
Ker(L) ∩Ker(H) = {0}. Assume τ = ηN

2 such that τ0 < τ < τL, i.e.

argmin
x≥0

KL(Hx+ bg1;gn) ∩Ker(L) = ∅

Thus we have:

i) under the assumption gn > 0, the solution β̄ of the discrepancy equation combined
with a seminorm regularization exists and is unique;
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ii) let R(Lx) be a differentiable regularization term satisfying Assumption REG,
such that the Hessian of R(t) is positive definite; under the assumption Ker(L)∩
Ker(HI1) = {0}, I1 ̸= ∅, the solution β̄ of the discrepancy equation combined
with the regularization term R(Lx) exists and is unique; furthermore the vector
xβ̄ corresponding to the solution is unique.

Proof. i) We consider the problem (3.8) with τ = ηN
2 and R(Lx) given by a semi-

norm. For part iii) of Proposition 3.1, the solution x̄ of this problem exists and
KL(Hx̄ + bg1;gn) = τ . For Proposition 3.2, there exists a unique λ̄ > 0 such
that x̄ is a solution of (3.7) with λ̄ = 1/β̄ and this value does not depend on x̄.
Then β̄ = 1/λ̄ is the unique solution of the discrepancy equation combined with
the seminorm regularization.

ii) We consider the problem (3.8) with τ = ηN
2 and R(Lx) satisfying Assumption

REG. For Proposition 3.3, the solution x̄ of this problem exists and KL(Hx̄ +
bg1;gn) = τ . Since R(t) is a differentiable function with positive definite Hessian,
Proposition 3.4 assures that there exists a unique λ̄ > 0 such that x̄ is a solution
of (3.7) with λ̄ = 1/β̄ and this value does not depend on x̄. Then β̄ = 1/λ̄ is the
unique solution of the discrepancy equation. Furthermore, from Lemma 3.1, the
solution xβ̄ of (3.7) for a given β̄ is unique.

In [13], under the assumption of part ii) of the previous Proposition, for differentiable
function with positive definite Hessian R(t) and under the assumption (1.5) on H,
the authors give the conditions that assure τ0 < ηN

2 < τL for HS and Tikhonov-like
regularization. For example, for image deconvolution (N = M and H1 = 1), the
condition M

2 < τL is satisfied if

1

N

∑
i∈I1

gni log(gni) >
1

2
+ gn log(gn), (3.19)

where gn =
1

N

∑
i∈I1

gni.

3.3 Numerical Methods

In this section, we introduce the numerical methods enabling us to exploit the two
considered models. For the Crossing Model we propose an approach based on the
Dai–Fletcher algorithm [45], while for the Constrained one we use the ADMM method
described in Section 2.4.

3.3.1 Model 1, Crossing Model

The solution β̄ of the discrepancy equation (3.3) can be approximated by solving the
root finding problem

F(β) = DH(xβ;gn)− η = 0, (3.20)

where F(β) is a continuous increasing function. We solve this problem by a specialized
version of the algorithm proposed in [45], called Modified Dai-Fletcher (MDF) method.
The root finding solver [45] consists in two phases: a bracketing phase to determine
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the extremes 0 < βl < βu of an interval containing the root and a secant phase for the
root approximation. The implementation of the bracketing phase has been changed,
according to the special regularization framework we are considering. In particular, we
have taken into account that the evaluation of the discrepancy equation in β is generally
less expensive for large values of β, due to the special form of the penalized problem
providing xβ. For this reason, when we start from β such that F(β) < 0, we look for
βl and βu by means of a secant-like approach, allowing steps in the interval [dβ, 10dβ],
where dβ denotes the previous step; on the other hand, when we move from β such
that F(β) > 0, we reduce the tentative β by a constant factor ω ∈ (0, 1), for preserving
the positivity of β and for avoiding the evaluation of the discrepancy function in too
small values. The bracketing phase is sketched as in Algorithm 10.

Algorithm 10: Bracketing Phase of Algorithm MDF

Choose an initial value β > 0, an initial step dβ > 0 and ω ∈ (0, 1).
If F(β) < 0

βl = β, β = β + dβ

While F(β) < 0
s = min (1,max ((F(βl)− F(β)) /F(β), 0.1)),
βl = β, dβ = dβ/s, β = β + dβ,

βu = β
Else

βu = β, β = βuω

While F(β) > 0
βu = β, β = βuω

βl = β
EndIf βl, βu are such that β̄ ∈ [βl , βu].

The second phase of the MDF method is essentially the secant-based strategy de-
scribed in [45]: starting from the values βl and βu provided by the bracketing phase, the
root β̄ is approximated by exploiting standard secant steps or modified steps designed
to accelerate the convergence remote from the solution. For completeness, we report
the main steps of the MDF secant phase in Algorithm 11. The stopping rule used in
the MDF secant phase is

|F(βk)| ≤ ε1 or (3.21)

(|βk − βk−1| ≤ ε2βk and |F(βk)| ≤ 10ε1) ,

where βk denotes the value of β at the k-th iteration of Algorithm 11 and ε1, ε2 are
two small positive constants. From a practical point of view, the MDF performance
strictly depends on the effectiveness of the minimization method used for obtaining the
solution xβ of the penalized problem (3.1). In our experience, two suitable solvers for
(3.1) are the Scaled Gradient Projection method, for the case of differentiable objective
functional, and the PIDSplit+ algorithm.

3.3.2 Model 2, Constrained Model

In [92], the authors propose to estimate the regularization parameter by solving the
constrained problem (3.8) with the well-known Alternating Direction Method of Mul-
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Algorithm 11: Secant Phase of Algorithm MDF

Set βl, βu such that β̄ ∈ [βl , βu].
s = (F(βu)− F(βl))/F(βu), dβ = (βu − βl)/s, β = βu − dβ
While (stopping rule is not satisfied)

If F(β) > 0
If s ≤ 2

βu = β, s = (F(βu)− F(βl))/F(βu)
dβ = (βu − βl)/s, β = βu − dβ

Else
s = max ((F(βu)− F(β)) /F(β), 0.1)
dβ = (βu − β)/s, βu = β
β = max(β − dβ, 0.75βl + 0.25β)
s = (βu − βl)/(βu − β)

Else
If s ≥ 2

βl = β, s = (F(βu)− F(βl))/F(βu)
dβ = (βu − βl)/s, β = βu − dβ

Else
s = max ((F(βl)− F(β)) /F(β), 0.1)
dβ = (β − βl)/s, βl = β
β = min(β + dβ, 0.75βu + 0.25β)
s = (βu − βl)/(βu − β)

β is an approximation of β̄

tipliers (ADMM). The problem (3.8) is equivalent to

min
x
f2(w) +

1

2γ
∥Mx−w∥2,

subject to Mx = w, (3.22)

where γ is a positive parameter, f2(w) = ilevτKL(Hw
(1)

+bg1;gn)+ iw(3)
≥0+R(w(2)), with

similar notations introduced in Section 2.4 and with the linear constraints depending on
the choice of the regularization function. As already explained in Section 2.4, the basic
idea of ADMM method is to compute a saddle-point of the Augmented Lagrangian of
the problem (3.22), decoupling the minimization step of the Augmented Lagrangian
method in a sequence of minimizations with respect to the different sets of variables
x and w(k). The application of ADMM for the constrained problem (3.8) is analyzed
in [92] for a seminorm regularization: the authors describe the algorithm in detail and
prove the convergence of the sequence of multipliers obtained for the inner subproblem
in w(1) to the multiplier λ of KL(Hx + bg1) ≤ τ . In view of the Propositions of
the previous section, these results can be easily extended to suitable differentiable
regularization functions. It is well known that the performance of ADMM can be
strongly dependent on the choice of the parameter γ. In order to reduce this drawback,
in [63, 98] strategies for adaptively adjusting γ at any iteration have been proposed.
The convergence of this adaptive version of ADMM is proved, assuming that γ becomes
fixed after a finite number of iterations. Then the choice of the updating strategy is
based on the numerical effectiveness. The procedure proposed in [63] is based on the



3.3 Numerical Methods 69

control of the ℓ2 norm of two vectors, the so-called primal and dual residual:

ri = Mxi −wi,

si =
1

γ
M tσi, (3.23)

with σi = wi−wi−1. Indeed, the vectors ri and σi are crucial components of the upper
bound of the absolute error between the objective function at the current iterate and
its minimum value. We use the following updating procedure:

γi+1 =



α

γi
if ∥ri∥ > µ∥σi∥ and i ≤ kmax

αγi if ∥σi∥ > µ∥ri∥ and i ≤ kmax

γi otherwise

(3.24)

where α and µ are positive values greater than 1 and γ0 is a prefixed positive value.
From the practical point of view, this adaptive version of ADMM appears less depen-
dent on the parameter settings than the standard ADMM approach.
Finally, we mention that other methods have been adapted in [92] for the numerical
solution of the constrained problem, as Arrow–Hurwitz method [2] or its extrapolated
version [37]. As in the case of ADMM, the performance of these algorithms depends
on a suitable selection of two prefixed parameters.

In [102] it is reported a wide computational study about the efficiency of the nu-
merical procedures involved in the two approaches. For each model, state of the art
computational techniques have been used. Two different regularizations have been con-
sidered: a differentiable one (HS) and a non-differentiable one (TV). In the first case we
show that MDF, combined with an efficient solver for the inner optimization problems,
enables Model 1 to be less time demanding than Model 2. On the other hand, in the
case of TV regularization, Model 1 can be competitive with Model 2 but the latter is
definitely more efficient in some cases. These results are in according to those reported
in Section 5.3.
It should be stressed, however, that for images with low counts or for special applica-
tions (such as High Dynamic Range images in Astronomy), the described models do
not always achieve significant results.
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Chapter 4

Bregman Procedure

In this chapter we show the main features of the Bregman Procedure, whose original
idea lies in [25]. In [79] the idea was applied to restoration problems in presence of
Gaussian noise; recently in [28, 29] this method was extended to Poisson data. In this
chapter, we recall the results previously mentioned. Moreover, we introduce an inexact
procedure, employing the ε–subgradients instead of the subgradients which allows to
control the level of inexactness with which we solve the subproblems of the procedure
and we preserve its convergence properties. Moreover, we will show that we can employ
an overestimation of the regularization parameter β in the model ϕ0+βϕ1 in the image
restoration framework: such an estimation will induce a contrast enhancement in the
reconstructed images, as already observed in [79].

4.1 Bregman distance: Definition and Properties

The Bregman distance for convex functions is defined below.

Definition 4.1. Let f a convex function with a non–empty subdifferential ∂f(y), let
x,y ∈ dom(f). The Bregman distance of f from x to y is

Dp
f (x,y) = f(x)− f(y)− ⟨p,x− y⟩ (4.1)

where p is a subgradient of f at y: p ∈ ∂f(y).

Although its name ”distance”, the function Dp
f is not a distance in the usual sense

because it is not symmetric; one can consider it as a measure of the difference between
the function f and its first order approximation (see Figure 4.1).

Example 4.1. Let us consider the differentiable function f : Rn → R, f : x 7→
1
2∥Mx∥2, with M ∈ Mn(R). We have ∂f(x) = ∇f(x) = M tMx. Considering its
Bregman distance between x,y we obtain

Dp
f (x,y) =

1

2
∥Mx∥2 − 1

2
∥My∥2 − ⟨M tMy,x− y⟩

=
1

2
∥Mx∥2 + 1

2
∥My∥2 − ⟨My,Mx⟩

=
1

2
∥M(x− y)∥2 = 1

2
∥x− y∥2MtM

Hence the Bregman distance in this case is equivalent to the squared ℓ2–distance of
x from y with respect to the linear operator MTM .

71
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Figure 4.1: Bregman distance. In (a) the function f(z) = |z| is shown; when y = 0, x = −1.2
and p = 0.15 the length of the red line is the Bregman distance D0.15

|x| (−1.2, 0). In the right

figure we have taken a different subgradient, p = − 1
4 : hence it is evident that the Bregman

distance depends strongly on the choice of the subgradient.

Example 4.2. Let consider the function f : (0,+∞) → R, f : x 7→ x log(x). Then we
have

Dp
f (x,y) = x log(x)− y log(y)− ⟨1 + log(y),x− y⟩

= x log(x)− y log(y)− x+ y − x log(y) + y log(y)

= x log

(
x

y

)
− x+ y

i.e. we obtain that the Bregman distance of the function f related to x and y is the
Kullback–Leibler functional of x and y.

The basic properties of Bregman distance depend on the convexity of f : Dp
f (x,y) ≥

0 for any p ∈ ∂f(y) and Dp
f (x,x) = 0; moreover, we have that Dp

f (x,y) ≥ Dp
f (w,y)

for any w ∈ {(1− t)x+ ty|t ∈ [0, 1]}. If f is strongly convex, Dp
f (x,y) > 0 for x ̸= y

and for any p ∈ ∂f(y). Furthermore, no triangle inequality holds for the Bregman
distance.

4.2 Bregman Procedure

In this section we show the Bregman Procedure for a general problem of convex opti-
mization. Then we describe its regularization behaviour in image restoration problems.
Since we are treating discrete data, the whole discussion will be done in a discrete
framework.

The original problem considered in [25] can be stated as

min
x
f2(x) s.t. Hx = c (4.2)

where f2 : RN → R is a proper, convex, closed and nonnegative function, H ∈ RM×N .
Assuming that the set {x ∈ dom(f2)|Hx = c} is not empty, the previous problem can
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be replaced by a sequence of unconstrained subproblems

min
x
qk(x) ≡ f2(x) +

1

βk
f1(x) (4.3)

where βk > 0 for any k and f1 is a penalty function for Hx = c, i.e. f1(x) ≥ 0 for any
x and f1(x) = 0 if and only if Hx = c; f1 is chosen as a coercive and convex function
in order to be able to solve any k–th subproblem. A well–known result [71] states that
when the subproblems (4.3) have a solution, namely xk, and when the sequence βk → 0
as k → ∞ any limit point of the sequence {xk} is a solution of (4.2). The difficulties
arise when βk assumes very small values.
The procedure based on the Bregman Iteration [25] sets βk = β for any k while f2 is
replaced with its Bregman Distance at the current iterate. The procedure then modifies
the formulation (4.3) by solving a sequence of minimization subproblems as shown in
Algorithm 12.

Algorithm 12: Bregman Procedure, General Scheme

Given x0 s.t p0 = 0 ∈ ∂f2(x
0)

For k = 0, 1, 2, . . . do the following steps

xk+1 = argmin
x
Qk(x,p

k) (4.4)

where

Qk(x,p
k) = D

pk

f2
(x,xk) +

1

β
f1(x)

and pk ∈ ∂f2(x
k).

As already observed in [46], this method can be viewed as a generalization of the
proximal point algorithm, in which the ℓ2 norm is replaced by the Bregman Distance.
The updating rule is given by

xk+1 =

(
∂f2 +

1

β
∂f1

)−1 (
∂f2(x

k)
)

In [79] the choice for f1(x) =
1

2
∥Hx−c∥2 has been investigated, showing some features

of the Bregman iteration; moreover, in [29, 87] the results are extended to the Pois-
son case. For sake of completeness, we summarize these features below in a discrete
framework.

Proposition 4.1. Let f1 and f2 be nonnegative, proper, closed and convex functions,
with dom(f1) ⊆ dom(f2) and the relative interiors of f1 and f2 have at least a point in
common. We assume that, for any k, there exists a minimizer xk+1 of the subproblem
(4.4); then, the following conditions hold:

(a) there exists a subgradient pk+1 ∈ ∂f2(x
k+1) and qk+1 ∈ ∂f1(x

k+1) such that

pk+1 = pk − 1

β
qk+1 (4.5)

(b) the sequence f1(x
k) is monotonically non increasing and we have

f1(x
k) ≤ f1(x

k) + βD
pk−1

f2
(xk,xk−1) ≤ f1(x

k−1) (4.6)
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(c) if there exists x such that f2(x) <∞, we have

β
(
D

pk

f2
(x,xk) +D

pk−1

f2
(xk,xk−1)

)
+ f1(x

k) ≤

≤ f1(x) + βD
pk−1

f2
(x,xk−1) (4.7)

(d) if x̃ is a minimizer of f1 such that f2(x̃) <∞, we have that

D
pk

f2
(x̃,xk) ≤ D

pk−1

f2
(x̃,xk−1) (4.8)

and

f1(x
k) ≤ f1(x̃) + β

f2(x̃)− f2(x
0)

k
(4.9)

Moreover, if the level subsets of f1 are bounded, a limit point of the sequence {xk}
is a minimizer of f1(x); if x̃ is the unique minimizer of f1(x), then xk → x̃ as
k → ∞.

Proof. a

(a) From the optimality condition for the minimizer xk+1 of Qk(x,p
k) and in accord-

ing to Proposition 23.8 in [85], we have 0 ∈ ∂f2(x
k+1)− pk + 1

β∂f1(x
k+1). Then

(4.5) follows.

(b) From Qk−1(x
k−1,pk−1) = 1

β f1(x
k−1) and D

pk−1

f2
(xk,xk−1) ≥ 0, since xk is a min-

imizer of Qk−1(x,p
k−1), we have

1

β
f1(x

k) ≤ Qk−1(x
k,pk−1) ≤ Qk−1(x

k−1,pk−1)

and (4.6) holds.

(c) By direct algebra, the following identity holds:

D
pk

f2
(x,xk)−D

pk−1

f2
(x,xk−1) +D

pk−1

f2
(xk,xk−1) =

=< (xk − x), (pk − pk−1) >

Using (4.5), since pk − pk−1 = − 1

β
qk ∈ 1

β
∂f1(x

k), from the convexity of f1, we

have (4.7).

(d) If x̃ is a minimizer of f1, from (4.7) with x = x̃, since D
pk−1

f2
(xk,xk−1) ≥ 0, we

obtain

D
pk

f2
(x̃,xk) +

1

β
(f1(x

k)− f1(x̃)) ≤ D
pk−1

f2
(x̃,xk−1)

Since f1(x
k) − f1(x̃) ≥ 0, the inequality (4.8) holds. Furthermore, summing up

the inequalities (4.7) computed at x̃ related to the first k steps, we have:

D
pk

f2
(x̃,xk) +

k∑
i=1

[
Dpi−1

f2
(xi,xi−1) +

1

β

(
f1(x

i)− f1(x̃)
)]

≤

≤ f2(x̃)− f2(x
0) (4.10)
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Since Dpi−1

f2
(xi,xi−1) ≥ 0 for any i and D

pk

f2
(x̃,xk) ≥ 0, from the monotonicity of

the sequence f1(x
i), we have

k

β
[f1(x

k)− f1(x̃)] ≤ f2(x̃)− f2(x
0)

and then (4.9) follows.
Since the sequence {xk} is bounded, there exists a subsequence of {xk} convergent
to a limit point x and, from (4.9), we have for k → ∞ that f1(x) ≤ f1(x̃). Then,
x is a minimizer of f1. If x̃ is the unique minimizer of f1, then xk → x̃ as k → ∞.

Remark 4.1. Under suitable hypothesis, Proposition 4.1 guarantees the convergence
of the sequence of the minimizers of the subproblems (4.4) to a solution x̃ of f1(x) = 0

(i.e. to a solution of Hx = c) while the sequence
{
D

pk

f2
(x̃,xk)

}
is decreasing. This

convergence result is strongly dependent on the decreasing behaviour of the sequence
{f1(xk)}, which follows directly from the nonnegativity of the Bregman Distance.

In a numerical framework, one can obtain this decreasing behaviour when (4.5) is
able to give an exact subgradient at the current iterate: when a closed formula for the
minimizer of Qk(x,p

k) is not available, we have to use a numerical approach. If xk is

a raw minimizer of Qk−1, it could happen that pk /∈ ∂f2(x
k), leading to D

pk

f2
< 0; at

the successive step, we may have

Qk(x
k+1, 1pk) =

1

β
f1(x

k+1) +D
pk

f2
(xk+1,xk) <

1

β
f1(x

k+1)

Consequently the sequence {f1(xk)} may have a non–monotone behaviour.
We can obtain an exact subgradient when an explicit solution of each inner problem

is available; when it is not possible to obtain such a solution, the procedure has to solve
each minimization subproblem by a numerical iterative solver with a very high degree
of accuracy. In the latter case, the computational cost would be very high.

Remark 4.2. We point out that the updating rule for the subgradient can be restate by
a variable change, in order to redefine xk+1; in fact, provided y = Hx we can consider
f1 as a function of y: hence, we obtain qk+1 = Htuk+1, having uk+1 ∈ ∂yf1(Hxk+1).
In the setup of the procedure, p0 = 0; hence, considering v0 = 0, a direct computation
leads to the following rule:

pk+1 = Htvk+1 = Ht

(
vk − 1

β
uk+1

)
Then, the formula (4.5) can be substituted by

vk+1 = vk − 1

β
uk+1 (4.11)

In this way, the definition in (4.4) of xk+1 can be rewritten as

xk+1 = argmin
x

(
f2(x)− ⟨vk,Hx⟩+ 1

β
f1(x)

)
(4.12)
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In Proposition 4.2 we are able to show that a solution xκ of f1(x) = 0, obtained
thanks to (4.11) and (4.12), is a solution of the original constrained problem (4.2), or
its equivalent formulation

min
x
f2(x) s.t. f1(x) = 0 (4.13)

Proposition 4.2. Let f1 be a convex function such that f1(x) = 0 if and only if
Hx = c. Suppose that some iterate xκ of the Bregman procedure satisfies f1(x

κ) = 0.
Then xκ is a solution of the constrained problem (4.2) (or (4.13)).

Proof. Let xκ be such that f1(x
κ) = 0 and

xκ = argmin
x

(
f2(x)− < vκ,Hx > +

1

β
f1(x)

)
(4.14)

for a suitable vκ. Let x̃ be a solution of the problem (4.2). Then f1(x̃) = 0 and, for
the hypothesis on f1,

Hx̃ = c = Hxκ (4.15)

Since xκ satisfies (4.14), we have

f2(x
κ)− ⟨vκ,Hxκ⟩+ 1

β
f1(x

κ) ≤ f2(x̃)− ⟨vκ, Hx̃⟩+ 1

β
f1(x̃) (4.16)

Using (4.15) in (4.16) and taking into account that f1(x
κ) = f1(x̃) = 0, we have that

f2(x
κ) ≤ f2(x̃)

Because x̃ is a solution of the original optimization problem, this last inequality is an
equality, showing that xκ solves (4.2).

4.2.1 The procedure for image restoration problems

In image restoration framework the Bregman procedure has a huge importance: in
fact, employing an early stopping criterion on the external cycle, it can be used as a
regularization technique. To deepen this aspect, let us consider the problem

min
x
ϕ0(Hx+ bg1;gn) + βϕ1(x)

where ϕ0 is the data fidelity function (e.g. the Kullback–Leibler) and ϕ1 a regularization
term. In this case ϕ0 plays the role of penalty term for Hx = gn− bg1 in formulation
(4.2), with c = gn − bg1. Thanks to Proposition 4.1 we can state that a limit point
{xk} is a solution x̃ for ϕ0(Hx+ bg1;gn) = 0, but actually we are interested in finding
a solution x∗ of ϕ0(Hx+ bg1;g) = 0, where g is the noise–free data (here c = g− bg1).
In this framework, the Bregman procedure has the typical semiconvergence behaviour
of the iterative methods for inverse problems, as described in [47]: the sequence {xk}
first approaches the requested solution x∗, and then runs away, converging toward the
unrequested solution x̃ [79].
When an estimation γ of the noise level is available, e.g. ϕ0(Hx∗ + bg1;gn) ≤ γ, from
(4.7) we can state that for x = x∗ and while ϕ0(Hxk + bg1;gn) ≥ γ we can show that
the Bregman Distance of the iterates from the desired solution x∗ decreases:

D
pk

ϕ1 (x
∗,xk) ≤ D

pk−1

ϕ1 (x∗,xk−1) (4.17)
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Indeed, from (4.7) with x = x∗, f1 = ϕ0, f2 = ϕ1 we can write

β
(
D

pk

ϕ1 (x
∗,xk) +D

pk−1

ϕ1 (xk,xk−1)
)
+ ϕ0(Hxk + bg1;gn) ≤

≤ ϕ0(Hx∗ + bg1;gn) + βD
pk−1

ϕ1 (x∗,xk−1)

In the first term, since the iterates stand above the noise level and the Bregman distance
is nonnegative, we have

β
(
D

pk

ϕ1 (x
∗,xk) +D

pk−1

ϕ1 (xk,xk−1)
)
+ ϕ0(Hxk + bg1;gn) ≥ βD

pk

ϕ1 (x
∗,xk) + γ

while the second term satisfies

ϕ0(Hx∗ + bg1;gn) + βD
pk−1

ϕ1 (x∗,xk−1) ≤ γ + βD
pk−1

ϕ1 (x∗,xk−1)

leading finally to (4.17).
The same argument is presented in [79]. Furthermore, thanks to (4.6), we can devise a
stopping criterion for the iterative procedure: the method terminates at the iteration
k∗ defined as

k∗ = max{k|ϕ0(Hxk + bg1;gn) ≥ γ}
In presence of Gaussian noise this strategy is the Morozov discrepancy principle, which
seems to work quite well. In presence of Poisson data, the Bregman iteration could be
stopped when the Kullback–Leibler divergence between Hxk + bg1 and the given data
gn reaches the noise level, namely KL(Hxk + bg1;gn) ∼ γ. For an estimate for the
Poisson noise level, one can employ the strategy developed in the previous chapter and
in [13].

To better explain the effect of the Bregman iteration in the image reconstruction
framework, in the following we show the behaviour of the first two steps of the Bregman
iteration for data affected by Gaussian noise, where explicit formulae for the minimizers
of the subproblems are available.

Remark 4.3. [10] In presence of Gaussian noise, a common choice for the objective
functional is the least square functional combined with Tikhonov regularization. We
apply the Bregman method to this particular case, obtaining a closed form for the k–
th solution and showing the effectiveness of the method in reconstructing the original
signal.

In this framework the method consists in solving at each k step

xk+1 = argmin
x

1

2
∥Hx− gn∥2 + β

2
∥x− xk∥2 (4.18)

The explicit formula for the minimizer is available:

xk+1 =
(
HtH+ βI

)−1
(Htgn+ βxk) (4.19)

Looking at the first iterations, we have

x0 = 0

x1 =
(
HtH+ βI

)−1
Htgn ≡ xβ

x2 = xβ + β
(
HtH+ βI

)−1
xβ

. . .
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where xβ denotes the minimizer of the first subproblem (x0 = 0). By induction

xk = xβ + β
(
HtH+ βI

)−1
xβ + · · ·+ βk−1

(
HtH+ βI

)−(k−1)
xβ

We introduce the Singular Value Decomposition (SVD) of the matrix H:

H = UΣV t

where U and V are orthogonal matrices and Σ is a diagonal matrix; its positive diagonal
entries are the singular values of H. Using the SVD of H, one can compute the
filter corresponding to this linear solution; recalling Hvj = σjuj , H

tuj = σjvj , direct
computation leads to

⟨xk,vj⟩ =


k−1∑
i=0

(
β

β + σ2j

)i
 ⟨xβ,vj⟩

=
β + σ2j
σ2j

1−

(
β

β + σ2j

)k
 ⟨xβ,vj⟩

=

1−

(
β

β + σ2j

)k
 1

σj
⟨gn,uj⟩

where in the last equality we have used the definition of xβ and the well–known prop-

erties of the SVD decomposition. Defining Bk
j (β) as

Bk
j (β) = 1−

(
β

β + σ2j

)k

we have proved the following result.

Proposition 4.3. The solution of the k–th Bregman iteration can be expressed as

xk =
∑
j

Bk
j (β)

1

σj
⟨gn,uj⟩vj (4.20)

in terms of SVD of the matrix H.

The limit point of the sequence {xk}, i.e. lim
k→∞

xk = x†, is the generalized solution of

the linear problem.

In order to prove the semiconvergence behaviour of the procedure, it is sufficient to
prove that the reconstruction error obtained at the second iteration is smaller than the
one provided by the first iteration. Recalling the statistical framework (see Chapter 1),
the data is gn = Hx∗ + υ where the vectors x∗ and υ are realizations of of Gaussian
multi-valued random variables with entries that are i.i.d. variables with zero mean and
variance S and s respectively. Then we can write

E[x∗
i , υj ] = 0, E[x∗

i ,x
∗
j ] = Sδij , E[υi, υj ] = sδij
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where E[·] is the expected value. Hence, the relation ⟨gn,uj⟩ = ⟨x∗,Htuj⟩+ ⟨υ,uj⟩ =
σj⟨x∗,vj⟩+ ⟨υ,uj⟩ implies

⟨x∗ − xk,vj⟩ =

(
β

β + σ2j

)k

⟨x∗,vj⟩ −
1

σj
Bk

j (β)⟨υ,uj⟩

The expected value of the square of this quantity is

E
[
|⟨x∗ − xβ,vj⟩|2

]
= S2

(
β

β + σ2j

)2k

+
s2

σ2j
|Bk

j (β)|2

which allows us to compute the reconstruction error ρk at the k–th Bregman iteration:

ρk = E[∥x∗ − xk∥2]

= S2
∑
j


(

β

β + σ2j

)2k

+
s2

S2

1

σ2j

1−( β

σ2j + β

)k
2 (4.21)

For k = 1, ρk is the reconstruction error obtained solving the problem (4.18), while ρ2
is associated to the first effective Bregman iteration. The semiconvergence behaviour
is then proved if we prove that ρ2 < ρ1. Setting

α =
( s
S

)2
, Pj(t) = t2 +

α

σ2j
(1− t)2

the reconstruction error assumes the following form

ρk = S2
∑
j

Pj

( β

β + σ2j

)k
 (4.22)

The following expression

Pj(t) =

(
1 +

α

σ2j

)
(
t− α

α+ σ2j

)2

+

(
α

σj
α2 + σ2j

)2


shows that for a given j, Pj(t) is strictly positive and has the minimum point

tj =
α

α+ σ2j

i.e. it is a parabola symmetric with respect to this point. Since ρ1 and ρ2 are the values
of this polynomial at the points

tj,1 =
β

β + σ2j
, tj,2 =

(
β

β + σ2j

)2

we can have ρ2 < ρ1 if it is possible to find values of β such that the following inequalities
hold true for any j

tj,1 > tj,2 > 2tj − tj,1 (4.23)

The first inequality is trivially satisfied and therefore the second is the crucial one: it
implies that, for any j, the value of the polynomial Pj(t) in tj,2 is smaller than the
value of the same polynomial in tj,1 .
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Proposition 4.4. The second inequality of (4.23) is satisfied for any j if

β > 2α+ O

(
α2

σ21

)
(4.24)

where σ1 is the largest singular value of the imaging matrix H.

Proof. If we remark that tj,2 = t2j,2 the inequality becomes t2j,1 + tj,1 > 2tj and, for
positive tj,1, it is equivalent to

tj,1 >

√
2tj +

1

4
− 1

2

Thanks to the dependence of tj,1 on β this inequality implies(
3

2
−
√
2tj +

1

4

)
β >

(√
2tj +

1

4
− 1

2

)
σ2j

so that, multiplying both members by
(
3/2 +

√
2tj + 1/4

)
and remarking that tj > 1,

after some algebra, we obtain

β >
1

2

2tj +
√
2tj +

1
4 − 1

2

1− tj
σ2j

Finally, if we write tj in terms of α, an elementary computation provides

β >
1

4

(
3α− σ2j +

√
9α2 + 10ασ2j + σ4j

)
If we remark that the function

φ(t) =
√
t2 + 10αt+ 9α2 − t

is an increasing function of t, then we can conclude that β satisfies the inequality for
any j if it satisfies the inequality in the case j = 1 corresponding to the largest singular
value of H. Therefore the required condition on β is

β >
1

4

(
3α− σ21 +

√
9α2 + 10ασ21 + σ41

)
If we remark that α is much smaller than σ1, the Proposition follows from

√
1 + t =

1 + t/2 + O(t2).

The result implies that, if we do not know the optimal value of the regularization
parameter (i.e. α in these computations) but only an upper bound β, so that the
corresponding xβ is an over-smoothed solution of the problem, then the second Bregman
iteration improves the reconstruction. The reconstruction may be further improved by
the subsequent Bregman iterations, before degrading as an effect of noise propagation.
Since, for any k, the reconstruction errors are given by the values of the same polynomial
computed in points given by increasing powers of tj,1, an analysis of this situation does
not look impossible, even if much more involved.
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4.3 Inexact Bregman Procedure

When a closed formula for the solution of inner minimization subproblem (4.4) is un-
available, at any step we obtain an approximate solution by using an iterative solver
with a severe stopping criterion. As a consequence, also for efficient methods, a huge
number of iterations may be required. In order to avoid this computational cost, we
propose a strategy whose aim is to preserve the convergence property and the features
of the whole procedure, taking into account the inexactness of the computed solutions
of the inner subproblems. The crucial point of the proposed scheme is devising a suit-
able stopping criterion for the inner solver of subproblems (4.4).

To explain this proposed scheme, we recall the notion of ε-subgradient (see Definition
2.2 and Appendix A); moreover, being f a proper, convex function on Rn, if ε1 > ε2 > 0
then

∂ε1f(x) ⊇ ∂ε2f(x) ⊇ ∂f(x) (4.25)

Recalling also the definition of the conjugate of a convex function (see Appendix A,
definition A.5), we report an useful result in Proposition 4.5: this result will turn out
to be helpful in the computational framework.

Proposition 4.5. Let f a proper, convex and l.s.c. function. Then for every x ∈
dom(f) and ξ ∈ dom(f∗), we have ξ ∈ ∂εf(x) with ε = f(x)− ⟨ξ,x⟩+ f∗(ξ).

Proof. Let x,y ∈ RN and ξ ∈ dom(f∗). Then, we can write

f(x) + ⟨ξ,y − x⟩ = f(x)− (⟨ξ,x⟩ − f∗(ξ)) + ⟨ξ,y⟩ − f∗(ξ)

≤ f(x)− (⟨ξ,x⟩ − f∗(ξ)) + sup
ξ
⟨ξ,y⟩ − f∗(ξ)

= f(x)− (⟨ξ,x⟩ − f∗(ξ))︸ ︷︷ ︸
=ε

+f(y)

Since f(x) = sup
x
⟨y, x⟩ − f∗(y), then ϵ ≥ 0; thus, Definition 2.2 is fulfilled.

The computation of the Bregman distance Dp
f (x,y) requires the subgradient p.

When an ε–subgradient ξ of f is available, we introduce

∆ξ
f (x,y) = f(x)− f(y)− ⟨ξ,x− y⟩+ ε (4.26)

We will refer to it as the inexact Bregman distance. We have that for any y,x ∈ Rn,
∆ξ

f (x,y) ≥ 0. For ε = 0 (i.e. ξ ∈ ∂f(x)) we obtain the classical Bregman distance:

∆ξ
f = Dξ

f .
The scheme shown in Algorithm 12 can be modified by considering the inexact distance
instead of the exact one. Provided that ξ0 = 0 ∈ ∂f2(x

0) (ε0 = 0), at any step k ≥ 0
we have to find the minimizer of the function Qk(x, ξ

k), where ξk is an εk–subgradient
of f2 in xk. The new scheme is shown in Algorithm 13.

We suppose that every k–th subprobem (4.27) is solved by employing an iterative
method, which enables us to obtain an approximate solution xk+1, a suitable subgra-
dient qk+1 ∈ ∂f1(x

k+1) and an εk+1–subgradient ξ
k+1 at xk+1, for any k ≥ 0.

Since we use an iterative method to solve the inner subproblems, the whole procedure
consists in two nested cycle: we point out that we use the index k for indicating the
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Algorithm 13: Inexact Bregman Procedure: General Scheme

Given x0 s.t 0 = ξ0 ∈ ∂f2(x
0),

For k = 0, 1, 2, . . . do the following steps

xk+1 ≃ argmin
x
Qk(x, ξ

k) (4.27)

where

Qk(x, ξ
k) =

1

β
f1(x) + ∆

ξk

f2
(x,xk) (4.28)

and ξk ∈ ∂εkf2(x
k).

outer iteration and the index ℓ for the inner solver iteration.
We distinguish two cases, based on the differentiability of f2.

Case f2 differentiable. We assume that the inner solver generates two sequences
{xk

ℓ } and {qk
ℓ } such that

lim
ℓ→∞

xk
ℓ = xk, lim

ℓ→∞
qk
ℓ = qk

where xk is a minimizer of

Qk(x, ξ
k) =

1

β
f1(x) + ∆

ξk

f2
(x,xk)

and qk ∈ ∂f1(x
k). As a consequence, given a µk+1 > 0 for any k, there exists and

index L such that ∥ηkL∥ ≤ µk+1, where

ηkℓ =
1

β
qk
ℓ +∇f2(xk

ℓ )− ξk

Then we set the approximate solution xk+1 of the inner subproblem as xk
L; the other

quantities are set in the following way

ξk+1 = ∇f2(xk+1), εk+1 = 0 and qk+1 = qk
L

Case f2 non differentiable. We can consider the primal–dual formulation of (4.27)
given by

min
x

max
y

Φk(x,y) ≡
1

β
f1(x) + ⟨y,x⟩ − f∗2 (y)− f2(x

k)− ⟨ξk,x− xk⟩+ εk (4.29)

and we can apply a suitable primal–dual method generating sequences {xk
ℓ }, {yk

ℓ }
convergent to a saddle point (xk,yk) of the convex–concave proper function Φk(x,y).
We recall that (xk,yk) is a saddle point of Φk(x,y) if there exist qk ∈ ∂f1(x

k) and
wk ∈ ∂f∗2 (y

k) such that the following conditions hold:

1

β
qk + yk − ξk = 0

xk = wk
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The inner solver generates three sequences {xk
ℓ }, {yk

ℓ } and {qk
ℓ }: we assume that for

ℓ → ∞ they converge to xk, yk and qk respectively. Thanks to that, the sequence of
the dual iterates enables us to compute an ε–subgradient of f2 at the current primal
iterate. In fact, yk

ℓ ∈ dom(f∗2 ) and thanks to Proposition 4.5 we have

yk
ℓ ∈ ∂εk,ℓf2(x

k
ℓ ), εk,ℓ = f2(x

k
ℓ )− ⟨yk

ℓ ,x
k
ℓ ⟩+ f∗2 (y

k
ℓ )

with
lim
ℓ→∞

εk,ℓ = 0

Again, taking µk+1 > 0 and νk+1 > 0 for any k, there exists an index L such that

∥ηkL∥ ≤ µk+1, εk,L ≤ νk+1

with ηkℓ =
1

β
qk
ℓ + yk

ℓ − ξk. Finally, at the end of the k–th outer step we set

xk+1 = xk
L qk+1 = qk

L

ξk+1 = yk
L εk+1 = εk,L

The following Lemma enables us to compute an ε–subgradient of Qk at xk+1.

Lemma 4.1. Let f1 and f2 be nonnegative, proper, l.s.c. and convex functions, with
dom(f1) ⊂ dom(f2) and the relative interiors of f1 and f2 have at least a point in
common. If qk+1 ∈ ∂f1(x

k+1) and ξk+1 ∈ ∂εk+1
f2(x

k+1), then the following vector

ηk+1 =
1

β
qk+1 + ξk+1 − ξk (4.30)

is an εk+1-subgradient of Qk at xk+1, that is ηk+1 ∈ ∂εk+1
Qk(x

k+1, ξk).

Proof. For the convexity of f1(x) and the definition of ξk+1 as εk+1-subgradient of f2
at xk+1, for any x ∈ Rn we have

Qk(x
k+1, ξk) + ⟨ηk+1,x− xk+1⟩

=
1

β
f1(x

k+1) + f2(x
k+1)− f2(x

k)− ⟨ξk,xk+1 − xk⟩+ εk +

+⟨ 1
β
qk+1 + ξk+1 − ξk,x− xk+1⟩

≤ 1

β
f1(x) + f2(x) + εk+1 − f2(x

k)− ⟨ξk,x− xk⟩+ εk

= Qk(x, ξ
k) + εk+1

Then ηk+1 ∈ ∂εk+1
Qk(x

k+1, ξk).

For the sequence {f1(xk+1)} generated by the inexact scheme, the monotonicity prop-
erty is replaced by

1

β
f1(x

k+1) ≤ Qk(x
k+1, ξk)

=
1

β
f1(x

k+1) + ∆
ξk

f2
(xk+1,xk)

≤ 1

β
f1(x

k) + εk (4.31)
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where the first inequality follows from the nonnegativity of ∆
ξk

f2
(xk+1,xk). Obviously,

when f2 is differentiable, εk = 0 and the monotonicity property is preserved. From the
last inequality in (4.31), we have

−εk ≤ ∆
ξk

f2
(xk+1,xk)− εk ≤ 1

β
(f1(x

k)− f1(x
k+1))

for any k ≥ 0. Multiplying this last inequality by k and summing for i = 1, ..., k− 1, it
follows:

−
k−1∑
i=1

iεi ≤
1

β

k−1∑
i=1

f1(x
i)− k − 1

β
f1(x

k) (4.32)

Furthermore, in view of (4.30), we obtain that (4.7) can be restated as follows:

∆
ξk

f2
(x,xk) + ∆

ξk−1

f2
(xk,xk−1) +

1

β
f1(x

k) ≤

≤ 1

β
f1(x) + ∆

ξk−1

f2
(x,xk−1)+

+ < ηk,xk − x > +εk (4.33)

for any x such that f2(x) < ∞. This inequality enables us to prove the convergence
of the inexact iterative procedure, when a suitable stopping criterion is used to obtain
approximate solutions of the inner subproblems.

Proposition 4.6. Let f1 and f2 be nonnegative, proper, l.s.c. and convex functions,
with dom(f1) ⊂ dom(f2) and the relative interiors of f1 and f2 have at least a point in
common. We assume that, for any k, there exists a minimizer of the subproblem (4.27)
and that x̃ is a minimizer of f1(x) such that f2(x̃) < ∞. If for any k ≥ 0 the inner
solver determines

xk+1, qk+1 ∈ ∂f1(x
k+1) and ξk+1 ∈ ∂εk+1

f2(x
k+1)

so that the following conditions on ηk+1 =
1

β
qk+1 + ξk+1 − ξk and εk+1 hold

∥ηk+1∥ ≤ µk+1 and εk+1 ≤ νk+1 (4.34)

with

∞∑
i=1

µi <∞ and

∞∑
i=1

iνi <∞, then we have that

∆
ξk

f2
(x̃,xk) ≤ ∆

ξk−1

f2
(x̃,xk−1) + ⟨ηk,xk − x̃⟩+ εk (4.35)

and

f1(x
k) ≤ f1(x̃) +

β

k

(
f2(x̃)− f2(x

0) +
k∑

i=1

⟨ηi,xi − x̃⟩+
k∑

i=1

(i+ 1)εi

)
(4.36)

Moreover, if the level subsets of f1 are bounded, a limit point of the sequence {xk} is a
minimizer of f1; if x̃ is the unique minimizer of f1(x), then xk → x̃ as k → ∞.
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Proof. In view of (4.33) with x = x̃, since for any k ≥ 0 we have that ∆
ξk

f2
(xk+1,xk) ≥ 0

and f1(x
k)− f1(x̃) ≥ 0, the inequality (4.35) holds.

Summing up the inequalities (4.33) computed at x̃ related to the first k steps, we have:

∆
ξk

f2
(x̃,xk) +

k∑
i=1

∆
ξk−1

f2
(xi,xi−1) +

1

β

k∑
i=1

f1(x
i) ≤

≤ k

β
f1(x̃) + (f2(x̃)− f2(x

0)) +
k∑

i=1

< ηi,xi − x̃ > +
k∑

i=1

εi (4.37)

Combining (4.32) with (4.37), we obtain

β

k

(
∆

ξk

f2
(x̃,xk) +

k∑
i=1

∆ξi−1

f2
(xi,xi−1)

)
+ f1(x

k) ≤

≤ f1(x̃) + (4.38)

+
β

k

(
f2(x̃)− f2(x

(0)) +

k∑
i=1

< ηi,xi − x̃ > +

k−1∑
i=1

(i+ 1)εi + εk

)

Since ∆ξi−1

f2
(xi,xi−1) ≥ 0 for any i and ∆

ξk

f2
(x̃,xk) ≥ 0, we have that (4.36) follows.

Furthermore, if we denote by D the diameter of the level set {x|f1(x) ≤ f1(x
0)}, by

applying the Cauchy–Schwarz inequality and condition (4.34) to inequality (4.36), we
obtain

f1(x
k) ≤ f1(x̃) + β

f2(x̃)− f2(x
0)

k
+
β

k

(
D

k∑
i=1

µi +
k∑

i=1

(i+ 1)νi

)
(4.39)

Since the sequence {xk} is bounded, there exists a subsequence of {xk} convergent to

a limit point x. Thanks to the fact D
∞∑
i=1

µi +
∞∑
i=1

(i+ 1)νi < ∞, in view of (4.39), we

have f1(x) ≤ f1(x̃) for k → ∞. Then, x is a minimizer of f1(x). If x̃ is the unique
minimizer of f1(x), then xk → x̃ as k → ∞.

In Algorithm 14 we employ the above result to update the general scheme for the
inexact Bregman procedure. The following Corollary extends the previous Proposition
for a differentiable f2.

Corollary 4.1. Let f2 be a differentiable function. Under the same hypotheses of the
previous proposition, if for any k ≥ 0 the inner solver determines

xk+1, qk+1 ∈ ∂f1(x
k+1) and ξk+1 = ∇f2(xk+1)

so that the following condition on ηk+1 =
1

β
qk+1 + ξk+1 − ξk holds

∥ηk+1∥ ≤ µk+1 (4.40)

with

∞∑
i=1

µi <∞, then we have that

D
ξk

f2
(x̃,xk) ≤ D

ξk−1

f2
(x̃,xk−1)+ < η(k),xk − x̃ > (4.41)



86 4. Bregman Procedure

and

f1(x
k) ≤ f1(x̃) +

β

k

(
f2(x̃)− f2(x

0) +
k∑

i=1

< ηi,xi − x̃ >

)
(4.42)

Moreover, if the level subsets of f1 are bounded, a limit point of the sequence {xk} is a
minimizer of f1; if x̃ is the unique minimizer of f1, then xk → x̃ as k → ∞.

Algorithm 14: Inexact Bregman Procedure

Choose x0 such that ξ0 = 0 ∈ ∂f2(x
0), ε0 = 0, β > 0; choose sequences {µk} and {νk}

such that
∑
i

µi <∞ and
∑
i

iνi <∞

For k = 0, 1, 2, ... do the following steps:
Determine by an iterative solver an approximate minimizer xk+1 of Qk(x, ξ

k), i.e.

xk+1 ∼ min
x
Qk(x, ξ

k)

and the related qk+1 ∈ ∂f1(x
k+1) and ξk+1 ∈ ∂εk+1

f2(x
k+1) so that

∥ηk+1∥ ≤ µk+1 and εk+1 ≤ νk+1

where η(k+1) =
1

β
qk+1 + ξk+1 − ξk

Terminate if a stopping criterion is satisfied

Remark 4.4. From a numerical point of view, a practical choice for the stopping
criterion (4.34) (and consequently for (4.40)) is

∥ηk+1∥ ≤ c

(k + 1)α
(4.43)

εk+1 ≤
d

(k + 1)ϑ
(4.44)

for k ≥ 0, α, ϑ, c, d ∈ R+ and α > 1, ϑ > 2. In this way, at the first iteration the
tolerances are equal to the parameters c and d respectively and, in the subsequent
iterations, the stopping rule is gradually more severe; the parameters α and ϑ control
the increase of the inner accuracy. A practical rule to choose the values of c and d is
to use a standard stopping criterion with a moderate tolerance in the inner solver at
the first outer iteration; then we set c = ∥η(1)∥, d = ε1, ϑ = 2.1; in this way, the only
parameter to set is α.

4.3.1 The inexact procedure for image restoration problems

We apply the procedure in image restoration framework, with the aim to solve

min
x
ϕ0(Hx+ bg1;gn) + βϕ1(x)

As in Section 4.2.1, the discrepancy ϕ0 plays the role of the penalty function and ϕ1

is the regularization term. For sake of completeness, we restate that our aim is to find
a solution, namely x∗, of the equation ϕ0(Hx + bg1;g) = 0, where we recall that g
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is the noise–free data (here c = g − bg1). We know that the minimization procedure
reaches instead an element x̃ which is a solution of ϕ0(Hx+ bg1;gn) = 0, where gn is
the noisy data; then c = gn− bg1. We assume that an estimate γ of the noise level is
known (i.e. ϕ0(Hx∗ + bg1;gn) ≤ γ); hence, as long as the iterates make the function
ϕ0 stay above the noise level, i.e.

ϕ0(Hxk + bg1;gn) ≥ γ

from (4.33) with x = x∗, employing the Cauchy–Schwarz inequality and thanks to the
boundedness of the level set of ϕ0(Hx+ bg1;gn), we have

−νk − µkD +∆ξk

ϕ1
(x∗,xk) + ∆ξk−1

ϕ1
(xk,xk−1) +

1

β
ϕ0(Hxk + bg1;gn) ≤

≤ γ

β
+∆ξk−1

ϕ1
(x∗,xk−1)

Then a sufficient condition to assure a decreasing behaviour for the inexact Bregman

distance ∆
ξk−1

ϕ1 (x∗,xk−1) between the iterates and the object x∗ is that, while ϕ0(Hxk+
bg1;gn) ≥ γ the following inequality holds:

1

β
(ϕ0(Hxk + bg1;gn)− γ) + ∆ξk−1

ϕ1
(xk,xk−1) = Qk−1(x

k, ξk−1)− γ

β

≥ µkD + νk (4.45)

This condition depends on the exactness level required to the inner minimizer: the
numerical experience shows that the term −µkD − νk is a pessimistic estimate of the
absolute value of < ηk,x∗ − xk > −εk. This fact becomes clear from the numerical

experiments: when ϕ1 is a differentiable function, the Bregman distance D
pk

ϕ1 (x
∗,xk) is

a decreasing sequence until the relative reconstruction error decreases and sometimes
even later. For a nondifferentiable ϕ1, the inexact Bregman distance between the de-

sired solution x∗ and the iterates ∆
ξk

ϕ1(x
∗,xk) is again a decreasing sequence with a

very similar behaviour to the differentiable case.
Then, as for the exact Bregman method, a discrepancy criterion can provide a reason-
able stopping rule. Nevertheless, the numerical experience shows that in general few
iterations allow to observe the semi-convergence behaviour.

Remark 4.5. We had always assumed that the subproblems (4.4) and (4.27) have
a solution. In presence of Poisson noise, under on the classical assumptions (1.5) on
the imaging matrix H, direct computation shows that the two variational subproblems
related to Qk(x,p

k) and Qk(x,p
k) are very similar to min

x≥0
ϕβ(x) ≡ KL(Hx+bg1;gn)+

βϕ1(x). Thus, the existence and the uniqueness of the subproblems’ solution is assured
by the Proposition 1.3 for standard regularization functions.

4.3.2 A simple 2–D example

This 2–dimensional example is devoted to clarify the regularization effect of both exact
and inexact Bregman procedures when ϕ0(x;y) = KL(x;y), (H = I of order 2) and
ϕ1 is the Tikhonov regularization. Here gn = (1.57, 1.18)t is a perturbation of the
exact data g∗ = (1.5, 1)t. For this simple example, an explicit solution of the inner
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(b) Inexact scheme.

Figure 4.2: Behaviour of the exact and inexact procedures. One can easily observe that the
trajectories of both methods pass close to g∗ and then converge to the undesired solution g:
the problem is to devise a stopping criterion which forces the procedure to terminate itself
near g∗.

subproblems is available. In Figure 4.2 the behaviour of the procedures is shown. We
can observe that the trajectories of both methods pass close to the desired solution
x∗ = g∗ but actually the iterates converge to the perturbed data gn.

In Table 4.1 we report some numerical results: k is the outer iteration, ϕ0(x
k;gn)

is the Kullback–Leibler divergence from the given data, D
pk

ϕ1 (g
∗,xk) is the Bregman

distance of iterates from the solution g∗ and, finally, ρk is the relative error on g∗:

ρk =
∥xk − g∗∥

∥g∗∥
.

We assume as estimate γ of the noise the value KL(gn;g∗) = 0.016916: employing a
discrepancy criterion for terminating the algorithm, it seems that the exact procedure
has to be stopped at the 3rd iteration, where the value for ϕ0 is still above the noise
level. Actually, if we let the procedure make a step further, the successive iteration
provides a vector closer to the solution of the unperturbed problem. For the inexact
procedure, we have the same behaviour: we should stop the procedure at the 5–th
iteration, at which ϕ0(x

k;gn) > γ, but the next iterates are closer to the desired

solution g∗. Furthermore, the decreasing of the sequence D
pk

ϕ1 (g
∗;xk) is assured when

the values of the fidelity function lie above the noise level, but it could happen that the
sequence keep on decreasing for some further iterations.

Figure 4.2 describes the semiconvergence behaviour. Indeed the Bregman Procedure
leads the iterates to the minimum of ϕ0. The term of the exact or inexact Bregman
distance in the objective function causes that the convergence curve towards the mini-
mum of ϕ0 passes close to the real object g∗. The introduction of the inexact distance
induces a slowing down on the convergence rate of the procedure; this slowing down
allows to obtain more control on the choice of the stopping iteration.

4.3.3 A simple 1–D example

We introduce a simple 1–dimensional example to analyze the behaviour of the inexact
Bregman procedure with respect to the exact one. In this example, under suitable
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k ϕ0(x
k;gn) D

pk

ϕ1 (g
∗,xk) ρk k ϕ0(x

k;gn) D
pk

ϕ1 (g
∗,xk) ρk

Exact Procedure Inexact Procedure
1 0.383195 0.2580 0.3990 1 3.029703 1.1660 0.8470
2 0.085509 0.0528 0.1800 2 0.328989 0.2240 0.3710
3 0.024324 0.0136 0.0914 3 0.118477 0.0782 0.2190
4 0.007676 0.0087 0.0731 4 0.034295 0.0202 0.1110
5 0.002561 0.0107 0.0811 5 0.019239 0.0126 0.0879

6 0.011214 0.0100 0.0786
7 0.006711 0.0098 0.0775
8 0.004093 0.0104 0.0802

Table 4.1: Numerical results for the 2d example. ϕ1(x) = 1
2∥x∥

2,gn = (1.57, 1.18)t, g =
(1.5, 1)t.

hypothesis, a closed formula for the first two steps is available; this is the case of a
denoising problem, regularized by TV functional. Using Theorem 1 in [91], an explicit
solution is easily computed; for sake of completeness, we report this theorem in a
discrete framework.

Proposition 4.1. Suppose the vector f ∈ RN is defined such that

1

n1

n1∑
i=1

f i = ψ1,
1

N − n1

N∑
i=n1+1

f i = ψ2

with ψ1 > ψ2, 1 < n1 < N and max
i=n1+1,...,N

f i ≤ min
i=1,...,n1

f i. If we assume that

max
i=n1+1,...,N

f i ≤ ψ2 +
β

N − n1
≤ ψ1 −

β

n1
≤ min

i=1,...,n1

f i (4.46)

then the unique minimizer to the minimization problem

min
x

1

2
∥x− f∥2 + β

N−1∑
i=1

|xi+1 − xi|

is given by

x̂i =


ψ1 −

β

n1
i = 1, ..., n1

ψ2 +
β

N − n1
i = n1 + 1, ..., N

Let g∗ a vector in RN defined as

g∗
i =

{
γ1

∗ i = 1, ..., n1
γ2

∗ i = n1 + 1, ..., N

where we assume γ∗1 > γ∗2 . We denote n2 = N − n1. Perturbing the data with
Gaussian noise with zero mean and standard deviation σ, we obtain a vector gn such
that gn = g∗ + υ, where υ is the Gaussian noise. Denoting γ1 and γ2 as

1

n1

n1∑
i=1

gni = γ1
1

n2

N∑
i=n1+1

gni = γ2
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Figure 4.3: Test problem 1D: (a) plot of the original vector (solid line) and noisy vector
(dotted line); (b) plot of the exact iterate x2 (dashed line) of the Bregman procedure with
respect to the original vector (solid line); (c) plot of the iterate x2 of the inexact procedure
combined with AEM (dashed line) with respect to the original vector (solid line).

we have γ1 > γ2. In Figure 4.3 (a) we show the original vector g∗ (solid line) and the
noisy vector gn (dotted line) for N = 128, n1 = n2 = 64, γ1

∗ = 1, γ2
∗ = 0, γ1 = 1.0030,

γ2 = −0.0129, 1/2∥g∗ − gn∥2 = 0.5052, σ = 0.10.
In order to reconstruct the original signal from the noise data gn, i.e. to obtain an
estimate of g∗, we consider the following variational problem

min
x

1

2
∥x− gn∥2 + β

N−1∑
i=1

|xi+1 − xi| (4.47)

where ϕ0(x) =
1

2
∥x−gn∥2 and ϕ1(x) =

N−1∑
i=1

|xi+1−xi|. The exact Bregman procedure

consists in solving a sequence of subproblems

min
x

1

2
∥x−

(
gn+ βpk

)
∥2 + β

N−1∑
i=1

|xi+1 − xi|

provided p0 = 0. If the parameter β satisfies

2max

{
n2

(
max

i=n1+1,N
gni − γ2

)
, n1

(
γ1 − min

i=1,n1

gni

)}
≤ β ≤ (γ1 − γ2)n1n2

N
(4.48)
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then, the first two step of the Bregman iteration can be computed by the closed formula
provided in Proposition 4.1. At the first iteration we have

x1
i =


γ1 −

β

n1
i = 1, ..., n1

γ2 +
β

n2
i = n1 + 1, ..., N

pi
1 = pi

0 − 1

β

(
x1
i − gni

)
=


− 1

β
(γ1 −

β

n1
− gni) i = 1, ..., n1

− 1

β
(γ2 +

β

n2
− gni) i = n1 + 1, ..., N

Hence, the fit to data value is

ϕ0(x
1) =

1

2

(
n1∑
i=1

(γ1 − gni)
2 +

N∑
i=n1+1

(γ2 − gni)
2 +

β2

n1
+
β2

n2

)

and moreover

Dp1

TV(g∗,x1) =

N−1∑
i=1

|g∗
i+1 − g∗

i | −
N−1∑
i=1

|x1
i+1 − x1

i | − ⟨p1,g∗ − x1⟩

= |γ∗2 − γ∗1 | −
∣∣∣∣γ2 + β

n2
− γ1 +

β

n1

∣∣∣∣
−

n1∑
i=1

− 1

β
(γ1 −

β

n1
− gni)(g

∗
i − x1

i )

−
n2∑

i=n1+1

− 1

β
(γ2 +

β

n2
− gni)(g

∗
i − x1

i )

= |γ∗2 − γ∗1 | −
∣∣∣∣γ2 + β

n2
− γ1 +

β

n1

∣∣∣∣
−
(
−n1γ1

β
+ 1 +

n1γ1
β

)(
γ∗1 − γ1 +

β

n1

)
−
(
−n2γ2

β
− 1 +

n2γ2
β

)(
γ∗2 − γ2 −

β

n2

)
= γ∗1 − γ∗2 − γ1 + γ2 +

β

n1
+

β

n2

−γ∗1 + γ1 −
β

n1
+ γ∗2 − γ2 −

β

n2
= 0

At the second step, we apply the Proposition 4.1 with f = gn1 = gn+ βp1; we have

1

n1

n1∑
i=1

gn1
i = γ1 +

β

n1

1

n2

N∑
i=n1+1

gn1
i = γ2 +

β

n2
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thanks to (4.48) and remembering γ1 > γ2, gn
1 satisfies the assumptions of Proposition

4.1; then, the second exact iterate assumes the form

x2
i =


γ1 i = 1, ..., n1

γ2 i = n1 + 1, ..., N
(4.49)

Furthermore, we have

ϕ0(x
2) =

1

2

(
n1∑
i=1

(γ1 − gni)
2 +

N∑
i=n1+1

(γ2 − gni)
2

)

and the Bregman distance is

Dp1

TV(g∗,x2) = 0

indeed we we have taken into account that

p2 = p1 − 1

β

(
x2 − gn

)
Then x2 can be considered as an approximation of the original vector. Figure 4.3 (b)

exact version with closed formulae

k ρk ϕ0 D
pk

ϕ1

1 0.62860 13.6402 0
2 0.01325 0.49955 0

exact version with AEM inexact version with AEM
tol = 10−6 tol = 10−3, α = 1.5

k ρk it ϕ0 D
pk

ϕ1 k ρk it ϕ0 ∆
ξk

ϕ1

1 0.62960 830 13.64 −8.1 10−5 1 0.60260 239 12.59 5.3 10−16

2 0.01325 845 0.500 −1.1 10−4 2 0.01326 623 0.500 3.5 10−16

3 0.01923 816 0.484 −1.7 10−4 3 0.02350 697 0.481 7.0 10−17

exact version with CP inexact version with CP
tol = 10−8 tol = 10−6, α = 1.5

1 0.6289 61742 13.6126 9.33 10−4 1 0.6277 22392 13.56 2.0 10−10

2 0.01304 52678 0.49956 −1.01 10−5 2 0.01379 34950 0.4996 1.0 10−16

3 0.02005 46246 0.48373 −1.61 10−5 3 0.02013 38485 0.4839 8.0 10−16

Table 4.2: 1D Test problem: results of different version of the Bregman iteration with β = 29.

ϕ0 stands for ϕ0(x
k;gn) and D

pk

ϕ1 and ∆
ξk

ϕ1 for the exact and inexact Bregman distance,
respectively, of g∗ from xk

shows the exact iterate x2 related to the noisy problem in Figure 4.3 (a). In this case
the value of β satisfying (4.48) is 29 which is an overestimate of an optimal value of the
regularization parameter. Table 4.2 shows the results obtained for this test problem in
three different cases:

◃ exact scheme with closed formulae
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◃ exact scheme with an inner solver

◃ inexact scheme

Here ρk is the relative reconstruction error with respect to the Euclidean norm, it
denotes the number of iterations of the inner solver for each k–th outer iteration.
As inner solvers we employ the algorithm of Chambolle & Pock and the AEM method
(see Chapter 2 for the details); for the exact version the stopping rule of both is based
on the standard relative difference of the primal–dual iterates (xi,yi) and (xi+1,yi+1),
i.e. ∥∥∥∥( xi+1

yi+1

)
−
(

xi

yi

)∥∥∥∥/∥∥∥∥( xi+1

yi+1

)∥∥∥∥ ≤ tol

For the inexact version, during the first iteration the standard stopping rule is im-
plemented; for the successive iterations the rules (4.34) and (4.40) are used, setting
c = ∥η1∥ and d = ε1 as previously described.
We observe that when an inner iterative method is used in the exact scheme, the
computed Bregman distances can assume negative values, since the updating rule de-
termines an approximate subgradient of f1 at the current iterate. Furthermore, in the
inexact version, two outer iterations are sufficient to obtain results similar to the ones
related to the exact version.



94 4. Bregman Procedure



Chapter 5

Numerical Experiments and
Applications

This chapter is devoted to evaluate the effectiveness of the optimization techniques
described in the previous sections for the regularization of data corrupted by Poisson
noise. First of all we compare the behaviour of the exact version and the inexact ver-
sion of the Bregman iteration, showing that the second one is more effective in terms
of computational cost. The second set of experiments is aimed to show that the inex-
act procedure provides also a better reconstruction in terms of contrast enhancement,
specially in denoising problems. Furthermore, on some test problems, we compare the
methods for the estimate of the regularization parameter β with the inexact Bregman
procedure. These techniques provide in general high quality reconstructions, but for
some cases, as for example images resulting from low counts, the Bregman iteration
allows us to obtain better reconstructions. Furthermore, in the last part, we present
an astronomical imaging problem, where only the Bregman procedure allows to obtain
meaningful results. In this application the main issue is to reconstruct an image con-
taining diffuse structures lying around point sources: due to their very high intensities,
the action of the PSF destroys all the details around these sources. The contrast en-
hancement given by the Bregman procedure allows to obtain a good reconstruction of
both the point sources and the diffuse component.

5.1 Exact versus inexact procedure

In the first set of experiments, we compare the effectiveness of the Bregman procedure
for the regularization of Poisson data with respect to the inexact version, showing that
the inexact version appears more promising than the exact one for what regards the
efficiency.

The data on which we perform the numerical tests are presented in Figure 5.1. The
original image is a 256 × 256 image with sharp details, with values lying in [0, 255]
and the constant background value bg is equal to 1; the PSF used simulates the one
taken by a ground based telescope, and one can download it from www.mathcs.emory.

edu/nagy/RestoreTools/index.html: it is the one shown in Figure 1.1(a). The noise
affecting the blurred image is Poisson noise. We refer to this problem as spacecraft
problem.

95
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In order to restore spacecraft, we consider the minimization of the KL functional com-
bined with the HS regularization and with the TV regularization. We will denote the
former one as KL-HS problem and the latter with KL-TV problem. For both models,
the value of β is obtained by trial with several runs. We choose the value corresponding
to the best reconstruction error on the original image x∗. Such a value is denoted by
βopt, and it is 1.63 · 10−3.
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(a) Original image x∗.
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(b) Perturbed data gn.

Figure 5.1: Data set for spacecraft problem. In figure (a) the original image is shown; one
can observe the presence of sharp details and straights lines in the object: these information
suggest to employ HS (or TV) regularization functional. In Figure (b) gn is shown: the
noise is predominant, and the blur generated by the PSF is very strong. Both images range
in [0, 255].

The first experiment, which will be used as benchmark, consists in solving KL +
βoptHS and KL + βoptTV models where the minimization procedure is performed
using SGP and AEM respectively (see Sections 2.1 and 2.3 for the description of the
algorithms). SGP is stopped when the relative difference between two successive values
of the of the objective function is less than a prefixed tolerance τSGP = 10−7 and
the mean of this difference over the last ten iteration is less than 10τSGP. With this
setting, SGP stops after 497 iterations, giving a relative reconstruction error equal
to 0.36527. For the problem with Total Variation regularization, AEM is used; the
stopping criterion is satisfied when the relative difference in Euclidean norm of two
successive iteration is less than τAEM = 4 · 10−5. The solution is obtained after 2042
iterations with a reconstruction error of 0.36967. The results are summed up in Table
5.1.

SGP AEM

ρ Iters ρ Iters

0.36527 497 0.36967 2042

Table 5.1: Results obtained by solving the problems KL+ βoptHS (SGP) and KL+ βoptTV
(AEM).

We apply the exact and the inexact Bregman procedures to problems (KL-HS
and KL-TV). The setup for the exact procedure consists in setting β = 10βopt and
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x0 = 1/N
∑

i gn−bg as the starting point. As stopping criteria for the iterative solvers
of the inner subproblems we use the standard ones previously described, with severe
tolerance τSGP = 10−10 and τAEM = 10−5 for SGP and AEM respectively. These severe
tolerances assure that the rule (4.5) gives pk+1 ∈ ∂ϕ1(x

k+1): if this does not occur,

the Bregman Distance D
pk+1

ϕ1 (x,xk+1) could be negative and inequality (4.6) does not
hold.
The inexact version employs the stopping criterion (4.34) for AEM and (4.40) for SGP,
respectively. The sequences νk and µk are set up as described in Remark 4.4: the first
subproblem Q1 is solved by using standard stopping rules with moderate tolerances
(τSGP = 10−7, τAEM = 4 · 10−5, respectively). Then we set c = ∥η1∥ and d = ε1; more-
over, we fix ϑ = 2.1 and α = 1.5.

Exact iterative procedure-SGP Inexact iterative procedure-SGP

k ρk it time ρk it time

1 0.4880 4716 157.7 0.5001 1061 35.8
2 0.4012 7500 408.2 0.4265 4713 201.0
3 0.3801 2969 506.9 0.3936 3420 322.1
4 0.3647 7015 744.3 0.3779 3304 440.1
5 0.3644 2609 831.1 0.3697 3763 572.3
6 0.3655 3073 933.9 0.3681 2452 660.1
7 0.3696 3888 1064.4 0.3691 3153 771.9
8 0.3746 2907 1160.2 0.3735 2714 868.0

Table 5.2: spacecraft deblurring test problem: exact and inexact iterative methods for the KL-
HS problem (δ = 0.0134), using SGP as inner solver. In the exact version τSGP = 10−10;
in the inexact version, in the first outer iteration τSGP = 10−7, while in the subsequent
iterations (4.40) is used as stopping rule with c = 5.38 and α = 1.5. it denotes the number
of the iterations of the inner solver at the k–th outer step, while time denotes the execution
time in seconds at the end of the current outer iteration.

In Tables 5.2 and 5.3 the different behaviours of the two procedures are shown.
For each outer iteration k we report the number it of iterations of the inner method,
the execution time (in seconds) at the end of the k–th outer iteration and finally the
relative reconstruction error ρk = ∥xk − x∗∥/∥x∗∥.

For the KL-HS problem, we can observe (Table 5.2) that the exact procedure is
able to reach the minimum reconstruction error within 5 outer iterations, while the
inexact one needs 6 iterations: although this difference, the inexact procedure permits
to obtain a restored image in a shorter time. Indeed, the total number of iterations of
the inner solver is 24809 for the exact procedure, while the inexact one needs 18713
total iterations.
The behaviour of the two procedures for the problem with TV regularization is similar
to the previous case (Table 5.3): the exact procedure allows to obtain the restored im-
age in 5 outer iterations, with a reconstruction error of 0.36414 and a total number of
23077 iterations of the inner solver, while the inexact Bregman procedure needs 5 outer
iterations too, but the number of inner iterations is 9879 and it provides a reconstruc-
tion error of 0.36682. Comparing the results obtained with the Bregman procedure
and the standard algorithms (AEM and SGP), we can observe that the reconstruction
error is similar: however it is worth to notice that the βopt actually is not available. In



98 5. Numerical Experiments and Applications

Exact iterative procedure-AEM Inexact iterative procedure-AEM

k ρk it time ρk it time

1 0.47727 5373 206.4 0.54087 245 12.2
2 0.40557 5409 425.6 0.42557 1022 54.4
3 0.37766 4775 611.9 0.37946 2708 162.7
4 0.36610 4157 777.8 0.3682 2933 279.2
5 0.36414 3363 910.9 0.36682 2971 397.8
6 0.36518 2392 1003.3 0.36916 2828 511.9
7 0.36869 2625 1105.6 0.37127 2995 629.2
8 0.37258 1991 1184.6 0.37483 2631 736.0
9 0.37783 2118 1268.6 0.37997 3234 865.1

Table 5.3: spacecraft deblurring test problem: exact and inexact iterative methods for the KL-
TV problem, using AEM as inner solver. In the exact version τAEM = 10−5; in the inexact
version, in the first outer iteration τAEM = 5 · 10−4 while in the subsequent iterations (4.34)
are used as stopping rules with c = 19.3, d = 65.4, ϑ = 2.1 and α = 1.5. it denotes the
number of the iterations of the inner solver at the k–th outer step, while time denotes the
execution time in seconds at the end of the current outer iteration.

the Bregman procedure the regularization parameter is ten times the optimal one, and,
nevertheless, one can obtain an image very similar to that provided by standard meth-
ods. Moreover, this overestimation of the regularization parameter has an enhancing
contrast effect as it will shown in the forthcoming sections.

In Figure 5.2 we compare the behaviour of the relative reconstruction error ρk with
respect to the execution time of three different approaches for solving the KL-TV
method:

◃ exact version of the Bregman Procedure, with AEM as inner solver;

◃ inexact version of the Bregman Procedure, with AEM as inner solver;

◃ exact version of the Bregman Procedure, with EM–TV as inner solver [29].

We point out that the Bregman Procedure combined with the EM–TV method has a
complex structure, since it consists in three nested iterative methods (see section 2.2)
incorporated one in each other. For more details about this implementation, see [29].
For any k-th outer iteration, we execute 2000 inner iterations of EM-TV. It should
be noted that, since we are not able to find an inner stopping criterion for which the
inequality (4.6) is verified, we have determined experimentally a minimum prefixed
number of inner iterations assuring an approximately correct behaviour for the KL
and the objective function of the subproblems. Furthermore the inner step of EM–TV
solver uses the Chambolle method [36], which is stopped when the maximum difference
between two successive dual iterates is less than 10−2. This comparison shows that one
has to choose wisely the inner solver, because the use of an expensive inner solver in
terms of computational cost could make loose the advantages of the whole procedure.
Moreover, we can observe that the inner stopping rules (4.34) and (4.40) improve the
efficiency of the procedure without degrading its features.
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Figure 5.2: Reconstruction error versus running time. The black line represents the exact
procedure with EM–TV as inner solver, the blue line is the inexact procedure with AEM as
inner solver and finally the red line represents the exact procedure with AEM as inner.

α k ρk cum–it α k ρk cum–it

KL-HS problem KL-TV problem

1.2 7 0.37039 20849 1.5 5 0.36682 9879
1.5 6 0.36809 18713 3 5 0.36721 12196
1.7 6 0.36736 22030 4 4 0.36665 16634

Table 5.4: spacecraft deblurring test problem: results obtained by inexact procedure with dif-
ferent values of α in the inner stopping rule. For the KL-HS problem, the inner solver is
SGP, while for KL-TV problem, AEM is used.

To investigate more deeply the meaning of the new stopping rules (4.34) and (4.40),
we solve spacecraft, with different value of α in the stopping rule of the inner solver;
the other parameters are set as specified for the results shown in Tables 5.2 and 5.3.
The parameter α has the role of adjusting the accuracy needed for the solution of each
subproblem; in Table 5.4 we report the results of these tests. For each one, we report
the outer iteration k corresponding to the minimum reconstruction error ρk, the value
of ρk and the cumulative number cum–it of the iterations of the inner solver. We can
conclude that a suitable choice for α is the one corresponding to a not–too-much severe
accuracy after the first five to six outer iterations; in any case, the inexact procedure
appears more efficient in terms of inner iterations.

5.2 Denoising

To evaluate the performance of the inexact iterative procedure for a denoising problem
we use the data set LCR phantom [69], a piecewise constant object frequently used in
literature (see for example [101]). It consists in concentric circles of intensities 14, 27,
40, enclosed within a square frame of intensity 2; the recorded data are affected by Pois-
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son noise and the background emission term is 0. The relative error in Euclidean norm
is 0.21273: see Figure 5.3 for visual inspection. In order to restore this image, we use
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Figure 5.3: LCR phantom: on the left the original image is presented, while on the right the
noisy data are shown. The relative error in Euclidean norm is 0.21273, and the background
emission is 0.

both problems KL-HS and KL-TV; the former is solved by using SGP with an optimal
parameter obtained experimentally βopt = 0.575 (see [20]). In this case, the minimum
ρk is 0.04231 and the total number of iterations is 1034 (δ = 10−3, τSGP = 10−8). The
KL-TV problem is solved by AEM method, with the same value for βopt, obtaining a
reconstruction error of 0.04477 and 2536 total iterations (τAEM = 10−6).
In Table 5.5 we report the results obtained by solving both problems by the inexact

KL-HS KL-TV

k D
pk

HS(x
∗,xk) ρk it ∆

ξk

TV(x∗,xk) ρk it

1 2685.2 0.15605 1140 2788.6 0.19737 758
2 1569.1 0.11313 2104 1691.3 0.04855 1300
3 1202.4 0.05435 3688 1285.6 0.03957 1507
4 1081.7 0.04038 2117 1167.4 0.03738 1867
5 1017.1 0.03666 1223 1102.6 0.03654 2264
6 998.5 0.03640 361 1079.5 0.03670 2657
7 1023.2 0.03791 648 1089.3 0.03848 2988
8 1124.5 0.04051 2261 1129.5 0.04122 3048

Table 5.5: Inexact iterative method for the denoising problem related to LCR phantom

iterative method: we show the relative reconstruction error, the exact or inexact Breg-
man distance between the original image and the current iterate and the number of
inner iterations at each k–th outer iteration. In both cases, β is an overestimation of
the optimal parameter and it is equal to 10βopt. The stopping tolerances for the first
outer iteration is τSGP = 10−5 for SGP and τAEM = 10−4 for AEM. We observe also for
this test problem the typical semiconvergence behaviour. The minimum reconstruction
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Figure 5.4: LCR phantom: superposition of the line–outs from row number 128 for the KL-HS
(left-panels) and KL-TV (right-panels) restored images. In the upper panels SGP and AEM
are used with an optimal regularization parameter (dashed lines), while the lower panels
show the images obtained by inexact iterative method at the iteration with the minimum
reconstruction error (dashed lines). The solid line is the row number 128 of the original
image.

error is obtained at the 6–th iteration for the problem with Hypersurface regulariza-
tion, while for Total Variation functional ρk reaches its minimum at k = 5. Moreover,
the Bregman distances, both exact and inexact, reach the minimum at the same outer
iteration (k = 6).
In Figure 5.4, we show the superposition of the line–outs from row number 128 for KL-
HS reconstructions obtained by SGP and by the inexact method at the iteration k = 6
(minimum reconstruction error) (panels (a) and (c)). The solid line is the 128–th row
of the original image. Figure 5.4(b) shows the superposition of the line–outs from row
number 128 for KL-TV reconstructions obtained by AEM and in 5.4(d) by the inexact
method at the iteration k = 5. We observe that for both problems, the reconstruction
obtained by the inexact iterative method is able to reach the level 40 in the central
pixels of the original image. This level is underestimated when we solve the KL-HS
and KL-TV problems with the optimal regularization parameter.
In Figure 5.5(a) we show the contour plot of the restored image obtained by solving
the KL-HS problem with SGP, while in 5.5(c) we present the contour plot of the result
obtained by the inexact procedure at the 6–th outer iteration. The images on the right
panels of Figure 5.5 are related to the problem involving the Total Variation function:
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(a) SGP method (b) AEM method

(c) Inexact Bregman k = 6 (d) Inexact Bregman k = 5

Figure 5.5: Test problem LCR: contour plots of the KL-HS (left-panels) and KL-TV (right-
panels) restored images. In the upper panels SGP and AEM are used with an optimal regular-
ization parameter (levels [2, 14, 27, 38]), while the lower panels show the contour plots of the
images obtained by inexact iterative method at the iteration with the minimum reconstruction
error (levels [2, 14, 27, 40]).

in 5.5(b) the result obtained by the AEM method is shown while in 5.5(d) the contour
plot of the images obtained by the inexact Bregman procedure at the 5–th outer iter-
ation is presented.
The images in the first row of Figure 5.5 have been plotted setting the contour levels
to (2, 14, 27, 38), while the images related to the inexact procedure are plotted using
levels (2, 14, 27, 40), since in the former cases the top level of the original image is not
reached. Figures 5.4 and 5.5 show that the inexact iterative method provides a contrast
enhancement in the restored images; furthermore, the contour plots obtained by the
inexact method show a better reconstruction, in particular of the frame around the
circles and of the highest circle. This contrast enhancement is discussed in [100, 28].

5.3 Comparison between the methods for β estimation
and the inexact Bregman procedure

The Crossing Model and the Constrained Model allow to restore the original signal by
estimating the regularization parameter β during the computation, while the Bregman
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procedure requires an overestimation of such a parameter. As for the Bregman proce-
dure, Model 1 and Model 2 need to be properly set up in order to have a satisfying
result. In this section we compare the behaviour of the two estimation models and the
Bregman procedure. The test problems used for this experimentation are described
below.

cameraman: the test problem is similar to that used in Section 2.7: the original
256 × 256 image has values scaled in [0, 3000], the image has been corrupted by
Gaussian blur (with standard deviation 1.3) and contaminated by Poisson noise;
the background is 0 and the values of gn are in the range [75, 2853].

Lspacecraft: the original image is the 256× 256 image used in the experiments
in Section 5.1, multiplied by 10: its values are in the range [0, 2550] and the
background term bg is set to 10; the PSF is the one used in the cited experiments
and presented in Figure 1.1(a). The values of the detected image are in the range
[5, 1135].

micro: the test problem described in Section 2.7.

spacecraft: the test problem described in Section 5.1.
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Figure 5.6: First row: original signals x∗; second row: perturbed data gn. From left to right:
cameraman, Lspacecraft and micro

Since both images are affected by Poisson noise, the data fidelity function employed
is the Kullback–Leibler function; moreover, due to the characteristics of the image, we
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used in a first run of tests the Hypersurface regularization and in a second one the Total
Variation regularization: the two variational problems will be indicated as KL-HS and
KL-TV, respectively.

Model 1. We solve the discrepancy equation (3.2) with MDF, the root finding solver
described in Section 3.3.1. In Figure 5.7, we show the plot of DH(xβ;gn) − 1 with
respect to β for the test problems cameraman and Lspacecraft. We observe that, for
the second test problem, the behaviour of this function around its zero makes very
hard the localization of the crossing value. On the other hand, for cameraman the
computation of the root of DH(xβ;gn)− 1 appears easier.
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Figure 5.7: Left: behaviour of DH(xβ ;gn) − 1 for cameraman. Right: behaviour of
DH(xβ ;gn)− 1 for Lspacecraft

The stopping rule in MDF solver is given by (3.21):

|F(βk)| ≤ ε1 or

(|βk − βk−1| ≤ ε2βk and |F(βk)| ≤ 10ε1) (5.1)

with ε1 = 5 · 10−4, ε2 = 5 · 10−3. We distinguish the two regularization choices:

HS Regularization. SGP is stopped when the following criterion is satisfied

|ϕβi
(xl;gn)− ϕβi

(xl−1;gn)| ≤ εinn|ϕβi
(xl;gn)| (5.2)

or when a maximum number of iterations, equal to 5000, is performed without
obtaining the required accuracy. We recall that ϕβi

denotes the objective function
of the penalized problem

min
x≥0

ϕβi
(x;gn) ≡ KL(Hx+ bg1;gn) + βiϕ1(x)

As described in Section 3.3.1, the εinn is a mild tolerance in the Bracketing Phase
and it becomes more severe in the MDF Secant Phase, up to a lower bound
εmaxinn, reported in the caption of the tables concerning Model 1.
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TV Regularization. In this case, PIDSplit+ is used as inner solver of MDF
method; the stopping criterion (5.2) is coupled with a specific rule for the alter-
nating direction multipliers methods [23], involving current values of the primal
and dual residuals (3.23):

∥rl∥ ≤ εpri and ∥sl∥ ≤ εdual, (5.3)

where εpri and εdual are positive feasibility tolerances. These tolerances are de-
fined by means of an absolute and a relative criterion:

εpri = εa2
√
N + (5.4)

+εr max(∥Mxk∥, ∥wk∥),
εdual = εa

√
N + εr∥MTpk∥,

where pk is the current value of the multiplier of the linear constraint Mx = w;
we fix εa = εr = ε1. Furthermore, in order to avoid the matrix-vector operations
MTσk and MTpk (arising in the computation of sk and εdual, respectively), we
overestimate ∥MT ·∥ with

√
10 ∥·∥, where

√
10 is an approximation of ∥MT ∥. Then

PIDSplit+ is stopped when one of the conditions (5.3) or (5.2) is satisfied or when
a maximum number of iteration, equal to 5000, is performed without obtaining
the required accuracy. The effectiveness of PIDSplit+ strongly depends on the
choice of γ; following [87], for the solution of the subproblem corresponding to
βi, the value of γ is set equal to a

βi
where a > 0 is a fixed parameter in MDF;

the selection of a suitable value for a requires a trial process. To overcome this
drawback, we exploit the updating procedure (3.24), implementing an adaptive
version of PIDSplit+; in this case, the initial value γ0 for the i–th subproblem
of MDF is set equal to 1

βi
while the parameters of the updating procedure are

µ = 5, α = 2, kmax = 3500.

Test problem k ktot βk Dk err Time(s)

KL–HS, SGP

cameraman 8 815 6.689 · 10−3 0.9996 8.562 · 10−2 16.67
Lspacecraft 7 1956 5.332 · 10−4 0.9999 3.044 · 10−1 39.39
micro 11 1458 3.374 · 10−3 0.9997 1.658 · 10−1 9.77
spacecraft 41 3731 1 · 10−41 1.0494 7.783 · 10−1 285.91

KL–TV, PIDSplit+

cameraman 11 600 6.575 · 10−3 0.9972 8.514 · 10−2 26.26
Lspacecraft 7 1744 1.000 · 10−5 0.9998 3.5452 · 10−1 71.22
micro 8 696 1.6 · 10−3 0.9999 1.577 · 10−1 13.76
spacecraft 41 5863 1 · 10−41 86.3081 1 · 100 258.73

Table 5.6: Model 1. When MDF is solved by SGP, εmaxinn = 5 · 10−8. k is the number of
MDF iterations, ktot is the total number of inner solver iterations, βk is the estimate of β,
Dk ≡ DH(xβk

;gn), err is the relative reconstruction error, Time is the execution time in
seconds. When the inner solver is PIDSplit+, for each i-th subproblem γ0 = 1/βi.

Table 5.6 shows the results obtained when the regularization parameter is estimated
by using MDF with inner solver SGP with HS regularization and PIDSplit+ with TV
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Test problem k βk Dk err Time(s)

KL–HS, adaptive ADMM

cameraman 451 6.699 · 10−3 0.9997 8.535 · 10−2 30.28
Lspacecraft 957 8.035 · 10−4 1.0050 3.434 · 10−1 64.09
micro 5000 7.637 · 10−3 1.0072 1.294 · 10−1 94.41
spacecraft 5000 1.501 · 10−4 1.0506 5.098 · 10−1 360.20

KL–TV, adaptive ADMM

cameraman 441 6.689 · 10−3 0.9997 8.534 · 10−2 28.96
Lspacecraft 956 8.036 · 10−4 1.0050 3.435 · 10−1 60.67
micro 5000 7.641 · 10−3 1.0071 1.295 · 10−1 92.53
spacecraft 5000 1.501 · 10−4 1.0506 5.098 · 10−1 339.78

Table 5.7: Model 2. γ0 = 1 for cameraman and Lspacecraft, while γ0 = 0.5 for micro and
γ0 = 0.1 for spacecraft. k is the number of ADMM iteration, βk is the estimate of β,
Dk ≡ DH(xβk

;gn), err is the relative reconstruction error, Time is the execution time in
seconds.

regularization, respectively. In the table, k is the number of iterations required by
MDF to satisfy the stopping criterion, ktot is the total number of iterations of the inner
solver, βk is the obtained estimate, Dk ≡ DH(xβk

;gn), err is the relative reconstruction
error on the original object x∗, and, finally, Time denotes the execution time in seconds.

Model 2. Model 2 is solved by ADMM. For stopping the method, before verifying a
condition similar to (5.1), it has to be verified that the current iterate is an approximate
solution of the minimization problem; indeed, it could happen that the constraint is
satisfied but the solution of the problem is not yet sufficiently accurate. Therefore,
when the current iterate xk satisfies a condition as (5.3), the solver switches to check
that the following stopping rule is satisfied

|DH(xβk
;gn)− η| ≤ ε1 or

(|βk − βk−1| ≤ ε2|βk| and |DH(xβk
;gn)− η| ≤ 10ε1)

The maximum number of ADMM iterations is fixed to 5000. Furthermore, at each
step of ADMM, the constrained least squares subproblem related to w(1) is solved by

the Newton’s method with a stopping tolerance of 10−12 on the distance between two
successive approximations. In our experiments, after the initial iterations of ADMM,
four Newton’s steps enable to compute an approximation of βi within the required
tolerance.

In Table 5.7 we report the results obtained by ADMM combined with the updating
procedure (3.24), with α = 2, µ = 10 and kmax = 3500. Here the initial value of the
parameter γ0 is set to 1 for cameraman and Lspacecraft test problems, while γ0 = 0.5
and γ0 = 0.1 for micro and spacecraft, respectively. Our numerical experience has
shown that this adaptive version of ADMM allows to obtain satisfactory solutions of
Model 2 without having to find a suitable value for γ in the non–adaptive version. Also
in this case the effectiveness of the method can depend on the computational setting,
for example on the value of γ0, but this dependence appears less relevant than for the
standard ADMM.
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Bregman Regularization. We apply the inexact Bregman procedure to these test
problems; we solve the model KL-HS by the SGP method as inner solver in the Breg-
man iteration, while for the model KL-TV we use AEM method for solving each k–
th subproblem. In the former case, we use the stopping criterion (4.40), by setting
τSGP = 10−6,M = 10. Then c = ∥η1∥ and α = 1.5. For KL-TV model, we employ
(4.34) as stopping rule: for the first subproblem the stopping criterion is based on the
relative difference on two successive iterates with τAEM = 10−5, while in the subsequent
iterations c = ∥η1∥, α = 1.5 and ϑ = 2.1.
In each test problem and for any regularization function chosen, the regularization pa-
rameter is set to ten times the optimal one, found empirically.
In Table 5.9 we present the numerical results obtained in these experiments: k is
the outer iteration, ktot is the total number of the iterations of the inner solver,
Dk ≡ DH(xk;gn), err is the relative reconstruction error and finally Time is the
execution time in seconds.

KL–HS, Bregman method with SGP

cameraman Lspacecraft

k ktot Dk err Time k ktot Dk err Time

5 3131 1.0301 0.0889 88.39 7 21418 1.0001 0.3071 537.24
6 3906 0.9960 0.0873 109.14 8 26418 0.9997 0.3063 654.01
7 4578 0.9708 0.0859 127.29 9 31418 0.9993 0.3062 772.79

micro spacecraft

k ktot Dk err Time k ktot Dk err Time

8 4147 1.0433 0.0827 41.43 8 24580 1.0528 0.3735 868.01
9 4615 1.0406 0.0837 45.81 9 27480 1.0527 0.3780 972.14
10 5214 1.0388 0.0848 51.81 10 32191 1.0525 0.3848 1150.91

Table 5.8: Bregman procedure for the test problems, HS regularization. k denotes the outer
iteration, ktot is the total number of iterations of the inner solver at the k–th outer iteration,
Dk ≡ DH(xk;gn), err is the relative reconstruction error and finally Time is the execution
time in seconds. We report the iterations where Dk is close to 1.

One can observe that in some test problems the three procedures are quite equiva-
lent: e.g., the results obtained for cameraman problem are similar for each model used.
In other cases, such as Lspacecraft, the inexact Bregman procedure reaches results very
close to the ones by Model 1 and Model 2, but it has a higher computational cost.
For problems such as micro and spacecraft, the Constrained Model and the Crossing
Model provide unsatisfactory results; for example, the spacecraft test problem is not
solved properly by Model 1 since the zero of the equation DH(xβ;gn) − 1 = 0 is not
reached. On the other hand, the inexact Bregman procedure, even if it requires a
stronger computational effort, gives the desired result using an overestimation of β (see
Figure 5.8).
Model 1 and Model 2 behave as in micro and spacecraft problems when one tries to re-
construct High Dynamic Range (HDR) images, while the inexact Bregman procedure
enables us to obtain satisfying reconstruction and, at the same time, to gain a con-
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KL–TV, Bregman method with AEM
cameraman Lspacecraft

k ktot Dk err Time k ktot Dk err Time

5 16594 1.0317 0.0886 492.06 8 40000 1.0008 0.3167 1123.63
6 20979 0.9976 0.0870 617.75 9 45000 1.0002 0.3142 1274.62
7 25979 0.9717 0.0856 765.20 10 50000 0.9998 0.3123 1427.10

micro spacecraft

k ktot Dk err Time k ktot Dk err Time

8 33587 1.0434 0.0991 348.35 8 18333 1.0528 0.3748 736.02
9 41087 1.0408 0.0987 426.87 9 21567 1.0527 0.3800 865.15
10 45770 1.0390 0.0987 476.08 10 25440 1.0525 0.3858 1024.73

Table 5.9: Bregman procedure for the test problems, TV regularization. k denotes the outer
iteration, ktot is the total number of iterations of the inner solver at the k–th outer iteration,
Dk ≡ DH(xk;gn), err is the relative reconstruction error and finally Time is the execution
time in seconds. We report the iteration where Dk is close to 1.

trast enhancement. In the forthcoming section, the behaviour of the inexact Bregman
procedure when HDR images are treated is described.

5.4 Application to High Dynamic Range images in As-
tronomy

A common problem in Astronomy imaging is the reconstruction of high contrast images,
as the ones arising in the framework of ground–based telescopes when a faint signal
is very close to bright stars. The actual problem lies in the high intensity difference
between the stars themselves and the surrounding area: the action of the PSF destroys
all the information on the region around the stars. Following [70, 31], we assume that
the position of the stars is known: the main idea is to consider every point source as
a delta function which is zero everywhere except at the known position of the source
itself. The signal x is therefore considered as the sum of two components:

x = xp + xd (5.5)

where xp represents the point sources, while xd is the smooth component in which one
is interested into; in xd the values corresponding to the sources’ positions are set to
zero. We can write xp as the sum of delta functions centered in the known positions
multiplied for the corresponding intensities:

xp =

q∑
i=1

xiδ(vi) (5.6)

where q is the number of the stars present in the region of interest, xi is the intensity
of the i–th star and vi is its known position. Namely,

xp =


x1
x2
...
xq


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Figure 5.8: Restored images obtained by SGP method with HS regularization; from left to right,
cameraman, spacecraft and micro test problems. In the first row the the results obtained for
Model 1 are shown; the second row contains the images restored by Model 2. Finally, in the
last row, the results obtained by solving the restoration problems by the Bregman procedure
are reported. One can observe that in some problems, such as the cameraman one, the three
procedures have a very similar behaviour, while in other ones ( spacecraft and micro) Model
1 and Model 2 provide unsatisfactory results. On the other hand, the Bregman procedure
seems to work in a proper way.
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is the vector containing the intensities of the q stars.

The next step is to introduce different regularizations [74, 55, 4] for the two com-
ponents. A brief discussion of the method based on this approach for Gaussian data
is in [55]; in presence of Poisson noise, the same idea was proposed in [70] and in the
recent years in [31, 32].
Actually, the noise affecting the given data is a mixture of Poisson noise and additive
Gaussian noise: the former is due to the counting process, the latter is due to the
read–out–noise (RON). In the past [89] it has been shown that one can treats the RON
as a Poisson process: we adopt this approach.
Thanks to this assumption, we can employ the Kullback–Leibler functional as fit–to–
data functional in our restoration problem, but we have to introduce new notations
about the imaging matrix H in order to take into account the decomposition (5.5).

Denoting x =

(
xp

xd

)
, we write H = [H,H], where H = [hv1 , hv2 , . . . , hvq ] and hj de-

notes the j–th column of H. In this way the functional ϕ0 depends on q+N variables:
ϕ0(Hx+ bg1;gn), where we recall that gn is the blurred and noisy data.
Finally, we impose a regularization term only on the diffuse component: the restoration
problem becomes thus

min
x
ϕ0(Hx+ bg1;gn) + βϕ1(xd) (5.7)

with ϕ1(x) = 1/2∥Lx∥2. The choice of Tikhonov regularization is due to the smooth
structure of the diffuse component. Assuming the conditions (1.5) hold on the imaging
matrix H, we prove the existence and uniqueness of the solution of (5.7) in the following
Proposition, which is an extension of Proposition 1.3.

Proposition 5.1. Let gn ∈ RM be positive and bg > 0. Assume that the matrix H
satisfies (1.5) and the column rank of H ∈ RM×q is equal to q; then we have:

a. when the null space of L is trivial, the solution of the problem (5.7) is unique for
any β > 0;

b. when the null space of L is {α1, α ∈ R} and H1 ̸∈ span(H), the solution of the
problem (5.7) is unique for any β > 0.

Proof. In both cases, we prove that the positive semidefinite matrix ∇2
xϕβ(x), given by

∇2
xϕβ(x) = H

t
diag

(
gn

(Hx+ bg1)2

)
H+ β

(
0 0
0 LtL

)
(5.8)

is positive definite for β > 0 and, consequently, ϕβ is strictly convex for x ≥ 0. Indeed,
we can show that the intersection of the null spaces of ∇2

xϕ0 and β∇2
xϕ1 is trivial.

a. Let Ker(L) = {0}; since Ker(∇2
xϕ0) = Ker(H) and Ker(∇2

xϕ1) =

{(
xp

0

)
,0 ∈ RM

}
,

we have to prove that for any xp ̸= 0

H

(
xp

0

)
̸= 0

Indeed, for the linear independence of the columns ofH, Hxp ̸= 0. Then∇2
xϕβ(x)

is positive definite for x ≥ 0.
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b. When Ker(L) = {α1, α ∈ R}, Ker(∇2
xϕ1) =

{(
xp

α1

)
,1 ∈ Rn

}
. Then, we have

to prove that

H

(
xp

βα1

)
̸= 0

Indeed, by contradiction, if we assume

Hxp + βαH1 = 0

there exists a vector −1/(βα)xp such that its components are the coordinates of
H1 with respect to the columns of H; then H1 ∈ span(H), in contradiction with
the hypothesis.

One can observe that the second part of the previous proposition still holds true
also for Hypersurface regularization or Markov random field regularization: indeed for
these regularization terms we have Ker(∇2

x) = (xp, α1)
t.

When H1 = 1 holds, the assumption H1 ̸∈ span(H) is equivalent to require that
{α1, α ∈ R} is not a subspace of span(H); since q is small, it is easy to verify if there
exists the unique solution of Hx = 1; for example, when q = 1 and hν1 is not a constant
vector, H1 ̸∈ span(H). Moreover, when H is a nonsingular matrix, there does not exist
x such that Hx = 1; indeed, in this case, by H1 = 1, there would be contradiction
with the linear independence of the columns of H:

0 = 1−Hx = H1−Hx =
∑

j ̸=ν1,...νq

hj +
∑

j=ν1,...νq

hj(1− xj)

We show two practical case in which the model described can be applied; moreover,
the Bregman procedure can be implemented for problem (5.7) in order to preserve the
intensity’s difference of the two terms, thanks to the ability to enhance the contrast.
We remark also that the numerical experimentation shows that the techniques for the
estimation of β do not enable us to obtain similar results.

5.4.1 Young Stellar Objects

The first case we consider consists in the image of Young Stellar Objects (YSO): ac-
tually the data, kindly provided by the authors of [32], are simulated Large Binocular
Telescope (LBT) infrared narrow-band observations of a star-jet system.

We have four test problems, in which the point source is a single star (q = 1). The
images are obtained from an optical image taken with Hubble Space Telescope of the
HH34 jet (Herbig-Haro objects) [82], downscaled by a factor 3 and immersed into a
256 × 256 array, surrounded by zeros. A pixel scale of 15 mas/pixel (milliarcseconds
per pixel) has been assumed as typical scale of a camera attached to a single LBT
dish. In the pixel (178, 129) corresponding to the source, a point–like star with variable
magnitude (from 8 to 11 mag) was added in order to simulate four different objects at
different contrast. For each object, a 256× 256 image has been obtained by convolving
the object with an adaptive-optics corrected PSF with a Strehl ratio of 0.67. An average
H-band sky brightness of 15.5mag/arcsec2 has been added as background emission and,
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(b) Perturbed data.

Figure 5.9: Star9 test problem. On the left the original image, on the right the blurred and
noisy data. The image are shown in a reverse sqrt–scale.

finally, the results are corrupted by a mixture of Poisson noise and additive Gaussian
noise with σ = 10e−/ pixel (i.e., 10 electrons per pixel). A more precise and detailed
description on the image acquisition process is available in [32].

The four test-problems are denoted by Star8, Star9, Star10, Star11, in dependence
of the magnitude of the point source; in Figure 5.9 the data relative to the problem
Star9 are shown, while in Figure 5.10 a smaller region is presented. The functional to
be minimized involves Tikhonov regularization ϕ1(x) = 1/2∥Lx∥2 since the xd compo-
nent has a smooth structure.
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(a) Original data, particular.
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Figure 5.10: Star9 test problem. A smaller region around the point source is presented. The
blue square (in 5.10(a)) and the red square (in 5.10(b)) represent the region of interest with
respect to we will compute ρw.
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For each test problem, we use Model 1 described in Chapter 3 for the estimation of the
regularization parameter. The equation which has to be solved is

DH(x(β);gn) = η (5.9)

where x(β) is the solution of (5.7) and η ∼ 1. We pursue this scope using the method
described in section 3.3.1, which combines bisection and secant iterations. The interval
in which the optimal value is found is determined by the bisection iteration and it is
[10−10, 10−8] for all the test problems. In Table 5.10 we report the value of β computed
for each test problem with different regularization terms. The minimization problems
appearing in each step of the root–finding procedure of (5.9) are solved by SGP method.
The stopping rule is the standard one on the relative difference on two successive
objective function values:

|ϕβ(x
k)− ϕβ(x

k+1)|
|ϕβ(x

k+1)|
≤ τSGP (5.10)

coupled with the request that the mean of the last M iteration of this difference is
less than 10τSGP; in these experiments, τSGP = 0.5 · 10−9 and M = 10. In Table 5.10
we report also the total number totit of SGP iterations needed for the evaluations of
DH(x(β),gn) and, in brackets, the number T of evaluations performed to obtain the

numerical solution of (5.9) so that |DH(x(β),gn)− 1| ≤ 10−4 and the relative distance
between the last two iterates is less than 10−3.
To evaluate the reconstructions obtained, we compute the relative error on three dif-
ferent objects:

◃ denoting by x(β) =

(
x
(β)
p

x
(β)
d

)
the reconstruction obtained with the β value, we

indicate with ρ the relative error on the diffuse component:

ρ =
∥x(β)

d − x∗
d∥

∥x∗
d∥

where x∗
d is the original diffuse component;

◃ we indicate with ρp the relative reconstruction error on the value of the point
source;

◃ the astrophysical interest for high contrast images actually lies in the region very
close to the point source(s) (in astronomical measure units), in fact astronomers
look for orbiting exoplanets and brown dwarfs, or they would observe circumstel-
lar structures around them. Hence, we indicate with ρw the relative reconstruction
error on the diffuse component in a small window around the star(s); for example,
the region of interest for the images of the YSOs is the red one in Figure 5.10(a)
(corresponding to the blue one in Figure 5.10(b)).

One can observe that the value of β found by solving (5.9) does not correspond to
the reconstructed solution with the minimum reconstruction error: in general, for the
intermediate iterations, the errors can be smaller than the ones presented in Table
5.10. The behaviour of the reconstruction errors could seem strange: in fact, ρ, the
reconstruction error on the diffuse image, is lower than ρw, the reconstruction error on
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ϕ1 β totit (T) ρ ρw ρp
Star8

L = I 3.1 10−9 5462(10) 0.24 0.72 5.1 10−4

L = ∇ 1.4 10−9 5600(13) 0.23 0.58 2.4 10−4

L = ∇2 5.8 10−10 4428(8) 0.23 0.52 1.5 10−4

Star9
L = I 3.0 10−9 6286(11) 0.23 0.69 1.1 10−3

L = ∇ 1.4 10−9 5828(10) 0.23 0.53 5.4 10−4

L = ∇2 5.3 10−10 4064(9) 0.22 0.47 3.3 10−4

Star10
L = I 2.9 10−9 6447(10) 0.23 0.66 3.1 10−3

L = ∇ 1.4 10−9 5792(20) 0.22 0.50 1.7 10−3

L = ∇2 5.0 10−10 3882(9) 0.22 0.45 1.2 10−3

Star11
L = I 2.7 10−9 5458(9) 0.23 0.64 7.4 10−3

L = ∇ 1.3 10−9 5664(8) 0.22 0.48 4.5 10−3

L = ∇2 4.5 10−10 4228(20) 0.22 0.44 3.6 10−3

Table 5.10: Numerical results obtained by applying the discrepancy criterion (Model 1); β is
the estimation of the regularization parameter, totit is the total number of inner iterations
while T is the number of the MDF’s steps; ρ is the relative reconstruction error on the
diffuse component, ρw is the relative error in the small window considered and finally ρp is
the relative reconstruction error on the intensities of the point source.

the window of interest, since the computation of the former involves a larger portion
of the diffuse component. Furthermore, the reconstruction error on the point source
component is very small due to the fact that the intensities of the sources are very high,
hence even an approximate reconstruction is sufficient to assure a small ρp. We stress
that the main interest, however, lies in the reconstruction of the window of interest.
To overcome this drawback, we have determined empirically the optimal value for
the regularization parameter, by solving the minimization problem (5.7) via the SGP
method employing different values for β. In Table 5.11 we report the results of these
experiments for the search of the optimal β. In order to choose this optimal value, the
measure of error ρ has been considered.

Once we have determined the regularization parameter (or an overestimation of it)
we can apply the inexact Bregman procedure in order to recover the high contrast im-
age. We implement again SGP method as inner solver for the subproblems appearing
in the Bregman procedure, and we employ the values found by solving the discrepancy
equation as estimations for the regularization parameter β , since they are greater than
the optimal ones found empirically. For each test problem and for each regularization
functional we perform numerical tests also for values lying in the interval [βopt, β].
For the stopping criterion, the sequence µk is chosen as in (4.40), setting the value for
c as explained in Remark 4.4: the first iteration is stopped when the standard rule
described above is satisfied with τSGP = 10−5 and M = 1 or M = 5, then c = ∥η1∥
and α = 1.5. Furthermore, in order to avoid a too fast decrease of ϕ0 close to the
levels of interest, in SGP method the maximum steplength αmax is set equal to 10 until
µk = c/kα > 5 10−4; this happens within the first ten/twenty outer iterations; then
αmax = 1000.
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ϕ1(xd) β̃ k̃ ρ ρw ρp ϕ0

Star8, τSGP = 10−8, M = 5
L = I 1.2 10−10 2433 0.1583 0.4342 9.0 10−5 30879.4
L = ∇ 4.0 10−11 2492 0.1585 0.3825 2.6 10−4 30882.3
L = ∇2 1.0 10−11 3493 0.1578 0.3149 2.9 10−4 30874.0

Star9, τSGP = 10−8, M = 5
L = I 1.6 10−10 2942 0.1597 0.4632 5.6 10−5 31024.6
L = ∇ 5.0 10−11 2594 0.1548 0.3072 4.4 10−4 31032.4
L = ∇2 1.0 10−11 3172 0.1558 0.3399 7.9 10−4 31020.4

Star10, τSGP = 0.5 10−8, M = 5
L = I 9.0 10−11 4423 0.1598 0.4264 3.9 10−4 31124.4
L = ∇ 5.0 10−11 3253 0.1578 0.2760 3.9 10−4 31143.2
L = ∇2 8.0 10−12 4107 0.1548 0.3318 1.4 10−3 31124.9

Star11, τSGP = 0.5 10−8, M = 5
L = I 8.0 10−11 5096 0.1578 0.4179 1.5 10−3 31306.7
L = ∇ 5.0 10−11 3020 0.1528 0.2603 7.2 10−4 31331.1
L = ∇2 7.0 10−12 4019 0.1525 0.3279 3.2 10−3 31312.9

Table 5.11: Numerical results obtained by applying SGP method to problem (5.7) with
Tikhonov regularization; the value of the regularization parameter β̃ corresponds to the best
relative reconstruction error ρ for the diffuse component at the iteration k̃; the minimum ρ
is obtained by several trials with different values of β. ϕ0 stands for KL(Hxκ + bg1;gn).

In Table 5.12 we report the results obtained; κ denotes the outer iteration of the inexact
Bregman scheme at which we obtain the minimum relative reconstruction error ρκ of
the diffuse component; we report in brackets also the total number of SGP iterations
(totit) involved in κ outer iterations, the relative error ρκw for the square window around
the star, the relative error ρκp for the point component and the value of the KL function
at the iterate x̄κ. Table 5.12 shows that the inexact Bregman scheme enables us to
obtain relative reconstruction errors at least comparable, but in the most cases better
than those obtained by solving the variational problem with a suitable value of the
regularization parameter. The same observation can be done about the reconstruction
error ρw of the window around the star.

In order to visually evaluate the results obtained, we show for the problem Star08
in Figure 5.12 (first row) the superposition of the column number 129 (from pixel
167 to 180) of the original object, of the reconstruction obtained by SGP using the
optimal values for β presented in Table 5.11 and of the reconstruction by the Bregman
Procedure. These figures highlight that the choice for ϕ1 involving a first or second
order finite difference provides a contrast enhancement and a better quality in the
reconstructed images, also in presence of a very bright stars (Figure 5.12, second row).

For a visual inspection of the results obtained so far, we show in Figure 5.11 the
restored images for Star09 problem with the three different types of regularization;
these images are displayed in the same range of the object of Figure 5.10.
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ϕ1 β κ (totit) ρκ ρκw ρκP ϕ0

Star8
L = I 3.1 10−9 43(3603) 0.1409 0.3926 3.469 10−4 30856.4
L = I 1.1 10−9 20 (4196) 0.1382 0.3318 3.510 10−4 30854.0
L = ∇ 1.4 10−9 34 (5133) 0.1579 0.3678 1.223 10−4 30854.2
L = ∇ 0.5 10−9 18 (4809) 0.1528 0.3495 3.212 10−4 30852.0
L = ∇2 5.8 10−10 48 (6689) 0.1590 0.3344 1.224 10−4 30854.9
L = ∇2 3.8 10−10 36 (5864) 0.1566 0.3072 1.665 10−4 30853.8

Star9
L = I 3 10−9 26 (4036) 0.1473 0.3712 3.045 10−3 30999.9
L = I 2 10−9 20 (3590) 0.1410 0.3292 6.126 10−4 30999.8
L = ∇ 1.4 10−9 41 (5755) 0.1472 0.2477 4.945 10−4 30996.8
L = ∇ 0.4 10−9 16 (5287) 0.1535 0.3368 4.600 10−4 30994.6
L = ∇2 5.3 10−10 94 (10113) 0.1478 0.2265 5.166 10−4 30994.2
L = ∇2 3.3 10−10 63 (10071) 0.1489 0.2547 5.479 10−4 30994.1

Star10
L = I 2.9 10−9 20 (4187) 0.1579 0.4139 3.140 10−4 31108.6
L = I 1.9 10−9 17 (3769) 0.1546 0.4289 5.737 10−4 31108.1
L = ∇ 1.4 10−9 39 (6682) 0.1524 0.2791 5.297 10−4 31107.3
L = ∇ 0.4 10−9 15 (4932) 0.1547 0.3306 7.536 10−4 31105.4
L = ∇2 5.0 10−10 77 (6704) 0.1485 0.3056 1.448 10−3 31105.8
L = ∇2 4.0 10−10 69 (9764) 0.1512 0.2684 9.411 10−4 31105.1

Star11
L = I 2.7 10−9 26 (5673) 0.1512 0.3595 1.131 10−3 31296.4
L = I 1.7 10−9 20 (4621) 0.1442 0.3057 5.040 10−4 31296.9
L = ∇ 1.3 10−9 54 (9057) 0.1481 0.2409 8.211 10−4 31295.5
L = ∇ 0.3 10−9 13 (5553) 0.1469 0.2464 8.877 10−5 31296.6
L = ∇2 4.5 10−10 87(10782) 0.1445 0.1845 1.251 10−4 31295.8
L = ∇2 2.5 10−10 45 (10057) 0.1456 0.1856 6.999 10−5 31296.4

Table 5.12: YSO. Numerical results obtained by the inexact Bregman iteration. β is the
value for the regularization parameter, κ is the external iteration at which the best result is
obtained; ρκ is the relative reconstruction error on the diffuse component, ρκw is the recon-
struction error on the window of interest and finally ρκP is the relative reconstruction error
on the values of the point source. ϕ0 stands for KL(Hxκ+bg1;gn). For each regularization
functional we tested the procedure for two different values of β: the first one is the value
found by Model 1, while the other is another overestimation of βopt.
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Figure 5.11: Restored images for Star09 problem. In the first row the whole reconstructions
are displayed, while in the second one a particular related to the area near the point source is
presented. The blue square emphasize the region in which we have computed the ρw relative
reconstruction error.

From the point of view of the efficiency, the inexact Bregman scheme is not too
expensive; indeed, because of the moderate tolerance required in the determination of
the outer iterates, the total number of SGP iterations is two or three times greater
than the one required to solve with high accuracy the variational problem (5.7) with
an optimal value of the regularization parameter.

5.4.2 Binary Stars

The second case we are considering is the simulated image of binary stars obtained by
a telescope. In Figure 5.13 the original signal and the given data gn are shown: in both
of them, the pixels corresponding to the stars are set to zero to make the visualization
easier.
The background emission is 101.14 counts/pixel and, again, the noise affecting the
image is a mixture of Poisson noise and RON with 10 counts/pixel. Actually the images
shown in Figure 5.13 are a small part of the original images: since the original ones
have dimension 1024 × 1024, we decided to display only the window of main interest,
around the binary stars; this window will be the one on which we will compute the
reconstruction error ρw. The window considered ranges from the 470–th pixel to the
555–th one in both dimensions.
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(d) star11, L = I
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(f) star11, L = ∇2

Figure 5.12: Star08 (1st row) and Star11 (2nd row) problems. From left to right the lineplot of
the column 129 is shown, for classical Tikhonov regularization, for L = ∇ and for L = ∇2,
respectively. The dashed line is the original object, the red one is the reconstruction obtained
by SGP with the optimal value for β and finally the blue line is the Bregman reconstruction.
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Figure 5.13: Left panel: object, diffuse component. Right panel: given data, diffuse component.
The images are displayed in a square root scale.

The structure of the data suggests to employ the following problem

min
x≥0

KL(Hx+ bg1;gn) +
β

2
∥xd∥2 (5.11)
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i.e. using a Tikhonov regularization since the diffuse component seems to have a smooth
structure.
Proceding as in the case of the Young Stellar Objects, we run the SGP method to solve
problem (5.11) for several values of β, in order to find the value of the regularization
parameter which gives the minimum ρw. The stopping criterion implemented is the
standard one (5.10) widely used in the previous experiments, with τSGP = 10−7. The
optimal value for β obtained is 5 · 10−6, which gives a reconstruction error on the con-
sidered window of ρw = 0.13392.

In the first run of the inexact Bregman iteration we set the regularization parameter
β = 10βopt; the first subproblem is stopped with the criterion (5.10) with τSGP = 10−7

and M = 1. The second inner subproblem (and the successive ones) are stopped using
the rule (4.34) with α = 1.5 and c = ∥η1∥.
In Table 5.13 we present the results obtained in this first test: although with a slightly

k it totit ρw ϕ0

1 145 145 0.20066 527342.28
2 113 258 0.14126 521991.75
3 126 384 0.13395 521692.73
4 61 445 0.13245 521627.44
5 54 499 0.13217 521595.31
6 61 560 0.13236 521576.04
7 55 615 0.13281 521562.26
8 61 676 0.13342 521551.86
9 69 745 0.13413 521543.62
10 66 811 0.13489 521536.84

Table 5.13: Binary stars; Bregman procedure with Tikhonov regularization. Results obtained
with β = 10βopt. k denotes the external iteration, it the number of iterations required by
the inner solver to satisfy the convergence criterion, totit is the cumulative sum of the inner
iterations, ρw is the relative reconstruction error of the window of major interest; finally,
ϕ0 = KL(Hxk + bg1;gn)

greater number of total iterations, the Bregman procedure seems to give a reconstruc-
tion error ρw comparable to the one obtained by tuning SGP method in an optimal
way. The minimum error is reached at the 5–th external iteration; the inner solver
requires a total number of 499 inner iterations versus the 178 ones of SGP method with
the optimal regularization parameter.

In a second run, we employ again the Bregman procedure with the same settings as
the previous ones, but we use a greater overestimate for the regularization parameter
β = 10−4.
Due to this great overestimation, in this experiment the procedure needs more exter-
nal iterations to recover the image, since we are forcing an over regularization on the
computed solution. Nevertheless, the numerical results seem comparable, if not better,
to the reconstruction obtained via the optimal–tuned SGP.
In order to visually evaluate the reconstruction, in Figure 5.14 we plot the superposi-
tion of the 513rd line (the one containing the stars) of the images of the original signal,
the reconstruction obtained via SGP with βopt and the results of the running of the
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Bregman procedure, with β = 10−4: we do not plot the reconstruction with 10βopt
since the differences are minimal. The Bregman procedure enables us to better devise
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Figure 5.14: Binary stars, line plots. The black dashed line represents the 513rd line of
the original signal; the red one is the SGP reconstruction with optimal β; the blue one is
the Bregman reconstruction with β = 10−4. The reconstructions are obtained by Tikhonov
regularization. The lines are plotted in a sqrt scale.

the hole at the center of the image: although the peaks at the top are not reached
completely, the bottom of this hole is recognized.

One can observe that the Tikhonov regularization seems not to be the suitable
functional to be used, since the boundaries of the hole at the centre of the image are
sharp: indeed the portion reconstructed at the bottom level is too tight, even it is
reached pretty well. Hence, due to the presence of the sharp edges, we can use the
Hypersurface functional as regularization term, modifying (5.11) in

min
x≥0

KL(Hx+ bg1;gn) + βHS(xd) (5.12)

We proceed as in the Tikhonov case: we empirically determine an optimal value for the
regularization parameter in (5.12), which turns out to be 5.97 ·10−3; solving (5.12) with
this parameter (τSGP = 10−7 and M = 1) we obtain in 133 iterations a reconstruction
error ρw of 0.101427. The numerical results confirm the fact that the Hypersurface
regularization seems to be more indicated for this kind of image.
In order to evaluate the behaviour of the Bregman procedure also for this kind of reg-
ularization, we set the tolerance for the stopping criterion of the first subproblem with
a mild tolerance τSGP = 10−5 and M = 1; then, for the stopping rule (4.34) c is equal
to ∥η1∥ and α = 1.001. The regularization parameter is ten times the optimal one;
the results are shown in Table 5.14. The obtained reconstruction error is lower than
the one reached by the optimally tuned SGP method: moreover, even if the number of
outer iterations seems huge (33), the total number of the iterations of the inner solvers
is just 372, still comparable to the number of SGP iterations.
Proceeding as in the previous case, we force the overestimation by taking a regulariza-
tion parameter 15βopt; the setup of the procedure is the same of the case β = 10βopt.
One can observe that also in this case the reconstruction is still comparable with the
one obtained by SGP with βopt. In Figure 5.15 we show the superposition of the lines
513rd of the restored images. Using the Hypersurface regularization we do not reach
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k it totit ρw ϕ0 k it totit ρw ϕ0

1 121 121 0.15370 524716.31 11 5 204 0.08560 522462.80
2 9 130 0.13010 523867.63 12 7 211 0.08516 522428.43
3 7 137 0.11278 523337.16 13 5 216 0.08484 522399.59
4 8 145 0.10254 523077.85 14 7 223 0.08449 522371.75
5 11 156 0.09514 522885.22 15 7 230 0.08418 522346.75
6 12 168 0.09118 522758.38 16 7 237 0.08391 522323.96
7 8 176 0.08914 522672.15 17 7 244 0.08367 522302.98
8 9 185 0.08754 522598.15 18 7 251 0.08345 522283.58
9 9 194 0.08655 522542.04 19 7 258 0.08326 522265.55
10 5 199 0.08602 522499.56 20 7 265 0.08309 522248.71

Table 5.14: Binary stars; Bregman procedure with ϕ1 = HS and β = 10βopt. k denotes
the external iteration, it the number of iterations required by the inner solver to satisfy the
convergence criterion, totit is the cumulative sum of the inner iterations, ρw is the relative
reconstruction error of the window of major interest; finally, ϕ0 = KL(Hxk + bg1;gn)
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Figure 5.15: Binary stars, line plots. The black dashed line represents the 513rd line of the
original signal; the red one is the SGP reconstruction with optimal β; the blue one is the
Bregman reconstruction with β = 10βopt. The reconstructions are obtained by Hypersurface
regularization. The lines are plotted in a sqrt scale.

the bottom of the hole neither the peaks on the boundaries, but the ”flatness” is rec-
ognized in a better way, proving then a contrast enhancement. Finally, in Figure 5.16,
we present the restored images obtained both with Tikhonov and the Hypersurface
regularization, via the SGP method with βopt and via the Bregman procedure.

5.5 Conclusion

In this chapter, we evaluate the inexact Bregman procedure, developed in the previous
Chapter for image restoration in presence of Poisson noise. We show that this proce-
dure has a lower computational cost with respect to the classical Bregman procedure.
Both procedures enable us to employ an overestimation of the regularization parameter
β appearing in the variational formulation. Although this overestimation, the results
achieved are reliable with the ones obtained by using the optimal parameter. More-
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(a) SGP reconstruction, Tikhonov regu-
larization, β = βopt
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(b) Bregman reconstruction, Tikhonov
regularization, β = 10−4.
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(c) SGP reconstruction, HS regulariza-
tion, β = βopt
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(d) Bregman reconstruction, HS regular-
ization, β = 10βopt.

Figure 5.16: Binary stars, restored images. In the first row the results obtained by using the
Tikhonov regularization are shown, while in the second one the Hypersurface potential is
used. The HS regularization induces a sort of smoothness in the diffuse component xd, even
if the central hole is not fully restored.

over, above all in case of denoising, the contrast enhancement behaviour of the inexact
Bregman procedure provides us with very satisfying reconstruction.

We have also compared the behaviour of Constrained and Crossing models with
this inexact procedure. We recall that this two procedures allows us to estimate the
optimal parameter and, at the same time, to obtain the related reconstruction. We
observe that in some practical cases, such as the High Dynamic Range images in Astro-
nomical imaging, these two approaches can not achieve good results, while the inexact
Bregman procedure provides us with very good restored images, again with a gain in
contrast enhancement.



Appendix A

Convex Analysis

This appendix is devoted to recall some basic concepts of Convex Analysis. We refer
to [84, 78] for a very exhaustive and comprehensive overview.

A.1 Definitions and general results

Definition A.1. Let f be a function defined on Rn with real values; we denote with
dom(f) the set {x ∈ Rn|f(x) <∞}. The epigraph epi(f) is the set

epi(f) = {(x, t) ∈ dom(f)× R|f(x)) ≤ t}

Definition A.2. A function f is convex if and only if its epigraph is a convex set.

From the definition above one has the following equivalent characterizations for a convex
function.

• A function f is convex if and only if its domain is convex and for any x,y ∈ dom(f)
and α ∈ [0, 1] the following inequality holds

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

• A function f is convex if and only if for all x,y ∈ dom(f) and β ≥ 0 such that
y + β(y − x) ∈ dom(f) , we have

f(y + β(y − x)) ≥ f(y) + β(f(y)− f(x)).

Below we state some general results regarding convex functions.

Lemma A.1. [Jensen inequality] For any x1, . . . ,xm ∈ dom(f) and α1, ..., αm such
that

m∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,m

we have:

f

(
m∑
i=1

αixi

)
≤

m∑
i=1

αif(xi)
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Lemma A.2. If f is a convex function,then all its sublevel sets

levτ (f) = {x ∈ dom(f)|f(x) ≤ τ}

are either convex or empty.

Definition A.3. A function f is called lower semicontinuous (l.s.c.) at x if and only
if

f(x) = lim inf
y→x

f(y) = lim
ϵ→0

(inf {f(y)|∥y − x∥ ≥ ϵ})

f is upper semicontinuous (u.s.c.) if

f(x) = lim sup
y→x

f(y) = lim
ϵ→0

(sup {f(y)|∥y − x∥ ≥ ϵ})

Definition A.4. A convex function f is called closed if its epigraph is a closed set.

The following result is a straightforward consequence of the previous definition.

Proposition A.1. If a convex function f is closed, then all its sublevel sets are either
empty or closed.

Proposition A.2. Let f1 and f2 be two convex and closed functions, β ≥ 0. Then the
subsequent functions are all closed and convex:

• f(x) = βf1(x), dom(f) = dom(f1);

• f(x) = f1(x) + f2(x), dom(f) = dom(f1) ∩ dom(f2)

• f(x) = max {f1(x), f2(x)}, dom(f) = dom(f1) ∩ dom(f2)

Proposition A.3. Let ϕ(x) be a convex and closed function defined for x ∈ Rm.
Consider the affine operator

A : Rn → Rm

A : x 7→ A(x) + b

where A ∈ Mn×m(R), b ∈ Rm. Then f(x) = ϕ(A(x)) is convex and closed on the
domain dom(f) = {x ∈ Rn|A(x) ∈ dom(ϕ)}.

Definition A.5. Let f be a convex function. The Fenchel conjugate of f is the function
f∗ defined by

f∗(y) = sup
x∈Rn

{⟨y,x⟩ − f(x)}

f∗ has the following properties:

• f∗ is a closed convex function;

• if f is proper then f∗ is proper;

• f∗∗ = cl(f), where cl(f) is the closure of the function f ;

• if f is l.s.c and proper, then f∗ is l.s.c. and f∗∗ = f .
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A.2 ε–Subgradients

Definition A.6. Let f be a convex function on Rn. A vector p is called a subgradient
of f at the point x0 ∈ dom(f) if for any x ∈ dom(f) we have

f(x) ≥ f(x0) + ⟨p,x− x0⟩

The set of all the subgradient of f at x0 is called the subdifferential of f at the point
x0 and it is denoted as ∂f(x0).

Example A.1. Let f(x) = |x|, x ∈ R. Then ∂f(0) = [−1, 1]; the subgradient of f in
the origin is not unique.

Proposition A.4. Let f be a closed convex function and x ∈ int(dom(f)). Then
∂f(x0) is a nonempty bounded set.

Proposition A.5. For any proper convex function f and any vector x, the following
assertions on a vector x∗ are equivalent to each other:

◃ x∗ ∈ ∂f(x);

◃ < z,x∗ > −f(z) achieves its supremum in z at z = x;

◃ f(x) + f∗(x∗) ≤ ⟨x,x∗⟩

◃ f(x) + f∗(x∗) = ⟨x,x∗⟩

If clf(x) = f(x), three conditions can be added:

◃ x ∈ ∂f∗(x∗);

◃ ⟨x, z⟩ − f∗(z) achieves its supremum in z at z = x∗;

◃ x∗ ∈ ∂cl f(x)

Proposition A.6. If f is a closed proper convex function, ∂f∗ is the inverse of ∂f in
the sense of multivalued mappings, i.e x ∈ ∂f∗(x∗) if and only if x∗ ∈ ∂f(x).

The following propositions regard some properties of subgradients, which are of main
importance in optimization.

Proposition A.7. We have f(x∗) = min
x∈dom(f)

f(x) if and only if 0 ∈ ∂f(x∗).

Proposition A.8. Let Q ⊂ dom(f) be a closed convex set, x0 ∈ Q and

x∗ = argmin{f(x)|x ∈ Q}

Then for any p ∈ ∂f(x0) we have: ⟨p,x0 − x∗⟩ ≥ 0.

The theoretical results in the forthcoming allows us to effectively compute the subgra-
dients of convex functions.

Lemma A.3. Let f be a closed convex function. Assume that it is differentiable on
its domain. Then ∂f(x) = {f ′(x)} for any x ∈ int(dom(f)).
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Proposition A.9. Let function f be closed and convex with dom(f) ⊂ Rm . Consider
the affine operator

A : Rn → Rm

A : x 7→ A(x) + b

where A ∈ Mn×m(R), b ∈ Rm. Then the function ϕ(x) = f(A(x)) is closed and convex
with domain dom(ϕ) = {x ∈ Rn|A(x) ∈ dom(f)} and for any x ∈ int(dom(ϕ))we have:

∂ϕ(x) = At∂f(Ax)

Lemma A.4. Let f1(x) and f2(x) are closed convex functions and α1, α2 ≥ 0. Then
the function

f(x) = α1f1(x) + α2f2(x)

is closed and convex and

∂f(x) = α1∂f1(x) + α2∂f2(x)

for x ∈ int(domf) = int(dom(f1)) ∩ int(dom(f2)).

Definition A.7. Let f be a convex function on Rn. A vector p is called a ε–subgradient
of f at the point x0 ∈ dom(f) if for any x ∈ dom(f) we have

f(x) ≥ f(x0) + ⟨p,x− x0⟩ − ε

The set of all the subgradient of f at x0 is called the ε–subdifferential of f at the point
x0 and it is denoted as ∂εf(x0).

We observe that for ε = 0, we obtain the definition of subgradient and subdifferential.

Proposition A.10. Let f be a convex function on Rn and ε1 > ε2 > 0. Then, for any
x0 ∈ dom(f), we have

∂ε1f(x0) ⊃ ∂ε2f(x0) ⊃ ∂f(x0)
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