UNIVERSITA DEGLI STUDI DI FERRARA

DOTTORATO DI RICERCA IN FISICA
Cicro XXVI

COORDINATORE PROF. GUIDI VINCENZO

SOME OBSERVABLE EFFECTS OF
MODIFIED GRAVITY IN
COSMOLOGY AND ASTROPHYSICS

SETTORE SCIENTIFICO DISCIPLINARE: FIS/OZ

DOTTORANDO TUTORE

DotTt. REVERBERI LORENZO ProF. DOLGOV ALEXANDER

ANNI 2011/2013






UNIVERSITA DEGLI STUDI DI FERRARA

DOTTORATO DI RICERCA IN FISICA
Cicro XXVI

COORDINATORE PROF. GUIDI VINCENZO

SOME OBSERVABLE EFFECTS OF
MODIFIED GRAVITY IN
COSMOLOGY AND ASTROPHYSICS

SETTORE SCIENTIFICO DISCIPLINARE: FIS/OZ

DOTTORANDO TUTORE

DotTt. REVERBERI LORENZO ProF. DOLGOV ALEXANDER

ANNI 2011/2013






TO CHIARA

“Physics isn’t the most important thing. Love is.”
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PREFACE

GENERAL RELATIVITY AND ITS LIMITS

The General Theory of Relativity (GR) is possibly the most beau-
tiful physical theory ever developed. After being born almost one
hundred years ago, it has been extensively studied theoretically
and tested observationally, and most of its prediction have been
verified to an astounding precision. The universe expansion, the
formation of light nuclei and structures, the presence and fea-
tures of the cosmic microwave radiation, the motion of planets
about the Sun, black holes, etc., are only a few of the innumerable
consequences of this remarkable theory. Probably no other theory
has had the same success.

This is not even all. It is fair to say that general relativity has
changed the world even for non-specialists. Albert Einstein has
indeed been one of the most famous and influential characters
for most of last century, and still is. Suppose you are travelling to
a city for vacation: whichever the transport means, GPS devices
are likely to be used, and such devices could not operate were
it not for the laws of GR. What is more, once we have arrived to
our destination, it is hard not to find a souvenir shop selling at
least a fridge magnet with one of Einstein’s famous quotes, or
a t-shirt with the famous image of him sticking his tongue out
printed on the chest.

Nevertheless, the emergence of the “dark universe” picture
during the last decades of observations and precision cosmology
has questioned the validity of general relativity at all scales and
energies. Dark matter and dark energy appear to account for
about 95% of the total content of the universe. Einstein’s dream of
a theory unifying quantum and gravitational phenomena drives
a great many efforts in the scientific community, but we are
probably still very far from such an accomplishments.

These and other questions stimulated an impressive amount
of work on extensions to the standard theory. Indeed, modified
theories of gravity were born soon after GR, and some of them
were even influenced by Einstein’s work. More recently, a great
variety of models have been proposed to explain the unexpected
features of our universe, and the scientific activity in this sector
is as lively as ever. Among these theories, I have focused on
f(R) gravity, a large class of models in which the Einstein-Hilbert
action is replaced by a non-linear function of the Ricci scalar R.
Testing these theories with cosmology, astrophysics and astropar-

xiii
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ticle physics is a fundamental path to approach solutions of many
problems of modern gravitational physics.

THE ORGANIZATION OF THIS THESIS

This thesis is the result of roughly three years of work at the
University of Ferrara under the supervision of Prof. A.D. Dolgov
and in collaboration with E.V. Arbuzova at Dubna University.
This work resulted in a few published papers [1-6] and was
presented at several international conferences.

In Chapter 1 I present the current picture of the universe and
briefly review the cosmological constant problem and some of the
theories proposed to solve it. The following Chapters essentially
contain the published papers with some modifications and addi-
tions: in Chapter 2 I study the radiation-dominated epoch in R?
gravity, gravitational particle production and its implications for
the early and contemporary universe; in Chapter 3 I investigate
the formation of curvature singularities in contracting astronomi-
cal systems; in Chapter 4, I discuss some mechanisms to prevent
such singularities and calculate the related cosmic-ray production;
finally, in Chapter 5, I deal with spherically symmetric solutions
and explore the possibility of gravitational repulsion.
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NOTATIONS AND CONVENTIONS

CovARIANT COORDINATES Xy
CONTRAVARIANT COORDINATES  x*
METRIC Suv
INVERSE METRIC g

PARTIAL DERIVATIVE

0uf = fyu = 0f /o
af = f1 = of /ox,

COVARIANT DERIVATIVE Viu=fu
VHf = f
D’ ALAMBERTIAN O =g¢g"V,V,
AFFINE CONNECTION | R
CHRISTOFFEL SYMBOLS w
R1EMANN TENSOR R"‘y By
Ricct TENsOR Ry
Ricct (CURVATURE) SCALAR R
EINSTEIN TENSOR Gu = Ryy — % S R

ENERGY-MOMENTUM TENSOR Ty = 8GN Ty = Z—% Ty

We use the “time-like” conventions of [7] or (—,+,+) in the
sign convention of [8], assuming the Einstein’s summation con-
vention unless otherwise stated. The Minkowski metric is

N = diag (1,-1,-1,-1) ,

and the relations between metric, affine connection, Ricci tensor
and scalar, and Riemann tensor are:
r* — 1 ap
w o= Eg (gyﬁ,v + 8Bvu — gi“/rﬁ) ’
o T o A T A TR
Roupy = Vuvp = Tupy + T Lo = Lyplny s
R‘HV — Ra}lﬂéﬁ ’
R=g"Ry.
We use the natural units

c=h=kp=1,

in which we define the Plank mass in terms of Newton’s constant
as

— ~-1/2
mplzGN/ .
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NOTATIONS AND CONVENTIONS

Hence, R is negative for vacuum- and matter-dominated Uni-
verses, and Einstein’s equations read

1 87
Gw=Ry—=Rgw=(+)—5 Tuw.
uv v nv 7 Luv
2 miy,
A dot denotes derivative with respect to the physical time ¢, and
a prime denotes derivative with respect to the radial coordinate r,
except if otherwise stated. Greek indices run from o to 3, Latin
indices run from 1 to 3.



THE VACUUM ENERGY PUZZLE

1.1 THE ACDM UNIVERSE
1.1.1 The FLRW Metric

Our universe is extremely homogeneous and isotropic. It may
be hard to tell since we live on a clump of dense matter, rotating
about a star with many kilometres of essentially “nothing” sepa-
rating us, and since looking at the night sky we do not observe a
uniform, faint glow but rather a spectacular show of point-like,
luminous stars hanging on a dark blue ceiling. On very small
scales such as these, the universe is in fact very far from being
homogeneous and isotropic, and thankfully so - I would not be
writing this thesis otherwise.

However, on scales of the order of the Megaparsec (Mpc), it
looks the same everywhere and in all directions [9]. This is even
more evident when we look at the Cosmic Microwave Background
radiation (CMB), which appears isotropic at the order of 10~° [10].

We describe our universe on large enough scales using a very
simple metric, the Friedmann-Lemaitre-Robertson-Walker met-
ric [11-17]. Although originally found by Friedmann as a solution
of the Einstein field equations, it can be derived on the basis of
homogeneity and isotropy alone (see e.g. the classic [18]). It gives
the line-element

dr?
1—kr?

ds? = Quvdxtdx’ = dt* — a(t)2 < + 1’de> , (1.1)

where a(t) is the cosmic scale factor and the possible values k =
+1,0, —1 correspond to a spherical, Euclidean and hyperbolic
space, respectively. The quantity k/a? is the spatial curvature® of
the universe.

This is in fact the most general homogeneous and isotropic
metric (up to an arbitrary coordinate transformation). The as-
sumption of homogeneity and isotropy implies that the spatial
metric be locally a 3-sphere $°, a 3-hyperboloid H? or euclidean
space IR?, while the space can have different global properties.

1 Also called Gauss curvature.



THE VACUUM ENERGY PUZZLE

For instance, euclidean space may be R® and infinite or T? (3-
torus) and finite>. However, this has been strongly constrained by
the non-observation of the expected fluctuation patterns in the
CMB [19, 20].

The FLRW metric describes an expanding (or contracting) space-
time of “radius” a(t), where all points are dragged apart from
each other like marks on an inflating balloon. In fact, the mean-
ing of the scale factor a is clarified by calculating the proper
distance between an object located at comoving coordinate r and
an observer in r = 0, at a given cosmological time t:

sinlr (k= +1)
d(t,r) = a(t)/o dr' \/gm = a(t) X < r (k=0) (1.2)
sinh 'r (k= —1)

Each comoving object has a constant r-coordinate, so the distance
between comoving points simply goes like the scale factor a.

1.1.2  Redshift and Universe Expansion

When speaking of an expanding universe, we cheated a little bit.
Nothing in the geometric properties of the FLRW allows us to
determine if a is increasing, decreasing or constant with time. To
this purpose, we need to look at the sky, that is at light signals
coming from distant sources.

Consider a photon emitted at a given time t., in the past at
comoving coordinate 7., and let us assume for simplicity that
the observer is in r,,; = 0. The time at which the photon will
reach the observer, keeping in mind that massless particles follow
null geodesics [such that ds> =0, cf. (1.1)], is given by

/tubs ﬂ o Tem dr (1 )
t a(t)  Jo 1=k 3

Differentiating this relation, one finds that the time interval be-
tween two emitted light signals (or indeed two crests of the light
wave) at emission and observation are related by

(Stem _ 5t0bs , (14)
Aem obs
where 4., = a(t.) and analogously for t,,s. If a increases (de-
creases) with time, it determines an increase (decrease) of the
light wavelength by a factor

Aabs Aops
= -—==1+2z, 1.
Aem Aem ( 5)

This is accomplished by identifying the opposite sides of the fundamental
3-volume element.



1.1 THE ACDM UNIVERSE

which defines the redshift z, a fundamental quantity in cosmology
and cosmography. “Today” corresponds to z = 0 and z increases
up to z — oo moving towards the past singularity a = 0 through
the cosmological history.

The observation of a redshift in the light received from distant
galaxies is an indication of an expanding universe. For nearby
sources we have

a(t) :aem[1+Hem(t_tem)+"'], (1.6)
where
H= % (1.7)

is the Hubble parameter. Similarly, (1.5) gives
z = Hep(t —tom)+--- . (1.8)

Notice that for nearby sources the quantity (t — t.,) is essentially
the distance d between the source and the observer (in units with
¢ =1),and H,y;, >~ Hyps = Hp so3 we find the famous Hubble’s law:

z~ Hyd. (1.9)

Naturally, one missing ingredient is the actual measurement of
the distance d, but luckily, there are a number of methods and
sources allowing us to do so. A more complete discussion on
the astronomically relevant distance indicators is way beyond the
scope of this thesis; we refer the interested reader to [21] and
references therein.

The Hubble “constant” Hj, that is the present value of the
Hubble parameter, has the value [22, 23]

Hy = (67.804+0.77) km s~ 'Mpc~!. (1.10)

In 1929, Edwin Hubble made his famous discovery [24] and an-
nounced the world that our universe is expanding, since Hy > 0.
The hypothesis of an expanding universe had already been raised
by Friedmann [11, 12] and de Sitter [25-27], whereas Einstein
himself had neglected this possibility and instead worked a static-
universe model adding a cosmological constant to the picture. In-
famously, he dubbed this attempt the “biggest blunder” of his
life [28]. Little did he know that the cosmological constant was
far from disappearing from physics; we will come back to this
very soon enough.
We can also define the deceleration parameter q:

i H
qz—aHz:—<1+Hz>, (1.11)

which is positive (negative) if the expansion is decelerating (ac-
celerating).

7

3 From now on, a subscript “y” will denote the present value of a given quantity.
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w Evolution
3

Non-relativistic matter 0 o~ a-
Relativistic matter (radiation) 1/3 o ~a™*

Vacuum energy —1 o ~ const.

TABLE 1.1 — The most common equations of state and their
corresponding cosmological evolution.

1.1.3 Energy and Matter

After dealing with the geometric properties of the universe, it
is time to look at its content. The properties of homogeneity
and isotropy of geometry must reflect on the properties of the
energy-momentum tensor describing matter and its behaviour. The
simplest realization of such a tensor is that of a perfect fluid

T = (o + P)utu" — Pgy, . (1.12)

Note that in the comoving frame the 4-velocity is simply u# =
(1,0,0,0). The quantities ¢ and P are the energy density and
pressure of the fluid. The relation between the two, in principle
arbitrary, is in most cases of interest parametrised by a single
constant, the equation of state w:

P=wo. (1.13)

The covariant conservation of the 0 — v component of the energy-
momentum tensor

v, T =0, (1.14)
leads in the FLRW metric to:
0+3H(0+P)=0+3H(1+w)o=0, (1.15)

which is easily solved by

0 ~ a3+ (1.16)
See table 1.1 for the most commonly considered cases. As we
see, for non-relativistic matter (w = 0) the dilution of density due
to proper volume increase leads to the intuitive scaling ¢ ~ a3,
while an additional factor a~! enters for radiation (w = 1/3) due
to the redshifting of momentum during expansion. The more
exotic vacuum energy (w = —1) has instead a constant energy
density.
The “concordance” model of contemporary cosmology is the
ACDM model, according to which our universe contains essen-
tially three components of matter/energy [22]:
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1. cold, non-relativistic matter, in the form of ordinary bary-
onic matter and (mostly) dark matter;

2. A, or vacuum energy;

3. relativistic matter (radiation), mostly in the form of photons
(CMB).

Despite the impressive agreement of this picture with most obser-
vational evidence, the ACDM model fails in explaining the nature
of both dark matter and dark energy, which collectively account
for roughly 95% of the overall energy budget.

1.1.4 Cosmological Dynamics

The universe, and all matter within it, has to obey the Einstein
tield equations:

Ry — %ngv_/\gw = Z;TT#V- (1.17)
Pl
As usual, Ry, is the Ricci tensor and R = ¢g"'R,, is the Ricci-
or curvature scalar. Comparing this expression with (1.12), it is
clear that the term containing A can be thought of as describing
a perfect fluid with

m3, A
oA = 78[3711 , Py = —on- (1.18)

This justifies the statement that the equation of state of vacuum
energy is w = —1 (table 1.1).

Einstein’s equations (1.17) can be derived by an action principle,
provided that one identifies the gravitational lagrangian with the
spacetime curvature R, that is

2
My

_ 4 —
Aga = =32 [ d \/=g(R+2A). (1.19)

In both (1.17) and (1.19), we have included a A term for generality
and because it is the main subject of this chapter and in fact of this
thesis altogether. This term was absent in the original formulation
of the theory, but even then there was no a priori reason not to
include it. Indeed, the left-hand side of (1.17) is now the most
general local, symmetric, divergenceless two-index tensor that
can be constructed solely from the metric and its first and second
derivatives.

In a FLRW spacetime, the set of equations (1.17) can be rewrit-
ten as the two independent Friedmann equations

_8mo Ak

H =0 2,
3m%, 3 a?

(1.20a)

5
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i 4 A
Pl

It is useful to define the critical energy density o.:

3m3, H?
0c = ;771_[ , (1.21)
whose present value is of the order of
000 ~107% gem ™3 ~ 10711 V4. (1.22)

The Universe is perfectly Euclidean (spatially flat, i.e. k = 0) if
0 = 0., see eq. (1.20a). Notice that this is indeed the case for our
universe, at least at the percent level* [22].

This spatial flatness is most likely the result of an inflationary
period of accelerated expansion in the very early universe. Of
course, a thorough discussion on inflation is beyond the scope of
this work, but we refer the interested reader to the beautiful and
comprehensive [29].

The contribution of the various forms of matter can be de-
scribed through the dimensionless parameter (), with s = radia-
tion, non-relativistic matter, vacuum energy, defined as the ratio
of the energy density of the specific species of matter in units of
the critical energy density:

9s
0

0

(1.23)

The statement that the Universe be (almost) Euclidean then be-
comes

Qr+Qp+0Op = 1. (1.24)

At a given redshift z, the expansion rate H can be expressed as:

H(z)* = H} [Qm,ou +2%) + Qro(1+2)* + Qa0 + Opo(1+ z)z} :
(1.25)

In the case of our universe, where (1.24) holds, the last term can
essentially be neglected. Evidently, the importance of a given
matter type can change greatly during the cosmological evolution
due to the different dependence on z. Our universe, after the
initial inflationary period mentioned above, underwent a period
of radiation-domination until redshifts of about z ~ 3600, then a
period of matter-domination until z ~ 0.4, and today it appears
to be dominated by vacuum energy (see below).

Apparently, the elementary school teacher who taught us that the sum of the
angles of a triangle is always 180° was not completely wrong after all!
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We can also rewrite the deceleration parameter g (1.11) as:

1 k
1= 30+ 30m) (14 2 )
(1.26)
0,
="~

This clearly shows that a Universe whose collective equation of
state is w > —1/3 decelerates, so any indication of accelerated
expansion means that the dominant component of the cosmic
fluid has a large, negative equation of state. Equivalently, if the
energy density of vacuum exceeds twice that of non-relativistic
matter, again the universe expansion would be accelerated. In-
terestingly, this is precisely what a number of observations are
currently telling us.

1.1.5 Evidence for a Cosmological Constant

The presence of a “dark” component in the Universe has been
known at least since the 1930’s, when F. Zwicky measured a
luminous matter deficit in the Coma cluster [30]. Similarly, later
observations of the flattening of rotation curves in spiral galax-
ies [31, 32] were incompatible with the observed luminous matter
distribution and instead suggested the presence of a dark mat-
ter halo with density profile ~ r~2. Analogous results can be
independently derived from the motion of galaxies, the X-ray
temperature of galactic gas, and weak lensing measurements. All
of these effects are explained by dark matter halos.

Dark energy, on the other hand, has been around since the
1980’s. Inflation predicts a very Euclidean Universe, and it was
already clear that there was a severe shortage of non-relativistic
matter in the total energy budget; for instance, estimates of the
age of globular clusters of 12-14 billion years is incompatible with
a matter-dominated Universe [33].

More recently, the birth of “precision cosmology” has led to
additional compelling evidence for a dominant negative equation
of state:

¢ The luminosity distance of Supernovae la is consistent
with a cosmological constant, and incompatible with a flat,
matter-dominated Universe or an open Universe> [34—37],
and later results constrained the equation of state of dark
energy [38—40] to:

w = —1.0687058. (1.27)

5 For this discovery, S. Perlmutter, A. Riess and B. Schmidt were awarded the
Nobel Prize in Physics in 2011.
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¢ Measurements of the CMB [22] combined with WMAP
polarization data [41] and Baryon Acoustic Oscillations
(BAO) data [42—46] favour a model with

Op = 0.686 £ 0.020
+0.013 (1.28)
w = —1.013" 15
¢ The cross-correlation between the Integrated Sachs-Wolfe
(ISW) effect and large-scale structure favours

w = 1.01753 (1.29)
at about 40 [47, 48].

¢ the distribution of galaxy clusters as a function of redshift
disfavours a flat, matter-dominated Universe. In particular,
the presence of massive clusters at relatively high redshift
points towards an accelerated expansion starting around

z =~ 2 [49].
1.1.6  Shortcomings of ACDM

The Smallness Problem

The most serious problem of the ACDM model is probably the
smallness problem: a naive argument sets the value of the cosmolog-
ical constant as zero-point fluctuation of fundamental quantum
tields of mass m:

%) 3
(o) = [ iy VIR = oot (1.30)

2(2m)3

If one believes that QFT be true up to an ultraviolet cutoff scale
kuy, then the previous integral gives

(0) ~ Kty - (1.31)

Choosing kyjy ~ mp; yields the extraordinary value often quoted
in the literature:

(0) =~ 107° GeV* ~ 10'2 ¢, (1.32)

This has led some authors to dub this, probably rightfully so, the
“worst theoretical prediction in the history of physics” [50].
However, we must stress that imposing a cutoff scale on the
three-momentum alone breaks Lorentz invariance and as a result
this is not to be regarded as a rigorous calculation. In fact, it
was shown that the quartic divergence for the energy density and
pressure of a scalar field does not describe vacuum energy but
rather homogeneous background radiation [51-53], because one finds
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that (p) = (0)/3. Indeed, using dimensional regularization one
finds

m* m2
(@)~ —— In5—, (1.33)
642 k3,

which goes roughly as the fourth power of the mass of the funda-
mental particle, not of the cutoff scale. Although not quite 120
orders of magnitude, the discrepancy with the observed value is
nevertheless found to be still outstanding [53].

In addition to this, phase-transitions also give a finite but possi-
bly large contribution to the zero-point energy. This is sometimes
referred to as the “classical” cosmological constant problem, to
distinguish it from the purely quantum effect discussed above.
For instance, consider the case of the spontaneous breaking of
electroweak symmetry, starting with the Higgs lagrangian:

»CHiggs ~ 8WD;1<1>+DV¢ - V((D/ CI)+) (1.34)

where D), denotes covariant® derivative and the Higgs potential
reads

A
V(®,0h) =V + %(I)JFCD + (@), (1.35)
Before the phase transition, m? > 0 so that the minimum is in
® = 0, while after the phase transition m < 0 and the new
vacuum expectation value of the Higgs field ® is
m2

v = T (1.36)

The corresponding shift in energy is

4

AV =5, (1.37)
which is negative. The constant term Vj in (1.35) may be chosen
so that the Higgs potential vanishes after the phase transition (i.e.
today), but in principle it is completely arbitrary, and of course it
cannot be chosen to vanish both before and after the transition.
The contributions of the electro-weak and QCD phase transitions
are of the order of [53]

EW 55
Ovac ™~ —10 Oobs »

QCD

(1.38)
Ovac ™~ 10% Oobs -

Moreover, a no-go theorem by Weinberg [54] states that the
vacuum energy cannot be cancelled without fine-tuning in any
effective 4-dimensional theory satisfying the following condi-
tions [55]:

6 Under transformations belonging to the gauge group SU(2); xU(1)y.
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1. General Covariance is preserved
2. standard gravity is mediated by a massless graviton

3. the theory contains a finite number of fields below the cutoff
scale

4. the theory is ghost-free

5. the fields are assumed spacetime-independent at late times

The Coincidence Problem

On top of the smallness problem, one needs to answer another
serious question: why is the present value of the energy density
associated with the cosmological constant so close to the present
value of the energy density of matter? That is, why

QA|today ~ Qm|today ? (1-39)

This joins another coincidence problem, i.e. between ordinary bary-
onic matter and dark matter (DM)

Qbaryons ~ Qpm, (1.40)

which is actually rather serious in its own right. In fact, baryons
are produced non-thermally whereas DM is usually thought to
be created in thermal equilibrium?, since weak interaction cross-
sections naturally lead to the correct DM abundance (“WIMP
Miracle”)®. Solutions to this problem have been proposed, but
usually involve additional particles to those forming dark matter,
and there is no widely accepted mechanism.

As for the former coincidence problem, one can invoke the an-
thropic argument [57] as a possible solution, which states that a bi-
ological observer is most likely to observe the Universe when [58]

Qp S10Q),. (1.41)

However, this approach has been widely criticised and even
considered non-scientific, since in many of its formulations it is
neither verifiable nor falsifiable. The discussion is still very much
open on the subject.

What is sure is that the ACDM model agrees remarkably with
observations and seems to correctly describe the entire history of
the universe after inflation. Its failure in accounting for the value
of such parameters, particularly that of the cosmological constant,

This does not apply to all models of DM, though. For instance, axions are
produced non-thermally.

Actually, thermal freeze-out giving the right relic energy density is not peculiar
to the electroweak scale, see e.g. the “WIMPless miracle” of [56], which however
remains a rather “natural” place for the miracle to occur.
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has however lead to a great many attempts to make such cosmo-
logical term dynamical, e.g. as a result of additional/modified
tields, interactions, or gravitation.

We can divide these proposed models into two classes, depend-
ing on which side of the Einstein equations (1.17) they modify:
those which modify the right-hand side are usually called “dark
energy models”, and alter the field content of the theory or their
gravitational interactions; those which modify the gravitational
part of the theory are called, with obvious choice of terminology,
“modified gravity models”.

1.2 DARK ENERGY

In this section, we will briefly discuss some of the most popu-
lar dark energy models, while modified gravity models and in
particular f(R) gravity will be considered in more detail in the
following section.

1.2.1  Quintessence

Perhaps the leading class of dark energy models is quintessence [59—
62]. These models introduce a minimally-coupled scalar field ¢,
similarly to scalar-field inflationary models accounting for the
early-universe epoch of accelerated expansion.

The action of the theory is

A = Agr + Am + AQuin

1 (1.42)
AQuin = /d4x vV =8 [Zgway(/’avqj V()| ,
where Aggr is the usual Einstein-Hilbert action (1.19) with no bare
cosmological term and Ay is the action of ordinary matter fields.

“ 7

Notice the use of the subscript “\1” to indicate a general mixture
of radiation and non-relativistic matter, as opposed to “n” to
indicate non-relativistic matter alone.

So-called “extended” quintessence models [63-65] also include
a non-minimal coupling between gravity and the field ¢, much
like scalar-tensor theories (see later. section 1.3.2).

The energy-momentum tensor of ¢, appearing on the rh.s.

of (1.17), is

1
Ti) = 3,0 0up — 58 [870:9 59 — V(9)] (1.43)

Taking a flat FLRW universe, the corresponding energy-density
and pressure are:

Q9 = %4’2 +V(¢), (1.44a)

11
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Py = ) ¢ —V(¢). (1.44b)

The cosmological evolution is found substituting the expressions
into (1.20):

8t |1,
2 _ - i2
H 3, > ¢ +VI(P) +om| , (1.45a)
i 4r ;
~ = [2¢" —2V(¢) + om +3Pu] , (1.45b)
a  3mp

while varying of (1.42) with respect to ¢ yields
¢+3Hp+V'(p) =0, (1.46)

where a prime denotes derivative with respect to ¢. This equation
can also be derived from (1.15).
The equation of state of ¢ is:

P _ ¢ —2V(¢p)

=S =5 (1.47)
0 ¢*+2V(9)
which gives the constraints
-1<w<1. (1.48)
The vacuum energy equation of state w = —1 is recovered when

the field is static, in which case its energy density is simply the
value of the potential in the equilibrium point, but in the general
case we have more interesting features. The condition (1.48) and
the energy conservation equation (1.15) also imply

09(2)

99,0

1< < (1+2z2)°. (1.49)
Of course, the shape of the potential V(¢) is crucial in deter-
mining the evolution of ¢ and its possible implications for dark
energy. Equation (1.45b) shows that if

¢ <V(p), (1.50)

then the effect of the field ¢ will be to accelerate the expansion.
One can easily see the analogy with (1.11): acceleration starts
when w = —1/3, which is precisely the equation of state (1.48)
when (1.50) holds. This relates completely to the slow-roll condi-
tion typical of the inflaton field. In fact, the potential must be
sufficiently flat in order to have effective acceleration: if the po-
tential is so steep that ¢* > 2V (¢) everywhere during the cosmic
evolution, then ¢4 ~ a—® decreases much faster than the back-
ground density, hence the late-time effect would be completely
negligible.

Unfortunately, it is quite difficult to accommodate a light scalar
tield such as that needed for quintessence in particle physics,
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with my ~ Hy ~ 10733 eV [66, 67], but there have been attempts
in this direction, especially in the framework of supersymmetric
theories.

Quintessence models can be divided into two large families [68]:
“freezing models” and “thawing models”.

Freezing Models

In freezing models, the field slows down due to the shallowness
of the potential at late times. Some prototypical models are:

e V() = M***p~* The first potential has no local mini-
mum so the field rolls down indefinitely, gradually slowing
down [60, 69]. There exists a so-called tracker solution with
an almost constant equation of state

2
2+
during the matter era [70]. Independently of the initial
conditions, solutions approach the tracker solution before
relaxing to w — —1 at later times. Analogous potentials
arise e.g. in the fermion condensate model as dynamical
supersymmetry breaking [71].

* V(p) = M9 exp(9?/97)
This potential can arise in the framework of supergrav-
ity [72]. The addition of the exponential term produces a
true minimum for the potential, hence the field eventually
freezes tow = —1.

o V(¢p) = M7 exp(—A1¢/mp;) + M5 exp(—Aap/mpy).
This potential is a candidate belonging to a sub-class of
freezing models other than tracking models [73-75], namely
“scaling” models [76]. During most of the matter era the
field equation of state scales as the equation of state of
the background fluid. Suitable values of the dimensionless
constants are Ay > 1 and Ay S 1 [77].

w o~ (1.51)

Thawing Models

In thawing models the field is initially frozen by Hubble friction
[the H¢ term in (1.46)], and starts evolving at late times when the
Hubble parameter H drops below the field mass m14. Accordingly,
the equation of state of the field, initially equal to w = —1, starts
increasing at late times to values w > —1.

Models belonging to this class are

o V(p) = Vo + M*% ¢~

This potential resembles that of chaotic inflation for & = 2,4
and Vp = 0 [78], but of course with a very different mass
scale M.

13
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* V(¢) = M1+ cos(¢/ o).
This potential arises as potential of the Pseudo-Nambu-
Goldstone boson [79] or of the axion [8o, 81].

1.2.2  Phantom Fields

Current observations are compatible with w < —1, so it is rather
natural to devise theories reproducing such behaviour. The first
attempt is to give a “wrong-sign” kinetic term to a scalar field,
now called phantom [82]:

A=Agr+Apm+ Apy

an= [@ g [-ygmagae-vie| . "
The equation of state is
_D_ @ r2vig)
“= T E—avig)’ o)

so values wy < —1 are allowed for ¢? < 2V(¢). These models
may be motivated by S-brane construction in string theory [83],
but are unfortunately plagued by terrible ultraviolet instabilities
against the production of ghosts and positive energy fields [84].
In short, this is due to the fact that the energy of the field is
not bounded from below. Even assuming phantom models as
low-energy effective theories, thus valid up to an energy cutoff
Enax, Observations strongly constrain such limit energy at the
level of the MeV [85].

1.2.3 k-Essence

So-called k-essence models can be thought of as a generalization
of quintessence models in which non-canonical kinetic terms for
the new scalar field ¢ are allowed. The general action is

A= AGR + AM + Akfess
Akfess = /d4x V —gP((p, X) ’

where

(1.54)

l v
X = Eg" d,¢ 9y (1.55)

is the usual expression for the kinetic energy of the field ¢. The
function P is an arbitrary function of the field (~ potential) and
of its kinetic energy. What is interesting in these models is that
the latter, not the “potential” term, is responsible for the universe
acceleration.
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These models were initially proposed in the context of infla-
tion [86], while their application to the late-times dark energy
was first carried out in [87] and later extended in [88, 89], where
the name “k-essence” first appeared.

The energy-momentum tensor of k-essence is

Tﬁ;ess = Px ay‘P v — Pouv- (1.56)

“ 7

where as usual the subscript “ p” denotes partial derivatives with
respect to X. The choice of the letter P for the arbitrary lagrangian
of ¢ is then clarified looking at the expressions for energy density
and pressure:

0p =2XPx — P, (1.572)
Py =P, (1.57b)
so the equation of state is
P p
Wy = i (1.58)

gy 2XPx—P’

As long as [2XPx| < |P|, the equation of state will be close to
—1, hence mimicking a cosmological term.

As in the case of quintessence, k-essence models can also dis-
play a tracking behaviour, see e.g. [90].

Non-standard kinetic terms appear in several particle-physics
frameworks:

¢ Low-energy effective string theory [91]
P(§,X) = L(@)X +K(@)X* +---. (1.59)

* Ghost condensate model [92] and dilatonic ghost conden-
sate model [93]

XZ
Poc(¢, X) = =X +

M (1.60a)
X2
Poee(9, X) = =X+ 55 M/ me (1.60b)

¢ Tachyon fields[94, 95]
P(¢, X) = —V(p)\/— det(gu + dupdug),  (1.61)

where typical potentials are:

V(p) ~ [cosh(A¢p/mp)] 1, [96] (1.62a)
V(g) ~¢™", (x<2) [97, 98] (1.62b)
V(¢) ~ exp(Ag?/mp)). [99] (1.620)

¢ Dirac-Born-Infeld (DBI) theories [100-103]

P(¢,X) = —f(¢) /1 =2f(9)X+f(¢) " = V(). (1.63)

We will not work out the full cosmological dynamics of these
theories; details can be found in the cited papers and e.g. in [104,
105] and references therein.

15
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1.2.4 Chaplygin Gas

The Chaplygin equation of state

A
P = -, (1'64)
Q

which can be generalised to

P = _QT‘ , (1.65)
was first introduced in 1904 in connection with aerodynam-
ics [106]. It is of interest for particle physics as it can be motivated
by supersymmetry [107, 108] and string theory [109], while its
application for dark energy was investigated in [110].

In FLRW background, (1.65) and (1.15) yield

B 1T
0= [A + a3(1+¢x):| ’ (1.66)

with B a constant. The equation of state of the generalised Chap-
lygin gas is

, (1.67)

which gives the following interesting behaviour:

¢ at early times, when 7 is small, the Chaplygin gas behaves

as cold matter: w ~ 0, 0 ~ a=3;

e at later times, for

1

B\ 3(+a)
> [ 2 .68
aN( A) , (1.68)

the Chaplygin gas behaves as a cosmological constants:
w ~ —1, 0 ~ const.

It seems that this theory might realise an interesting unification
between dark energy and dark matter, but unfortunately there are
severe problems with the matter power spectrum in the absence
of cold dark matter, hence ruling out Chaplygin gas as a DM
candidate [111], see also [112].

1.3 MODIFIED GRAVITY

After briefly reviewing some of the leading ideas for dark energy
models, let us take a deeper look at modified gravity theories.
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1.3.1 Brief History of Modified Gravity

Modified theories of gravitation were proposed soon after the
formulation of General Relativity (GR) [113, 114], indeed imme-
diately after the first striking confirmations of Einstein’s theory,
namely the discovery of gravitational lensing [115]. It was sci-
entific curiosity, rather than evidence, that led these seminal
works; today, almost a century later, the interest in such theories
is constantly growing, and is strongly motivated by astrophysical
and cosmological data which appear to be in contrast with the
predictions of GR.

Of course, a good modified gravitational theory should be con-
structed in such a way that it maintains some of the qualities of
standard GR, namely that

1. space-time is a differentiable four-manifold with a metric
and a connection;

2. it satisfies the Weak Energy Principle (WEP);
3. its field equations can be derived from an action principle.

The first statement restricts ourselves to “metric” theories of
gravity; associating a metric with the space-time curvature di-
rectly leads to the equivalence of inertial and gravitational mass®
as test-particles (with negligible self-gravity) follow space-time
geodesics. Moreover, Newtonian theory must be recovered at
small distances, in order to satisfy constraints coming from mea-
surements in the Solar System and in the Earth-Moon system
and from the most precise gravitational tests (Hughes-Drever
experiments and WEP tests) [116, 117].

However, modified theories of gravity do present new features,
and in particular may not satisfy the following conditions:

1a. the Strong Equivalence Principle (SEP);
2a. the space-time constancy of Newton’s constant;
3a. the linearity of the action in second derivatives of the metric.

The SEP states that “massive self-gravitating objects should follow
geodesics of the space-time”. While this is true for test-particles,
this is no longer assured for extended bodies with non-negligible
self-gravity. These objects distort the background space-time, and
in general may not follow geodesics'® in modified theories.

Of all possible modifications to GR, the most popular are scalar-
tensor and f(R) theories. Let us now consider these modified
theories in more detail.

9 Probed with very high accuracy in E6tvos type experiments.
10 This violation of the SEP is sometimes referred to as the Nordtvedt effect.
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1.3.2 Scalar-Tensor Theories

Within the framework of scalar-tensor gravities, the coupling to
the scalar curvature R is no longer a constant but a dynamical
field, or a function of such field. However, the only gravitational
invariant present in the action, besides /—g, is R, so the field
equations remain of second order in derivatives of the metric,
unlike in f(R) theories (see below).

The first scalar-tensor theory of gravitation was probably pro-
posed by Jordan [118], followed by many others [119-123], who
recognized the importance of the scalar field arising in the Kaluza-
Klein compactification of a fifth dimension [124, 125]. From a
theoretical point of view, scalar-tensor theories are quite natural
alternatives to standard GR. The attractive character of gravi-
tation is preserved'’, as well as the manifest covariance of the
theory, and the WEP is also satisfied. Furthermore, such theories
arise naturally in the low-energy limit of (super-)string theo-
ries [126, 127] and from brane-world theories [128, 129].

The canonical Brans-Dicke action [120] takes the form'?

2
M'py

w
ABD — 16n/d4x\/—g <—(pR+(POg’”ay(pav(p> , (1.69)

where ¢ is a scalar field, wy is a constant, often referred to as the
“Brans-Dicke parameter”. Ordinary matter and gravity couple
as usual via the metric g,,. The choice w(¢) = 0 is known in
the literature as “massive dilaton gravity” or “O’Hanlon gravity”,
and was developed in order to generate a Yukawa term in the
Newtonian limit [130].

It is clear how the Brans-Dicke theory may lead to a space/time
variation of Newton’s constant: while the “bare” coupling G is
indeed a true constant, the “effective” coupling

Getf = G/ @ (1.70)

may not be constant at all; as a matter of fact, Brans-Dicke gravity
(as well as all other modified gravities) has been constructed
precisely with the aim of allowing a dynamically variable Geg.
Any solution having ¢ = const is indeed trivial, and cannot be
distinguished from standard GR.

The sole free parameter of the theory is wp, which makes the the-
ory remarkably easy to test; using the standard post-Newtonian

Unlike in vector gravity which leads to an attractive matter-antimatter interac-
tion but to repulsive matter-matter and antimatter-antimatter interactions. Please
compare this to QED, in which the exchange of a photon (which is a vector)
leads to repulsion between particles with the same charge.

12 Please note that the metric-signature here is opposed to that of the original

paper.



1.3 MODIFIED GRAVITY

expansion [116] and Solar System measurements, one can con-
strain wy, finding [131]

|ewo| 2 40000 . (1.71)

This result is not very appealing, because usually one expects di-
mensionless parameters to be of order unity, therefore the original
Brans-Dicke theory is not considered as a viable theory; never-
theless, the model is easily generalized by taking into account
quite general kinetic (cfr. k-essence models of section 1.2.3) and
potential terms for the scalar field. The most general action hence
reads

A#BD — /d4x ﬁ; [—qu + wgp)(é(p)z — U(go)] . (1.72)

With obvious notation, (0¢)? = ¢"’9,¢ d,¢. The action (1.72) can
be rewritten, with a suitable redefinition of the scalar field (see
Section 1.3.4), as the prototype scalar-tensor action:

- (1.73)

/d4x\/7[ Plf ) +%(8¢)2—V(¢)

In this case, the scalar field has the canonical kinetic term and has
the usual dimensions of [mass]; the most attractive scalar-tensor
theories are those in which f(¢) tends to unity as t — fy (today),
so that GR is recovered. Possible constraints on the theory come
from the residual energy density of the scalar field, which may
account for the accelerated expansion.

Please note that in neither case does the matter action contain
explicitly the scalar field, which means that matter couples only
to metric, which is the condition for having a “metric” theory (see
above). Furthermore, unlike in theories without self-interaction
for the scalar field, the solution ¢ = ¢y = const (or ¢ = ¢p =
const) may not be trivial if U(¢g) # 0 [V (¢o) # 0], in which case
the potential term would effectively act as a cosmological term.

Field Equations

Varying the action (1.72) with respect to the metric and to the
scalar field yields the field equations (see Appendix A for the
explicit derivation)

_ (m) @
¢ G = 8nG Ty + q)ay(pavq) zg”” q)(a(P)

. (1.74a)

+ 58w U+ (Vi Ve —gul)e,

N 1 1 w' 2 () /
Op = <fp_w> (09) —@(R+U)- (1.74D)

19



20

THE VACUUM ENERGY PUZZLE

Above, the prime (') means derivative with respect to ¢. Note
that in the equation of motion for ¢ matter is absent: as remarked
earlier, ¢ acts on standard matter only through geometry, hence
the theory is metric and the WEP is obeyed.

It must also be stressed that, in modified gravitational theo-
ries, the inverse of the coefficient of R in the lagrangian (~ Ge)
and the quantity appearing in Newton’s law, measurable in a
Cavendish experiment, are not necessarily the same. The latter

is [132, 133]

c G2+2we

eff — 5 3+2w§0 . (175)

The field equations for the general scalar-tensor theory (1.73) are

m 1
f(9) G = 87G | T + 8,909 — g (2 (99)* - V(¢>>] +

+(ViVy —gwD) f(¢),
(1.76a)

O¢ + V'(¢) + f9IR _ (1.76b)

1.3.3 f(R) Theories

Classical General Relativity is not renormalisable, and hence can-
not be conventionally quantized. It has been shown, though, that
one-loop renormalisation demands the presence of higher-order
curvature terms [134], and that higher-order theories are indeed
renormalisable (although not unitary) [135]. Initially, higher-order
terms were considered to be relevant only in very strong gravity
regimes. The pioneering works [136-138], see also [139], found
that one-loop quantum corrections to the vacuum expectation
value of T, generate terms with higher-order curvature invari-
ants, such as R?, R,y RM, etc., with typical couplings of the order
of mp; by the appropriate (negative) power. Therefore, such quan-
tum corrections are effective only when curvature approaches the
Planck scale, that is at very early times (if any).

This perspective has now changed. Recent results also show
that when quantum corrections or string theory are taken into
account, higher order curvature invariants may appear naturally
in the effective low energy lagrangian [139-141]. As widely
discussed before, the vacuum energy problem boosted the interest
in these theories, and ultimately scientific curiosity may well be
enough for us to study them!

In f(R) theories, the scalar curvature term is replaced by a
function of R itself:

m2
AfR) — _167P7'lc/d4x V-8 f(R), (1.77)
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and often one separates the “GR” and “modified” parts of the
theory:

f(R) =R+ F(R). (1.78)

Higher order actions may include a huge variety of curvature
invariants, like contractions of the Ricci and Riemann tensors
Ry R¥, R“WVR"‘WV, RaﬂwR"‘ﬁRW. .., combinations of those, such
as the Gauss-Bonnet invariant [142]

G = R* — 4R, R™ + Ry R, (1.79)

(although it seems difficult to find f(G) models that are consistent
with observational data [143, 144]), as well as terms containing
derivatives such as ROR, ROR?, ... (see e.g. [145]). These possi-
bilities will not be considered here.

In most cases, one takes functions of the form

2 3

F(R) = ---+;;22+0;{1—2A+R+1;2+I;3+---, (1.80)
where «; and B; are constants of the correct dimensions. Please
note the presence of the usual linear term, of course with coef-
ficient equal to unity, since a different coefficient would simply
result in a redefinition of the Planck mass, and of the constant
term (= cosmological constant).

Field Equations

The presence of non-linear terms yields field equations of order
higher than two in derivatives of the metric, which read™ (see
Appendix A for details):

1
FR(R) Ry = 5 f(R) 8w + (0 = Vi Vo) fR(R) = 870G Ty .
(1.81)
The last term in the left-hand side, which contains higher-order
derivatives of the metric, disappears when f(R) is a constant,

namely when f(R) = R and standard GR is recovered. Taking
the trace of (1.81) yields

FfrRR)R —2f(R) 4+ 30fg(R) = 87GT, (1.82)

from which we can see that R is related to the trace of the energy-
momentum tensor T differentially, and not algebraically as in

Formally, in deriving the field equations from an action principle, there ap-
pears a Gibbons-York-Hawking-like surface term which cannot, in general, be
cancelled out subtracting some surface term before performing the variation.
Usually one simply neglects this term implicitly assuming that a suitable fixing
has been chosen, but of course a rigorous discussion is possible (although not
unique in the literature). In this regard, see e.g. [146].
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GR. This an indication of the fact that f(R) theories will admit
more solutions than Einstein’s theory: for instance, Birkhoff’s
theorem, which states that the unique vacuum spherically sym-
metric solution is the Schwarzschild solution, no longer holds in

f(R) gravity [147].

A brief remark is necessary: these equations are obtained in
“metric” f(R) theory, in which the gravitational lagrangian is a
function of the metric alone; as a matter of fact, there are at least
two more approaches to f(R) gravities:

* the Palatini approach’#, in which the metric g,, and the
connection I, are regarded as independent fields, and the
matter lagrangian is assumed to depend only from the met-
ric, while the Ricci scalar R = ¢"" 'R, is obtained contract-
ing the Ricci tensor of the non-metric connection with the
metric. In GR, both metric and Palatini approaches produce
the same field equations, but for non-linear Lagrangians
these may as well be different’>.

* The metric-affine approach, in which the matter lagrangian
also depends on the independent connection, which may be
non-symmetric, leading to a torsion associated with matter.
Metric-affine f(R) gravity has not been thoroughly studied
yet, particularly its cosmological implications, but this issue
goes beyond the scope of this work.

1.3.3.1 Accelerated Solutions and Cosmological Viability

A large number of cosmological solutions in f(R) gravity is
known, and their stability has been extensively studied. The
existence of a stable de Sitter solution corresponds to the exis-
tence of algebraic roots of the “static” trace equation (1.82) in
vacuum [150]:

fr(Ras)Rgs —2f(Rgs) = 0. (1.83)
If there exists such solution, then the de Sitter regime with
Rys = 4A (1.84)

can be realised. Additional issues about the stability of the de
Sitter regime in f(R) gravity was studied in [151, 152]. Notice, for
instance, that for the quadratic R + R? theory proposed in [138]
and mentioned earlier the condition (1.83) is satisfied automati-
cally.

Despite the name, it was Einstein, not Palatini, to introduce it [148].
The requirement that the metric and Palatini variations yield the same field
equations selects the Lovelock gravity [149], of which GR is a special case.
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The early works on f(R) models of dark energy [153-157]
relied on models with negative powers of R (i.e. f ~ R—a/R") to
account for the present accelerated expansion; as R drops down
with the universe expansion, such terms become increasingly
important and eventually dominate over the GR term. However,
these models were soon shown to suffer from severe matter
instabilities [158, 159], due to the fact that the scalaron mass
squared is negative (the scalaron is a tachyon, see later).

Recently, several works investigated additional conditions for
the stability of cosmological FLRW solutions, for particular mod-
els [160-162] and also in the general case [163-169].

One needs that:

’f(R) . )

R < 0 so that the scalaron is not a tachyon (m~ > 0)
and the dynamical behaviour is stable in the
high-curvature regime;

of (R
0< J;(R ) <1 so that the effective Newton’s constant G/ f(R)

is positive, hence gravitons are not ghosts
(lower bound), and that GR is recovered in
the early universe (upper bound).

The amount of works on the subject of f(R) gravity is huge
and keeps increasing by the day. For details and additional refer-
ences, we refer the reader to the nice reviews [170-173] and the
book [174].

1.3.4 Equivalence of Theories

The equivalence between Brans-Dicke and f(R) theories is well
established, both in the metric [175-177] and in the Palatini ap-
proach [178, 179]. One says that two theories are (dynamically)
equivalent when, under a suitable redefinition of the matter and
gravitational fields, the field equations for the two theories can be
made to coincide. The very same statement can be made at the
level of the action. Therefore, equivalent theories give the same
results in describing the evolution of the system to which they
are applied. This may be extremely helpful, since results known
for one theory can immediately be “translated” in analogous
results for the other theory. For instance, one can use bounds on
post-Newtonian parameters from Brans-Dicke theory to constrain
f(R) theories [180-184].
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Brans-Dicke <+ Scalar-Tensor Theories

We have already alluded (sec. 1.3.2) to the equivalence between
generalized Brans-Dicke theory and scalar-tensor theory. The
generalized BD lagrangian

L£8BD 1 w
NET: = G (‘G”R + il)(’))gway(payqv - U((P)> (1.85)

can be cast in the form
Lo B F(0)
v—¢ 161G

under the substitutions

R +K(o) g" 0,0 0,0 — W (o) (1.86)

9 =F(0), (1.872)
_ w(g) (F(0))?
KO) = TenG Flo) (1.87b)
_ Ule)
W(o) = 1eC (1.87¢)
where F' = 0F /do. The more familiar form
L (@) p 1w
N e R T 58" g~ V(g) (1.88)
is recovered with ¢ defined by
0p\* _
(8(7) =2K(0). (1.89)

This also shows the equivalence between scalar-tensor theories
with the canonical kinetic term for the scalar field and scalar-
tensor theories which have a non-standard kinetic term.

Passing from (1.88) to (1.85) is obtained defining

¢ = f(o), (1.90a)
wle) _ 1

167Go ~ 27 9)F (1:00)

U(p) =16tGV(9). (1.90¢)

Of course, there may be “pathological” situations which require
more caution. The O’Hanlon theories, for instance, can be de-
scribed by a theory of the form (1.86) with K(c) = 0, but is
incompatible with any theory of the form (1.88).

Brans-Dicke <+ f(R) Theories

We can also prove the equivalence between Brans-Dicke theories
(more precisely, O'Hanlon theories) and f(R) theories. Taking the
lagrangian (1.85) with w = 0 and performing the substitutions

¢=f(¢) (1.91a)
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U(p) = f(@) — of'(¢) (1.91b)
yields
L 1
=3 = 16rc SO T R=9)f () (1.92)
Setting ¢ = R, we finally obtain the desired result
75~ e 199

which corresponds precisely to the action (1.77).
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COSMOLOGICAL EVOLUTION IN R?> GRAVITY

E.V. Arbuzova, A.D. Dolgov, L. Reverberi, JCAP 1202, 049 (2012).

2.1 INTRODUCTION

As stated in the Introduction, one of the first models of extended
gravity proposed was the Starobinsky model [138]:

A :—mzpl/d‘wa/—g R—R—2 (2.1)
8rae 167 6m? )’

where m is the only additional parameter and has dimensions
of [energy]. In this Chapter, we will examine some cosmological
and particle-physics features of this simple theory, which we will
use later in the Thesis for more complicated f(R) models.

Cosmological models with an action quadratic in the curva-
ture tensors were pioneered in [136, 137]. Such higher-order
terms appear as a result of radiative corrections to the usual
Einstein-Hilbert action after taking the expectation value of the
energy-momentum tensor of matter in a curved background. In
such models the universe may have experienced an exponen-
tial (inflationary) expansion without invoking phase transitions
in the very early universe. This model has a graceful exit to
matter-dominated stage which is induced by the new scalar de-
gree of freedom, the scalaron (curvature scalar), which becomes a
dynamical field in R*-theory.

The reheating process, due to gravitational particle production
from scalaron (curvature scalar) oscillations, leads to a transition
to a radiation-dominated FLRW universe. These features of the
model are thoroughly discussed, for instance, in refs. [185-188].
Cosmological dynamics of fourth-order gravity were investigated
in several works, see e.g.[189, 190] and references therein.

A somewhat similar study was performed in [191] where a
version of massive Brans-Dicke (BD) theory without kinetic term
(i.e. with BD parameter w = 0) was considered. The Hubble pa-
rameter and curvature demonstrate oscillating behaviour which
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resembles the one found in our paper (and earlier in many others),
but quantitative features are very much different.

Beside R2-terms, terms containing the Ricci tensor squared
R,y R" are induced by radiative corrections as well, and with
similar magnitude. In principle, there also appear terms quadratic
in the Riemann tensor, ~ R”‘W"wa, but the Gauss-Bonnet in-
variant

G = R* — 4R"™Ryy + R"¥P" R g, (2.2)

is topological (total divergence) in 4 dimensions, therefore its
variation does not contribute to the field equations [192, 193]. This
implies that the most general quadratic theory can be expressed
as the two-parameter family of theories

f(R) = AR*+BR"R,,. (2.3)

However, the natural magnitude of such radiatively induced
terms is quite small. The characteristic mass parameter, in fact, is
of the order of the Planck mass in both cases, which makes this
situation non-interesting for applications discussed below. On the
other hand, R? cosmology (without R,y R") has been considered
in the literature with much larger magnitude of R? than the
natural value from radiative corrections. The assumption of large
R? terms is made ad hoc to formulate a model which could, for
instance, cure singularities. We follow the spirit of those works.
However, it could be worthwhile to study the consequences of
more complicate models with both R? and R,y RM terms. It may
be a subject for future investigation.

In section 2.2, we present the field equations for the model (2.1)
in a homogeneous, isotropic Friedmann Universe. After briefly
considering inflation in R? gravity in Sec. 2.2.1, we will now move
on to the radiation-dominated (RD) epoch, which represents the
larger part of the history of the Universe (in terms of redshift,
not time). Relativistic matter was dominant until redshifts of the
order of 10%, which corresponds to the moment of the matter-
radiation equality. From the observations of the abundances
of light elements we know for sure that at the time of big bang
nucleosynthesis (BBN) the Universe was dominated by relativistic
matter with very good precision.

If earlier in the course of the Universe expansion and cooling
down there were first order phase transitions in the primeval
plasma, relatively short periods of vacuum-like matter dominance
may have taken place. We also expect some (small) corrections to
the RD regime due to the existence of particles in the plasma with
masses comparable to the Universe temperature, and because
of the trace anomaly in the energy-momentum tensor of matter
which leads to Tﬁ # 0 even for massless particles. The Universe
might have even been in a practically pure MD regime after the



2.2 FRIEDMANN UNIVERSE IN R*> GRAVITY

post-inflationary RD stage. This regime could have been created
by primordial black holes which evaporated early enough to
bring the Universe back to the normal RD epoch [194]. The last
possibility is especially interesting in the case of R2-inflation since
the initial oscillations of R would be damped due to particle
production at the end of inflation, and the GR solution could be
restored.

All these deviations from the pure RD regime would in turn
induce deviations from the GR solution (R = 0) and give rise to
oscillations of R even if they were initially absent.

In this chapter, we study the cosmological evolution in the
R2-model assuming rather general initial conditions for R and H
and dominance of relativistic matter. In particular, we will not
restrict ourselves to the case in which inflation was indeed driven
by the R? term, but keep the inflationary scenario open to other
possibilities.

2.2 FRIEDMANN UNIVERSE IN R?> GRAVITY

The modified Einstein equations for the model (2.1) read

1 1 1 81
Ryv = 58wR = 32 <Ruv — 7R + 8wl — V},VV> R= %Tﬂv'
(2.4)

where [1 = ¢"V,V, is the covariant D’Alembert operator.
We assume the Friedmann-Robertson-Walker metric with line-
element given by

dr?
1—kr2

ds* = dt* — a*(t) + r2do* +r*sin* 0dg?| . (2.5)

In what follows we will neglect the three-dimensional space cur-
vature’, hence setting k = 0. The curvature scalar R is expressed
through the Hubble parameter H = 4/a as

R = —6H — 12H2. (2.6)
Therefore, the time-time component of Eq. (2.4) reads

. . H?2 mPH  4mm?
4+ 3HH — —— -
PR gt T T3

0, (2.7)

where over-dots denote derivative with respect to physical time .
Taking the trace of Eq. (2.4) yields

R+ 3HR + m? <R+87;T5> —0. (2.8)
Mop,

1 This is a very good approximation, at least during the RD epoch.
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This equation is an oscillator equation for a homogeneous scalar
field (the “scalaron”) of mass m, with a source term proportional
to the trace of the energy-momentum tensor of matter. General
Relativity is recovered when m — co. In this limit we expect to
obtain the usual algebraic relation between the curvature scalar
and the trace of the energy-momentum tensor of matter:

m% Rr = —87TT;f. (2.9)

However, unlike the usual GR, in higher-order theories curvature
and matter are related to each other differentially, not simply
algebraically. Therefore, the theory may approach GR as m — oo
in a non-trivial way or even not approach it at all.

For a perfect fluid with relativistic equation of state P = ¢/3,
the trace of the energy-momentum tensor of matter T;f vanishes
and R satisfies the homogeneous equation. The GR solution
R = 0 solves such equation, but if one assumes that either R
or R not vanish initially, the general solution for R will be an
oscillating function with a decreasing amplitude. The decrease
of the amplitude is induced by the cosmological expansion (the
second term in Eq. 2.8) and by particle production by the oscil-
lating gravitational field R(t). The latter is not included in this
equation and will be taken into account below in sec. 2.3.

It can be easily shown that the left-hand side of Eq. (2.4) is
covariantly conserved, which in turn implies the covariant con-
servation of the energy-momentum tensor of matter. The latter
allows to write the evolution equation for the matter content, as-
suming it to be a perfect fluid with energy density ¢ and pressure
P:

0+3H(¢+P)=0. (2.10)

As is well known, only two of equations (2.7), (2.8), and (2.10) are
independent.

From Eq. (2.10) it follows that relativistic matter, having equa-
tion of state P = ¢/3, satisfies

Or +4Hor = 0. (2.11)

In what follows we will use either the set of Eqgs. (2.7) and
(2.11) or the set (2.6) and (2.8) as the basic equations. They
are of course equivalent but their numerical treatment may be
somewhat different.

2.2.1  Inflation

First, let us all briefly review the inflationary scenario in R®
gravity. Taking (2.7) and (2.6), we are left with the single evolution
equation for the Hubble parameter H:

2 2

H+3HH—E—|—7H—O. (2.12)
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Of course, the relative importance of the various terms in the
previous equation determine very different regimes; this will
become particularly evident when we study the RD epoch later
in the chapter.

In order for inflation to take place, we need a sort of slow-roll
conditions for H, namely:

H < HH, (2.13a)
H < H?. (2.13b)

Under these assumptions, Eq. (2.12) reduces to

2

3HH + m?H ~0, (2.14)

which is solved, apart from the trivial solution H = 0, by

2 242

H(t) = Hy— n%t = a1(t) = ap exp (Hot — mﬂ) . (2.15)

This solution describes a quasi-de Sitter stage in which H de-

creases linearly with time, with a relatively small scope. However,

this phase is unstable. Indeed, combining this solution with the
slow-roll condition (2.13b), we find

H>m. (2.16)

This “large-field” condition gives us the limit time ¢ f until which
the inflationary regime holds:

6(Hy—m
H(tf) ~m = t;~ (1(;12). (2.17)
For t > tf, the inequality (2.13b) is reversed and (2.12) becomes
2 w2

H—ﬁ—i—?Hz , (2.18)

which has the solution:

H(t) ~ cos? (":) : (2.19)

We can assume that including the effect of the 3HH term in (2.12)
will result in a modulation of this solution, that is

cos? <W21t> — h(t) cos? <n;t> , (2.20)

where h(t) is slowly varying. In particular, neglecting i, h?/h
and Jih, we obtain the approximate solution
2

ht) = 3(t—ti) + 3sin(mt)/m’ (2.21)

31



32

COSMOLOGICAL EVOLUTION IN R? GRAVITY

where t, is some arbitrary integration constant. Hence, the Hub-
ble parameter behaves practically as

h(t) ~ = (2.22)
which corresponds to a matter-dominated (MD) Universe. Indeed,
the Universe is now completely dominated by the non-relativistic

scalaron, having mass m.
The total expansion during the quasi-de Sitter phase is:

a(tf) ~ exp <3H(%> ‘ (2.23)

In order to have a cosmologically relevant expansion, say 60
e-foldings, we only need

Hp
— ~4 .
- / (2.24)

which is a quite reasonable value in this framework?.

2.2.1.1 Reheating

After the quasi-de Sitter stage is over, as we have seen, the Hubble
parameter H and consequently the scalar curvature R display an
oscillatory behaviour and Universe is in a scalaron-dominated,
MD regime. Such oscillations will be damped as a result of gravi-
tational production or relativistic SM-particles, and the Universe
will eventually be filled with ordinary relativistic matter and
expand as in GR. We will not resent a more accurate description
of these mechanism, as gravitational particle production in this
model will be extensively discussed in Sec. 2.3.

For more details about inflation and reheating in R? gravity,
see [185, 187] and the more general, but very comprehensive [29].
A very interesting topic is also the equivalence of R2-driven infla-
tion and Higgs-inflation; for a detailed discussion, see e.g. [195].

2.2.2  Radiation-Dominated Epoch

We now turn the attention to the RD epoch. After inflation, the
reheating process filled the Universe with relativistic SM-particles.
Some of the effects mentioned at the end of the introduction to
this chapter (Sec.2.1), however, may generate deviations from the
perfectly GR expansion and induce non-trivial effects, which we
will now investigate.

Remember that Hy > m is an essential condition for the very existence of the
inflationary period.
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It is convenient to rewrite the equations in terms of the dimen-
sionless quantities

T = Hyt, h=

(2.25)

H

Hy’ _ 8mom
m 3mle2
Hy

r= RH% , w =
where Hj is the value of the Hubble parameter at some initial

time fy. Thus, equations (2.7), (2.8) and (2.11) can be recast as the
two equivalent systems:

h/Z 2h2 -y
" I -
W+ 3hi 2h + h =0 (2.26)
Yy +4hy =0,

and

"+ 3hr' + w?r =0,
r+6h' +12h* =0.

(2.27)

Here prime indicates derivative with respect to dimensionless
time 7. If we impose the “natural” relativistic initial conditions:

T = 1 / 2 ,
ho=1,
? (2.28)
I’lo - —
yo=1,
we find that there exists the exact solution
1 1
hzﬂ, y:@, r=20, (2.29)
corresponding to the usual RD solution in GR:
1 3m3, H?
H= — — P R=0. )
2t’ ¢ 8t (2:30)

This solution, however, may deviate from GR because of devi-
ations of the real expansion regime from the purely relativistic
one. In principle, depending on the initial conditions, the solu-
tions may oscillate around some value of ht, which may itself be
different from 1/2, and in fact this is what we will find later on.

Any non-negligible deviation from the GR solution may lead
to observable effects, and hence to observational constraints on
m, the only free parameter of the model. We will tackle these
problems below both analytically and numerically.
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2.2.2.1  Approximate Analytical Solutions

First we assume that the deviations from GR are small and expand

1

h= 7z + hyq, (2.31a)
1

y = 741—2 + yl , (2'31b)

assuming that #1/h < 1 and y1/y < 1, and linearize the sys-
tem of equations. It is convenient to introduce a new unknown
function z; = I}, so we obtain three first-order linear differential
equations with time-dependent coefficients:

/ 5 2 2
zl:—ﬂzlqL 5 — w” | hh+ 1w
W= (232)
1 2
= o

We can find an approximate analytical solution of this system
in the limit of large times, or wt >> 1. In this limit we can treat
the coefficients as approximately constant and find the eigenval-
ues and eigenfunctions of the system of differential equations.
This method essentially consists in separating “fast” and "“slow”
variables.

The characteristic polynomial of (2.32) is

972 4 3w? 2
_ 13 2 _
P(A) =X+ ot +A (1'2 +w > + 3 (2.33)
and the eigenvalues (for large wT) are approximately
3 3
N —— ~——tiw. .
A petl A23 ;T (2.34)

The general solutions of the system (2.32) is a linear combination
of eigenvectors V:

2] = Leve | [Tar ()] (235)
where
oep 2y
1 (2.36)
Va3 = [1’ 4 ilw'_57/4iiwrz}

i (2.37)
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Since the solution must be real, one should consider only the
real part. Let us note that the eigenvectors V; are normalised to
almost constant values, up to terms of order 1/ 2. In principle
the coefficients C; depend upon time but this dependence is quite
weak, Cj ~ Cjp 4+ Cj1/7%, and asymptotically negligible.

The correction to the GR solution corresponding to the first
eigenvalue Ay quickly disappears, since hgl) ~1/73 and ygl) ~
1/7*, and so it can be asymptotically neglected. The solutions
for hy corresponding to A; 3, instead, oscillate and decrease more
slowly than the GR solution, in fact

23) sin(wT + @)
hg )~ Y7 e (238)

while the solution for the energy density also oscillates but drops
down faster than the GR one, y ~ 7-!/4. The complete asymp-
totic solution for i has the form:

1 c¢psin(wt +
h(t) ~ e 15_3/4({)). (2.39)

For sufficiently large T the second term would start dominating
and the linear approximation ceases to hold. Below we will obtain
approximate analytical solutions even in the non-linear regime,
in the high-frequency limit.

Before that, it would be anyhow instructive to find the solution
for the equivalent set of equations (2.6) and (2.8) in the same
approximation of small deviation from GR. We rewrite these
equations in the form:

r=—6h —12h%,
"+ 3hr' + w?r = 0.

(2.40)

Introducing the new function q; = 1/, we obtain the system of
three first-order linear differential equations:

3
= —5e = P
r=q (2.41)
12
hl - —67’—?1’11

with characteristic polynomial

P(A) = <X+i> (Xz+i§+w2> .

Hence, the approximate eigenvalues for wt > 1 are

~ 2 ~ 3 .
A= = A3 = e +iw. (2.42)
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As above, the solutions of the system (2.41) are linear combina-
tions of eigenvectors V;:

-~ T

[, 7,q1) = Y CiViexp {/ dt’ )\]'(T/):| , (2.43)
where

Vi=1[1,0,0],

. T 3 . (2.44)

Vas = [_6(5/4iiwr)’ e i“"} ’
and

L (7 !
exp T 1(T ) ~ ; ’
eiiwr (245)

T
exp [/ dt’ Agrg(r/)} ~ T

So the oscillating solution for h; is the same as that of Eq. (2.38).
However, the slowly varying (non-oscillating) solution for h;
decreases more slowly, namely as 1/72 instead of 1/7°. Probably
this difference is related to the freedom of the zeroth order GR
solution with respect to the time shift:
1 1 0

" arre) a2 (240)
Such freedom tells us that terms of order 1/72 in the first-order
corrections are in some sense arbitrary, so the solution h; ~
1/7? is spurious and should be disregarded. Anyhow the non-
oscillating solutions for h; quickly disappear asymptotically and
can be neglected.

The solutions found above describe the oscillations of the Hub-
ble parameter around the GR value 1/(27). Moreover, the ampli-
tude of such oscillations decreases more slowly than 1/, so at
some stage the oscillations will become large and the condition
hy < h will no longer be satisfied. After this stage is reached,
the linear approximation is no longer valid and the method used
above becomes inapplicable.

However, we can still find the asymptotic behaviour of the
exact nonlinear equations (2.6) and (2.8) at large times looking
for solutions in the form:

h(t) = A(T) + Bs(T) sinvt 4 B.(T) cosvT, (2.47a)
r(t) = C(7) 4+ Ds(7) sinvt + D¢(T) cosvT. (2.47b)

The coefficients A, B, C, and D are slowly varying functions of
time and v, assumed large3, may in principle be different from

When compared to the variations of the slowly-varying coefficients, i.e. v >
A/A~B/B, ...
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w. As we will see below, this is indeed the case due to radiative
corrections (scalaron mass renormalisation). In the approximation
taken here we find v = w.

We obtain approximate equations for these functions equating
the coefficients in front of the slowly varying terms, and in front
of sinwTt and cos wt. These equations are approximate because
we do not take into account higher-frequency terms which appear
as a result of non-linearity, but the approximation happens to be
quite accurate. Doing so, we find from equations (2.40):

A +2A% +B2+B>=-C/6, (2.48a)
B, — B.v +4ABs = —D;/6, (2.48b)
B.+ Bsv +4AB. = —D. /6, (2.48¢)
1 1
c"+3 (AC’ + EBSD; - 5BCDQ—
1 1 )

_EVBSDC + EVBCDS +wC=0, (2.48d)

D! —2vD! — v*Ds +3A(D, — vD.) + 3C'Bs + w?D; = 0,
(2.48e)

D! +2vD! —v*D, + 3A(D. 4 vDs) + 3C'B. + w?*D, = 0.
(2.48f)

Assuming
_a _bs b _c s _dc

A_;/ BS_?/ BC_?/ C_gl DS_?/ DC_?/ (249)

and keeping only the dominant terms (lowest powers of 1/7) we
obtain the solutions

2 2

v =w’, (2.50a)
ds = 6wb., (2.50Db)
d. = —6wby, (2.50¢)
b2+ b2 =2a(2a —1), (2.50d)
c=18a(1—2a). (2.50€)

It is interesting that equation (2.50d) demands a > 1/2, that is an
expansion faster then normal, in presence of oscillations. We will
see from the numerical solution that this is indeed the case.

To summarize, the situation is the following: we initially as-
sume 11 /h < 1 and solve the linearised systems (2.32) or (2.41),
finding that the Hubble parameter oscillates around the value
1/(27) with amplitude growing with time as h; /h ~ T'/4; even-
tually, such oscillations (and hence non-linear terms) become
dominant and the linear approximation becomes invalid. How-
ever, we can proceed further using a sort of truncated Fourier
expansion which allows us to take into account the non-linearity
of the system in the limit wt > 1. As a result, we find that
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hi/h — const. In other words, the amplitude of the oscillating
part of h asymptotically behaves as 1/7, i.e. in the same way as
the slowly-varying part of h.

To be completely sure about these analytical results we have to
check if the exact numerical solution of the system (2.26) shows
the same behavior. Still, the analytical estimates presented above
are of great interest for the calculation of the evolution of R and
H when particle production effects are taken into account.

2.2.2.2  Numerical Solutions

We integrate the system of equations (2.26) starting at 7o = 1/2,
with the initial conditions

ho =1+ 6hy
hy = =2+ 6k, (2.51)
Yo = 1+ (Syo,

where 6hg, ohj, and dyo do not vanish simultaneously. As ex-
pected, numerical integration with the initial conditions given by
Eq. (2.28) gives the usual GR solution & = 1/(27) within numer-
ical precision, so we are interested in the more general case in
which the initial conditions deviate from the GR values.

As it was said earlier, the systems (2.26) and (2.27) are equiva-
lent. However, for the numerical integration of these systems one
has to specify initial values of different quantities. For the inte-
gration of system (2.26) one has to fix kg, h, and yo, while for the
integration of (2.27) the values of hy, 19, and r, must be specified.
The expression of one set of initial values through the equivalent
values of another set can be found using the equations under
scrutiny. Indeed, once hy, hj, and y, are chosen, h{ is uniquely
determined through the first equation in (2.26), and consequently
ro and r(’) are specified as well, via (2.27). After all, both systems
are equivalent to the same single third-order differential equation,
whose Cauchy problem is determined by three initial conditions.

=

FIGURE 2.1 — Numerical solution of Egs. (2.26) with dhy =
1074, 6h) = 0, yo = 1, and w = 10. The best fit, for the
functional form (2.53), is given by & ~ 1,  ~ 6.29 x 107°.
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FIGURE 2.2 — Numerical solution of system (2.26) with dhy =
1073, 6h) = 0, yo = 1, w = 10. The best fit is & ~ 1,
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F1GURE 2.3 — Numerical solution of system (2.26) with dhy =
1072, 6h) = 0, yo = 1, w = 10. The best fit is given by
a~1,B~626x1073
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We have found that the numerical solutions of the system
of equations (2.26, 2.51) are in very good agreement with the
previous analytical estimates in the linear regime, i.e. for initial
conditions fulfilling the requirements dhy/hy < 1, dyo/yo < 1,
and wt > 1. In figures 2.1, 2.2, and 2.3 we present the numerical
results for the dimensionless Hubble parameter /1 determined
from the system of equations (2.26), with w = 10 and initial
conditions

Shg=10"%, ohH =0, dyo=0  (fig. 2.1) (2.52a)
Shg=10"3%, ohH=0, dyo=0  (fig. 2.2) (2.52b)
Sho =102, ohy =0, doyo=0 (fig. 2.3) (2.52¢)

The function ht is found to oscillate around the central value
h = 1/2 with amplitude h; ~ T73/%. As the deviation from the
ideal GR behaviour increases, the average value of hT also varies,
and in general it is no longer equal to 1/2. A very good functional
form for fitting the solutions is

a+ BT/ 4sin(wt + )

h(T) o7 27 + hosc s (2-53)

where the dimensionless parameters a# and  are very slowly
varying functions of time. This fit is shown, for instance, in
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FIGURE 2.4 — Numerical solution of system (2.26) with dhy =
0.5, 0hj, = 0, yo = 1, w = 10. The best fit at large times is
« ~ 1.14 (dotted line in the left panel), B ~ 0.20. Please
also note, in the right panel, that the oscillating part
of h does not decrease exactly as T-3/%. The apparent
up-down asymmetry in h,c is due to the fact that « is a
function of time, and that we centered oscillations around
its value at late times.

W

figures 2.4 and 2.5, where the numerical solution for éhy = 0.5
is presented. A deviation from the analytical estimates of the
linearised equations is to be expected in this situation, since the
condition dhy/hy < 1 is not fulfilled and non-linear terms in
Egs. (2.26) are important.

For the moment, let us concentrate on the case of small dhy,
in which we can safely take &« = 1. Qualitatively, one notices
that parameter B, evaluated at the same value of wt, increases
roughly linearly with the initial displacement 6hy. Moreover,
when solving the system of equations (2.26) with éhy = 0 and
varying ohy, we find again a (roughly) linear relation of the form
B o ohy,.

In figures 2.6 and 2.7 we present the numerical results for the
initial conditions

Shg =15, o6hj=0, dyo=0, w =100. (2.54)
a
1.20
1.18
1.16 -
1.14
1.12 -
1.10 -
260 460 660 860 1600 wTt

FIGURE 2.5 — Evolution of a with time. Initial conditions are
those of figure 2.4.

wT
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Results are, at least qualitatively, in agreement with the an-
alytical estimates made in the non-linear regime, for wt > 1.
Evidently, the amplitudes of the oscillating terms of both 1 and r
decrease faster than T=3/4 (linear regime), and rather close to 7.
Furthermore, the Hubble parameter does not oscillate around the
GR value ht = 1/2, but around a larger value, as expected from
Eq. (2.50d). In fact, for these initial conditions, the best fit at the
considered final integration time is given by a ~ 1.246.

The Universe evolution in R + R? gravity after inflation, with-
out relativistic matter, was considered in [136, 137], where it
was stated that the non-oscillating part of h tends asymptoti-
cally to the GR matter-domination value ht = 2/3, in contrast
to our relativistic case. This scenario is in clear relation with
the scalaron-dominated MD epoch at the end of an R2-driven
inflation (see the end of Sec. 2.2.1 and reference therein).

Our result that hys ~ t3/4 (2.39) in the linear regime agrees
with what found in [137], namely that /1y ~ a—3/2, This, however,
is not in perfect agreement with our results in the non-linear
regime, where we have o ~ 1.246 but h,s. ~ 1/7. This is probably
due to the fact that we have not been able to reach the true
asymptotic regime, but only a pre-asymptotic region.

2.3 PARTICLE PRODUCTION AND BACK-REACTION

2.3.1 Field Equations including Particle Production

Particle production by an oscillating gravitational field in R? grav-
ity was considered in [138, 185], where the particle production
rate was estimated as I' ~ m®/m%,. In this section we present
more rigorous calculations, which are essentially in agreement
with [185]. We will derive a closed equation of motion for the
cosmological evolution of R, considering the back-reaction of
particle production. To this end we consider a massless scalar

g
AN =R

FIGURE 2.6 — Numerical solution for the dimensionless Hubble
parameter /1 with initial conditions (2.54). Oscillations in
the left panel are of almost constant amplitude, whereas
in the right panel they are clearly decreasing.
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Rt R

FIGURE 2.7 — Numerical solution for the dimensionless scalar
curvature r with initial conditions (2.54).

field ¢ minimally-coupled to gravity. Its action can be written as:

1
Sp = 5 /d4x «/—gg’”a},cpavqx (2-55)

In a spatially-flat FRW background (2.5) it leads to the equation
of motion:

O¢ = ¢+3H¢ — ;—ZAcp =0. (2.56)

The field ¢ enters the equation of motion for R (2.8) via the trace
of its energy-momentum tensor:

T (¢) = —§"3up o = —(39)*.

It is convenient to introduce the conformally rescaled field, x =
a(t)¢, and the conformal time 7, such that ady = dt. In terms of
these quantities we can rewrite the equations of motion as:

R" + 2‘21{’ + m?a®R =
2 2 !
= 87'[1:12131; X% = (0ix)* + %xz - %(xx/ +X'x) |,
(2.57a)
R=—6d"/a°, (2.57b)
i 1 2
X —Ax+8a Rx =0, (2.570)

where (9;x)? = 670;x djx- The action (2.55) takes the form:

1 - a’R
Sy = 2 /d’7 d>x <X/2 - (VX)Z - 6762) . (2.58)

Here and above prime denotes derivative with respect to the
conformal time, not to the radial coordinate.

Our aim is to derive a closed equation for R taking the aver-
age value of the y-dependent quantum operators in the r.h.s. of
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2.3 PARTICLE PRODUCTION AND BACK-REACTION

Eq. (2.57a) over vacuum, in the presence of an external classical
gravitational field R. Our arguments essentially repeat those
of [196], where the equations were derived in one-loop approxi-
mation.

We quantize the free field x(*) as usual:

(0) &’k a o —ik-x | At ikx
XV (x) = /(27'5)325k [ﬂke +age , (259)

where x" = (1,x), k¥ = (E, k), and k,k* = 0. The creation-
annihilation operators satisfy the usual Bose commutation rela-
tions:

[ak, aﬂ = (2m)32E, 6@ (k — K). (2.60)

Equation (2.57c¢) has the formal solution

1
x(x) = X0 0) = 2 [ dyGlxy) )R ()
= x O (x) + ox(x),
where the massless Green’s function is

1
4r|x —y|

(2.61)

Glx,y) = (0~ yo) — Ix— y1) = p-8(ag 7).

(2.62)

We assume that the particle production effects slightly perturb
the free solution, so that Jx can be considered small and the
Dyson-like series can be truncated at first order, yielding

x() =0 - ¢ [ #y Gy @R )
= () + 1 (x).

We can now calculate the vacuum expectation values of the var-
ious terms in the right-hand side of equation (2.57a), keeping
only first-order terms in x(!). All terms containing only x(*) and
its derivatives do not affect particle production and can be re-
absorbed by a renormalisation procedure into the parameters of
the theory, so they are of little interest here. The other terms are
calculated using formulas such as

% / d'y G(x,y) a* ()R (y)x(y) =
= /d4y G(x,y) [i*Royx + 9y (a°R)x] ,  (2.64a)

/ " dk et = m5(a) + iP (1) . (2.64b)
0 4

(2.63)

Collecting all terms, we arrive to the expressions:

(x*) =~ ! /17 de M , (2.65a)

4872 Jy, n—e

43



44

COSMOLOGICAL EVOLUTION IN R? GRAVITY

: 1 . [a(e)R(e)]"
(%~ 00)) ~ ~ 552 /170 de i — (2.65b)
2 /
(xx"+x'x) = —4817 /}7 Z de[”(;)_Rée)]. (2.650)

Substituting these expressions into (2.57a), we obtain a closed
integro-differential equation for R, for which we will find an
approximate analytical solution. We also plan to find the exact
numerical solution of this equation but this is a much more
complicated problem. Still for our purpose the approximate
analytical solution is accurate enough.

First of all, one has to note that despite having oscillating H
and R, the scale factor a basically follows a power-law expansion,
so it varies very little during many oscillation times w~!. Thus,
we expect that diy/n ~ dt/t and that the dominant part in the
integrals in (2.63) be given by the derivatives of R, since R’ ~
wR +t1R ~ wR and wt > 1. The dominant contribution to
particle production is therefore given by Eq. (2.65b), which yields

. . 1 2 1 7 2 R "
R+3HR+m2R2——m—2—4/ ge T EIRE]

127t m%, a* Jy, n—e
1 om ot R(u)

Rrms Ji,  t—u’

(2.66)

~

The equation is naturally non-local in time since the impact of
particle production depends upon all the history of the evolution
of the system. The equation is linear in R, in contradiction with
reference [187], where the rh.s. of the equation is quadratic in R.
This latter result is physically doubtful because if the sign of R
changes, the effect of the particle production term would not be
a damping of oscillations but rather their amplification.

2.3.2  Effects of Back-Reaction

We repeat the calculations of section 2.2.2.1 using the expan-
sion (2.47) and including the back-reaction effects in the form
of equation (2.66). The right-hand side of this equation can be
written as:

Ly RE) [ Rit=1)
to t—t 3 0 T

t—t R+ — € _
:g/ OdTR(t T) +/ dTR(t T)
€ 0

T T
—ty ¢
= g/e at ;—F
t—tg 1
+ gcos(myt) / dt - [Fe cos(myT) — Fssin(my7)] +

t—t
+ gsin(myt) / ' dT% [Fesin(myT) + F; cos(my7)] , (2.67)
€
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where
1 m}
L (2.68a)
127t m Pl
F. = D, +2mDs — m3D,, (2.68b)
F, = D — 2m D, — m3Ds, (2.68¢)

and € is an arbitrary, infinitesimal time. To avoid confusion we
need also mention that T here is merely an integration variable
and has no relation with the dimensionless time T of the previous
sections.

We have introduced here the new notation m; which is equal
to m plus radiative corrections specified below, and which cor-
responds to v in Egs. (2.47a, 2.47b). The difference between m
and m, is not essential under the integral but it should be taken
into account in the Lh.s. of Eq. (2.66), where we should take m;
instead of m.

Please note that the slowly-varying functions C, D; and D,
inside the integrals are to be evaluated at (t — 7), and a dot
denotes derivative with respect to (physical) time ¢, not 7. Because
of the 1/7 factor, the integral is logarithmically divergent, but this
divergence can be absorbed into the renormalisation of mass, m,
and coupling, g. So we separate the integral into two parts: one
where T goes from o to some small parameter €, which determines
the normalisation point at which the physical mass and coupling
are fixed, and another, taken from € to (t — tp), which gives
corrections to the physical qualities due to interactions. More
details can be found in [196].

Equating the coefficients multiplying the slow varying terms,
sinmit, and cosmjt in the same way as it has been done in
sec. 2.2.2.1, see Egs. (2.48), we obtain the same first three equa-
tions (2.48a, 2.48b, 2.48¢), where the effects of particle production
do not directly appear, and the remaining three ones with the
additional terms coming from Eq. (2.66), see also the expansion
(2.67). The latter equations become integro-differential but they
can be reduced to differential equations in the case of fast os-
cillations. So the complete set of equations with the account of
particle production has the form (for convenience we also include
the unchanged first three equations of (2.48):

A+2A%+B2+B2=-C/6, (2.69a)
Bs — Bomy +4ABs; = —Dg /6, (2.69b)
B. + Bymy +4AB. = —D,/6, (2.69¢)
. . 3 . 3 . 3
C+3AC+ SB:D; + 2 BDe — Sm1BsDet
t—t S
+ %mchDs + m2C ~ g/ " dr % (2.60d)
€

D + (m* —m3)Ds — 2my D + 3A(Ds — my D, )+
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. t—# E FE.si
+3CE, ~ g/ s s cos(mT) —Tk ¢ sin(mT) | (2.60)
€
De + (m? — m3)D, 4 2m1Ds +3A(D. + m1Ds)+
. tty F — F,si
+3CB. ~g / " gy Lecos(mT) —= SIn(mT) -, o)
€

In the integrals in the right-hand-side of (2.69e) and (2.69f), which
contain quickly oscillating functions, the effective value of 7 is
about 1/m. Thus we can approximate F(t — T) ~ F(t) and take
such factors out of the integrals. Let us analyse now for example
equation (2.69e) term by term. The analysis of Eq. (2.69f) is similar.
In what follows we neglect D in comparison with m?D.

The dominant term in Eq. (2.69e), which is the coefficient
multiplying Ds, determines the renormalisation of m:

mi = m*+ gm? /t v dg COSMT. (2.70)
€

The next subdominant term, which is the coefficient in front of
D,, determines the decay rate of D,:

. m t=to gt | gm
D, = %Dc/e - sinmt ~ %DC. (2.71)

We skipped here the term ¢D., which leads to higher order
corrections to the production rate. Thus the decay rate is

3
Tem m

Tk = = .
K 4 48md

Correspondingly the oscillating part of R or H behaves as

T

cosmit — e '* cosmyt. (2.73)

We will use this result in the next subsection in the calculation
of the energy density influx of the produced particles into the
primeval plasma.

2.3.3 Particle Production Rate and Relic Energy Density of Produced
Particles

From equation (2.57c¢) it follows that the amplitude of gravita-
tional production of two identical x particles with momenta p;
and p» in the first order in perturbation theory is given by

a’R
A(p1, p2) ~ / dy d°x e (p1, p21xx10) , (2.74)

where the final two-particle state is defined by

iy 4310) .

P = —
p,q_\/i
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The factor 1/+/2 is simply the correct normalisation of the two-
particle state due to the Bose statistics. Using Eq. (2.59), we
find

V2 [ PREPK e i) x

X <0’ ﬁpl apz ak ﬂk/ |0> 7
= \/Eei(Em"'EPz)V—i(Pl"’pZ)'x . (2.75)

Here E7 = k?, and the function 4°R has the form

a*(17)R(17) = D() sin(@n),

where D(y) is a slowly-varying function of (conformal) time,
w is the frequency conjugated to conformal time. Under these
approximations, the amplitude (2.74) becomes

A(p1,p2) = 6\15 /diy dxD(n) (ei(ffﬂ - e—t’@) «

¢!(Epy +Epy )1 p—i(p1+P2)x

(2.76)

Taking E,, > 0 and neglecting at this stage variations of D with
time, we obtain

A(p1, p2) =~ —6\7/3( 1) (27)* 6% (p1 + p2) 6(Ep, + Ep, — @)

(2.77)

In order to find the particle production rate per unit comoving
volume and unit conformal time, we need to integrate the mod-
ulus squared of this amplitude over the phase space, namely:

" _/ dzpldspz |A(p1, p2)|?
2m)°4E,E,, VA

d®py d®
I 2 147p2 4 5(3)
7 D0 | Gt O i)

27) 4 E, Ep,
. D
~ 5761’

~—

where V and Ay are the total volume and conformal time, which
of course go to infinity, n is the number density of the produced
particles, and a prime denotes derivative with respect to confor-
mal time. Since the energy of the produced particles is equal to
w/2, we find for the rate of gravitational energy transformation
into elementary particles:

, o D2(17)c72

¢ = T T2 (2.79)
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and so the rate of variation of the physical energy density of the
produced x-particles is
_ m(R?)
r = 1152

(2.80)

Here, (R?) is the square of the amplitude of the oscillations of R
and we substituted w = am. To obtain the the total rate of the
gravitational energy transformation into elementary particles we
should multiply the above result by the number of the produced
particle species, N,f, so the total rate of production of matter is
0pp = NeffOy-
Note that our result (2.80) coincides with that of [185], although
performed in a slightly different cosmological regime.

Now we can calculate the evolution of the cosmological energy
density of matter, which is determined by the equation:

0= —4Ho+ opp. (2.81)

We assumed here that the produced matter is relativistic and
so the first term in the r.h.s. describes the usual cosmological
red-shift, while the second term is the particle source from the
oscillations of R. Since ¢ is not oscillating but a smoothly varying
function of time, its red-shift is predominantly determined by
the non-oscillating part of the Hubble parameter, H. ~ a/2t, see
Eq. (2.53).

Parametrizing the oscillating part of the Hubble parameter as
Hyse ~ Bcosmt/t, we find for the oscillating part of curvature:

_ 6pmsinmt Tkt
t

Here we took into account the exponential damping of R, which

was for brevity omitted in the expression for H just above.

Correspondingly the energy density of matter obeys the equation:

R ~ (2.82)

ZmN,

0= —ZT(XQ + P Negy 32m§ff e 2Rt (2.83)
This equation can be explicitly integrated as it is, but for a simple
analytical estimate we will use the instant decay approximation.
Namely we neglect the exponential damping term, when 2I'zt <
1, and take # = a7 = 1.25, according to the numerical estimate
of sec. 2.2.2.2. For 2I'rt > 1 we completely ignore the second
(source) term in Eq. (2.83) and take &« = ap = 1. This choice
corresponds to the GR solution and we believe that it is realised
when the oscillations disappear, as follows from the analytical
estimates presented above. Thus at short times, 2I'rt < 1, the
energy density of matter would be:

20 2 3 201 —1
— tin ! ,B m Neff tinl
Q B an (t> + 327-[(2“1 — 1)t 1 - tzlxlf] . (2.84)




2.4 DISCUSSION AND IMPLICATIONS

For large times, i.e. 2I'rt > 1, equation (2.83) becomes homoge-
neous and its solution is simply the relativistically red-shifted
energy density, whose initial value is to be determined from
Eq. (2.84) at t = 1/(2Ig):

0= e (2, Tp) 2 4
7687w m3, (2Tgt)2% | 8§ K

B*Ney 201
o1 [1 — (2Tktin) } ,

(2.85)

where we parametrised the energy density of matter at the initial
time t;, as
2
_ 3mip K
5 -
327tts,

Oin (2.86)
Parameter « is arbitrary, and depends upon the thermal history
of the Universe before t;,. In particular, x = 0 is possible and
does not contradict our picture, since the equations of motion
have non-trivial oscillating solutions even if ¢ = 0.

The first term in equation (2.85) is the contribution of normal
thermalised relativistic matter, while the second also describes
relativistic matter, but this matter might not be thermalised, at
least during some cosmological period. Depending upon parame-
ters the relative magnitude of non-thermalised matter might vary
from negligibly small up to being the dominant one.

2.4 DISCUSSION AND IMPLICATIONS

The characteristic decay time of the oscillating curvature is

1 24m3, 10° Gev'\°
TR = ﬁ = m3 ~ 2 <m> Seconds. (287)

The contribution of the produced particles into the total cosmolog-
ical energy density reaches its maximum value at approximately
this time. The ratio of the energy density of the newly produced
energetic particles and that of those already existing in the plasma,
according to Eq. (2.85), is:

o _ 8B Neps 1— (2Tgtyy)271
Otherm k(21 — 1) (2Tgty, )22

If we take tj, ~ 1/m, then t;,I'g ~ m?/ m%l < 1 and the effects
of non-thermalised matter may be negligible. However, for suf-
ficiently large f and possibly small x the non-thermal particles
may play a significant role in the cosmological history.

The influx of energetic protons and antiprotons could have an
impact on BBN. Thus this would either allow to obtain some

(2.88)
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bounds on m or even to improve the agreement between the the-
oretical predictions for BBN and the measurements of primordial
light nuclei abundances.

The oscillating curvature might also be a source of dark matter
in the form of heavy supersymmetric (SUSY) particles. Since the
expected light SUSY particles have not yet been discovered at
LHC, supersymmetry somewhat lost its attractiveness. The con-
tribution of the stable lightest SUSY particle into the cosmological
energy is proportional to

O~ m%usy/mpl (2.89)

and for mgysy in the range 10> — 103 GeV the cosmological frac-
tion of these particles would be of order unity. This is exactly
what is necessary for dark matter. However, it excludes thermally
produced LSP’s if they are much heavier. If LSP’s came from the
decay of R and their mass is larger than the scalaron mass m,
the LSP production could be sufficiently suppressed to make a
reasonable contribution to dark matter.



CURVATURE SINGULARITIES FROM
GRAVITATIONAL CONTRACTION IN
f(R) GRAVITY

L. Reverberi, Phys. Rev. D 86, 084005 (2013);
L. Reverberi, J. Phys. Conf. Ser. 442, 012036 (2013).

3.1 INTRODUCTION

We have already discussed the constraints for the cosmological
viability of f(R) models recently thoroughly investigated [163,
165], and the few models proposed which evade all such tests,
therefore seeming to be good candidates for a gravitational theory
of Dark Energy [197-199] (see also below, Eq. 3.1).

Testing such modified gravity theories in astronomical/astro-
physical systems is of paramount importance to constrain and
possibly rule out models, and in general to improve our knowl-
edge of the subject. Studies of the stability of spherically sym-
metric solutions have indicated the possibility of an infinite-R
singularity developing inside relativistic, dense stars [200—203].
Important steps forward in our understanding of static, spheri-
cally or axisymmetric astrophysical objects in f(R) gravity have
recently been made (see e.g.[204—207]), and seem to point towards
the existence of a rather general instability /singularity problem
in these theories. Indeed, it has been shown that analogous prob-
lems occur in many different extended theories of gravity, not
only f(R) [208].

Furthermore, similar results are obtained in the case of a less
dense but contracting object [209, 210]. In this case the singu-
larity is not triggered by the large mass/energy density, but
rather from its increase with time. One can write the trace of the
modified Einstein equations as an oscillator equation for the addi-
tional gravitational scalar degree of freedom, which is sometimes
dubbed scalaron and which we will denote with ¢ (see below),
and it is easy to see that R oscillates around the GR solution
R+ T = 0. The frequency and the amplitude of such oscilla-
tions usually grow along with the increasing density, and may
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eventually lead to a singularity. The key point is that { moves
in a matter- and therefore time-dependent potential, in which
the “energy” corresponding to the point ¢ = ¢(|R| — c0) may be
finite, rendering this singular point, in principle, accessible by the
field. This mechanism is strictly related to that responsible for
the past cosmological singularities examined e.g. in [211, 212].

Singularity issues in infrared-modified f(R) theories could in
principle be solved by the introduction of ultraviolet corrections,
as investigated e.g. in [209, 210]. Moreover, oscillations lead
to gravitational particle production, and a large frequency/am-
plitude of the oscillating curvature could lead to a noticeable
emission of cosmic rays [1]; in principle, this could severely affect
the total cosmic ray flux, distort the power spectrum, and even
serve as a possible mechanism to avoid the Greisen-Zatsepin-
Kuzmin (GZK) cutoff [2, 5].

In this Chapter, we focus again on the f(R) gravity models [198,
199] during the contraction of a nearly-homogeneous cloud of
pressureless dust. Using a simplified approach, namely assuming
spherical symmetry, homogeneity and low gravity, we work out
simple expressions for the evolution of ¢ and hence R, and in
particular of the amplitude and frequency of their oscillations. We
confirm the existence of a finite-time, future singularity, whose
appearance depends on the duration of the contraction and on
both model- and physical parameters, and derive estimates for
the typical timescales for this process.

Once we derive general results, we will apply them to two very
similar models recently proposed and cited above:

AR,
"1+ (R/R.)~2

2 —n
<1+§%> —1] . [199] (3.1b)

Frs(R) = [198] (3.12)

Fs(R) = AR,

The subscripts stand for, respectively, Hu-Sawicki (HS) and Starobin-
sky (S). For both models, if A is of order unity R, is of the order of
the present cosmological constant (for details we refer the reader
to the specific articles), which is much smaller than the typical
values of R and T in astrophysical systems, such as pre-stellar,
pre-galactic, and molecular clouds. Hence, in many cases we will
take the limit |R./T| ~ R./R < 1 before presenting the final
results.

For simplicity, we assume that the contraction of the system is
stationary, i.e. the mass density grows linearly with time, on a
typical timescale fc,

T<t) = TO (1 + t/tcontr) . (32)

We must stress that this evolution law should not be regarded as
accurate from a physical standpoint; the difficult task of comput-
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ing the full dynamics of contraction of a self-gravitating system
goes way beyond the scope of this Thesis (see e.g. [213] and
references therein).

Nevertheless, unless the contraction follows a radically dif-
ferent behaviour, and especially until t ~ tcusr, results obtained
with this form should be qualitatively correct. We will find that
a faster contraction contributes positively to the formation of a
singularity, so we expect that contraction laws T ~ t7 with v > 1
will lead to singularities even more effectively than what appears
from our results. On the other hand, a slower contraction could
help delaying (v < 1) or even avoiding, if the contraction would
stop at some moment, the singularity.

In this Chapter we will use the following dimensionless param-
eters characterising the physical properties of the system under

scrutiny:
Ry = mi%’l (=R.)
~ 81 102 gem—3’
_ Qo
029 = W , (3:3)
Fin = tcontr
1= 1010 years

3.2 CURVATURE EVOLUTION IN CONTRACTING SYSTEMS
3.2.1 Field Equations
We start as usual from the gravitational action
— 4
Agrao = — 16n/d x/~% f(R
"My

4
_ 167T/dx,/ R + F(R

from which one obtains the field equations

(3-4)

1
J(,R(R)Ryv - Ef(R) Suv + (ngz - VVVV) frR(R) = Ty - (3-5)
The corresponding trace equation reads
3V2Fg + RFg —2F — (R+T) = 0. (3.6)

We consider a nearly homogeneous and spherically symmetric
cloud of pressureless dust, hence

Ty, ~ U (3.7)

where ¢, is the mass/energy density of the cloud. The homo-
geneity of the could allows us to neglect spatial derivatives, as
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intuitively clear and explicitly proved in [209]; assuming also
low gravity, the D’ Alambertian operator can be replaced by the
second derivative in the time coordinate: VZ — 8%. Of course,
a more careful investigation of the problem should take into ac-
count both time and spatial derivatives; this could be a subject for
further research. Also notice that these and following arguments
can also be applied to cosmology, if we consider the evolution of
the Universe, backwards in time, during the matter-dominated
epoch [211, 212].

The approximation of low gravity and the formation of curva-
ture singularities may seem utterly incompatible, but this is not
true: in fact, R ~ 9°g,, may diverge even if g, is very close to
uw (Minkowski). Details about this statement and about the dust
assumption (p/0 < 1) can be found in Sec. 3.5.

As mentioned in the Introduction, in a typical astrophysical
situation we have

T R

o~ =1 .
R Rc>> , (3-8)

so that both models reduce to
R 2n
Fyg ~ Fs >~ —AR, [1 — <RC) ] . (39)

In this limit, these models are basically equivalent to adding a
A-term, since F is almost constant; in fact, we clearly have

>

See also [198, 199] for further details. Therefore, R+ T +2F =0
is practically equivalent to GR with the addition of a cosmological
constant A, that is the usual ACDM model*; in what follows,
when referring to “GR” for brevity, we will mean precisely this.
We also have Fr ~ A(R./R)?"*!, thus

R+ F=R+2A, A=

(3.10)

[R| > |F| > [FrR]|. (3.11)
Under these assumptions, Eq. (3.6) becomes
307Fgr — (R+ T +2F) =0. (3.12)

Since F ~ A < T, the only contribution of this effective cosmo-
logical constant is to offset the GR solution from R+ T = 0 to
R+ T +2F = 0, which is a very small (and almost constant in
absolute value) correction of order |R./T|. One should be careful,
because it may appear from exact numerical results that F is of
the order of R + T or even larger?; nevertheless, its effect in (3.12)

1 Of course, these f(R) models do not explain the nature of Dark Matter.
2 But not of the order of R or T individually!
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is completely trivial, unlike the dynamical term Fg, because even
large variations of R, especially when |R| increases, result in ex-
tremely small variations of F (see equation 3.9). From now on,
we will include these corrections using

T=T+2F~T+4A, (3.13)

However, we will still have to consider T alone because it is the
quantity directly related to the physical energy/matter density at
a given point and a given instant of time.

Defining the new scalar field

¢ = —3Fg, (3.14)

which in the cases considered is approximately

R 2n+1
CHs,s =~ 6nA <RC> , (3.15)
we rewrite (3.12) as an oscillator equation:
. ~ . ou
C+R+T=0 <« é—i—a—C:O. (3.16)

Again, we stress the underlying assumption that T = T(t). We
are testing the behaviour of curvature with a simple, smooth
external energy density evolution, which is arbitrarily chosen. As
we have already mentioned, a more complete analysis could be
subject of stimulating further research.

Usually, it is not possible to invert (3.14) to obtain R = R(¢) and
thus a simple form for U(¢), expect perhaps in some limit, but
it is rather clear that solutions will oscillate around the solution
R+ T = 0, with frequency roughly given by

, _2%U
i

o1

Rif=0  9G/OR 617

R+T=0

If w? < 0, one expects instabilities, and this is exactly the kind of
instability of refs. [158, 159]. One can immediately see that for
the two models considered we have

R T 2n+2
2~ c -
“ = T enA2n +1) ( RC> >0, (-18)

so there is no instability problem. We remind the reader that with
our sign conventions R, < 0, T > 0.

Even with w? > 0, however, we will show that if the model fulfils
some requirements, then curvature singularities can develop. In
particular, we need that

1. there exist a certain value ¢s;ye corresponding to |R| — oo,

2. the potential be finite in g, i.e. U(Csing) < .
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3.2.2  Energy Conservation and the Scalaron Potential

If the previous requirements are met, then in general it is possible
that ¢ reach ,;,, and hence |R| — co. We can see this, for instance,
from the “energy” conservation equation associated to (3.16), that
is

%éz +U(g,t) — /tdt’ % (t') = const, (3.19)
where
~ 4 N s
u@t =Tme+ [ REae. (320)

The last term in the Lh.s. of (3.19) is due to the explicit time-
dependence of T, and if 9T /9t > 0, as is the case in contracting
systems even without specifically assuming?3 (3.2), it will produce
an increase in the “canonical” energy (kinetic + potential).

Note that this is true for ¢ > 0, whereas for ¢ < 0 it would
give the opposite behaviour. However, it has been shown that
the condition Fr < 0, corresponding to ¢ > 0, is crucial for the
correct behaviour of modified gravity models at (relatively) low
curvatures [212].

As we have previously mentioned, usually it not possible to
invert the relation ¢ = ¢(R) in order to obtain R = R(¢) and solve
the integral in (3.20) exactly. Nonetheless, for the two models
considered and in the limit R/R. > 1 this procedure is possible;
apart from an additive constant, which we can put to zero, the
approximate potentials are equal and read

U~ T(t) &+ 3AR.(2n +1) (6%) - (3.21)

The shape of this potential is shown in Fig. 3.1. The bottom of
the potential, as expected from (3.16), is in R + T = 0. Moreover,
Gsing = 0 and U ({sing) =const.

3.3 ADIABATIC REGION

For simplicity, let us initially assume that the oscillations of ¢ in
its potential are “adiabatic”, in the sense that at each oscillation ¢
moves between two values

Cmin(t) s gmax(t) ’ (3.22)
at roughly the same “height”, that is with

u(gmin) = u(émax)-

Assuming (3.2), T /ot = To/teontr # TO/tcontr (see Egs. 3.2 and 3.13), so (3.19)
is further simplified, with the last term simply being proportional to [ Lay C.
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\J ¢

F1GURE 3.1 — Qualitative shape of potentials for models (3.1),
assuming R/R. > 1. For both models ¢ = &y = 0 (the
black dot) corresponds to the singular point |R| — oo.

The typical time evolution is also shown, from light grey
(earlier times) to black (later times).

We should stress that ¢,,;, and qx are considered to be slowly
varying, so that it makes sense to compare these two values even
though they do not correspond to the same instant of time, but
are rather evaluated at different times with a 5t of order w™1.

The validity of this approximation can be understood as fol-
lows: the potential is roughly of the order of T & whereas the
variation of the integral term in (3.19) in one oscillation is of order
T ¢/w. If w is much larger than the inverse contraction time, that
is

T
w > =,
T

which is the case for the models considered below (see Eq. 3.1)
provided that the contraction is sufficiently slow, then the inte-
gral term can be considered approximately constant over a large
number of oscillations.

Assuming (3.2), this basically results in the condition

W teontr
27

where the factor 27t only indicates that the period of the oscilla-
tions of ¢ is 27w~ 1, not wL. For the models under investigation,
this gives roughly

> 1, (3-23)

211+2 tz

Q29 70
> 142. .2
nA(2n +1)Raa+ (5-24)

Later, we will relax this assumption and work in the opposite
regime, where T/T > w.
Let us expand ¢ around the “average” value

&(t)=¢(R=-T), (3.25)
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which corresponds to the value of ¢ if the behaviour of the system
were described by the usual GR solution R 4+ T = 0. We could
be misled to infer from (3.12) that with this definition ¢, must
exactly satisfy

gu = O/ (326)

so that ¢, ~ t. This is not true, because near the GR solution
we can no longer neglect sub-leading terms in (3.6) and hence
use (3.12). In some sense, (3.26) remains true provided that we
interpret it as the statement

|8a] < IR, T. (3-27)

Ultimately, ¢, is the reference point for ¢ because it corresponds
to the bottom of its potential (see Eq. 3.16). Nonetheless ¢, is
not the solution of (3.16), but merely a test function helping us
quantifying how the behaviour of R in f(R) gravity differs from
that of GR. After all, { in GR is identically zero.

Thus we write

() = Calt) +¢1(1) (3-28a)
=&, () + a(t) sind(t), (3.28b)

where
D(t) ~ /t dt' w . (3.28¢)

The function « is also assumed to be relatively slowly-varying,
that is

&
- <L w. (3-29)
o

In terms of the quantities of (3.22), we have

Cmin = Ca— &, Cmax = 8o+ . (3-30)
3.3.1 Harmonic Regime

We initially assume that the amplitude of oscillations is small
enough that the potential can be approximated by a harmonic
potential:

(G, 1) = Uo(e) + 5 (5 — E)?, G31)

where w was defined in (3.18) and as we can see from equa-
tions (3.15) and (3.21)

2n
R,

Uo(t)
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This is equivalent to considering the first-order approximation in
¢1 (defined in Eq. 3.28a). Equation (3.16) then reads

G+ Wt~ —Ca. (3-33)
Using the expansion (3.28b) and neglecting ¢, and & yields

wo

w &
L2t o £) ~ agy |~
w o a(t) = a0 w(t)

(3-34)
As long as the approximations hold, this can be considered a
rather general result, and the specific F(R) model will determine
the behaviour of the oscillations. The value «g in Eq. (3.34) is
strictly related to the initial conditions, that is to the initial dis-
placement from the GR behaviour. We will fix the initial values
of R and R, and from those derive the initial values of & and ¢.
Thus, & can be calculated differentiating Eq. (3.28b), yielding

Go(Ro,Ro) = oo +aowo = &= Co;fa,o' (3.35)
This corresponds to the explicit solution
a(t) = (o = an) lwow ()] (3:36)

Please note that, apparently, we have not made use of the assump-
tion U(sing) < oo considered before. Although not necessary to
perform calculations, this condition is needed to ensure that the
expansion (3.28) be reliable. In fact, oscillations are harmonic only
if the potential is nearly quadratic; this assumption is usually
quite reasonable, especially near the bottom of the potential, but
loses validity, for instance, near points at which U diverges. There-
fore, models in which U(¢) is singular in ¢ = sing = (|R| — o0)
cannot be discussed within the framework of this Chapter.

Also, it is clear from Eq. (3.36) that if &y = &, the amplitude
of oscillations would vanish at all times. This can be immedi-
ately proved to be wrong, for instance numerically. This is an
unfortunate consequence of the approximations used to derive
(3-36), particularly neglecting ¢, in (3.33); evidently, the source
term &, # 0 will produce oscillations regardless of the initial
conditions. When « is initially very small, &, and in general terms
proportional to 1/t2 .. should be kept and the approximations
used are no longer valid. Therefore, Eq. (3.36) is reliable when
(&0 — éap) is “large” enough, say of the order of &,p.

In order to have simple and more or less reliable estimates, we
will use the initial conditions

Ro = —To
. - (3:37)
R0 = —K TO = —K TO/tcontr/
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where « is a free parameter quantifying the initial displacement
from the GR behaviour R + T = 0; in particular, x = 1 corre-
sponds to the situation in which R initially behaves exactly as if
there were no F(R) at all (but still a cosmological constant). For
simplicity, only change the initial “velocity” Ro.

Because of the considerations made above and noting that with
these initial conditions

éO =K éa,O ’ (3-38)

our results will be particularly reliable for values of ¥ not too
close to unity.

Using these initial conditions, the amplitude of the scalaron
oscillations for models (3.1) evolves as (see also Eq. 3.18):

[6nA(2n +1)]? |1 — &||Re[>*+3 Ty

w(t) ~ —o— (3-392)
TO 2 T(t)(n+1)/2
3 3
6nA(2n +1)]2 |1 — «||R.|?"+2 T2

__5m+1) __

T, T(t)7 £

contr

Accordingly, R oscillates around its GR value R = —T. We thus
define

R(t) = —T + ﬁRO Yosc » (340)

where 745 has maximum absolute value equal to 1 and contains
all the information about the oscillations of curvature, whereas
the dimensionless function B contains the information about
the amplitude of such oscillations. Using (3.15) and (3.39), and
expanding at linear order in 3, we find

T2n+2 ‘“|

— . 41
61\ (21 + 1) To |Re[2+1 (5-41)

|B] =

In figure 3.2 we show a comparison between the numerical
solutions of (3.16) and our estimates, using the approximate
model (3.9). With the chosen values of parameters, we have

wo teontr
27

so the fast-roll condition (3.23) is satisfied. The agreement be-
tween our analytical estimates and numerical results is expected
to improve as wy tontr increases. In Fig. 3.3 we show a comparison
of the various terms in (3.6).

~ 30, (3-42)

3.3.2 Approaching the Singularity: Anharmonic Oscillations

As ¢ decreases and |R| increases, & grows so that eventually there
appear anharmonic features in the oscillations of the scalaron.
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F1GURE 3.2 — Comparison of the evolution of ¢ for the Hu-
Sawicki model with the predicted result, see equa-
tions (3.28) and (3.36). The values of parameters used
are: 1 =3, A =Rp9 =1, 09 =2-10% and t;o =1-1079,
x = 0.5. The value n = 3 gives satisfactory result for these
models in reproducing the known cosmological evolution.
Top left: numerical solution for ¢ (black), compared to the
“average” value ¢, (gray), defined in (3.25), normalised in
units of ¢o. Top right: plot of {1 (3.28), compared to the
expected evolution of the amplitude « (3.39), normalised
to Go. Bottom left: evolution of R/Ry with time (black),
compared to the external energy/mass density (gray).
Note that (3.2) is assumed. Bottom right: oscillations of R
around its GR value R = —T; the amplitude grows with
time following (3.41) quite accurately.

This is due to the fact that, when a becomes of the order of ¢,, the
higher-order terms in the potential, which had been neglected
in (3.31), become important. The different shape of the poten-
tial (3.21) on the left and on the right of the bottom (see also
figure 3.1) determines an asymmetry of oscillations around the
expected average value ¢,. In particular, it is easy to infer that,
redefining

Cmin = Ga — X—, Cmax = Ca + 0, (3-43)
we should have a_ < a, because the potential is steeper for

¢ <, than it is for ¢ > ;. Note that in the harmonic regime we
assumed (see Eq. 3.30)

gmax - Ca — gu - Cmin = . (344)

The variation of « is caused by the change in the shape of the
potential with time and the increasing “energy” of the field, in

T . . . .
04 ftcont 0.1 0.2 03 04 ftcontr
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FIGURE 3.3 — Comparison of the different terms in (3.6); the
lines are, respectively, |R + T| (black), |2F| (dashed) and
10'2|FRR| (gray), and parameters are those of Fig. 3.2.
Notice that, as expected, FrR is absolutely negligible,
whereas F is of the order of R 4 T. Still, since it only
produces an almost constant offset in the GR solution,
there is no appreciable effect on solutions as indicated by
fig. 3.2. For details, see the discussion above and below
Eq. 3.11.

the sense of equation (3.19). In the harmonic region, using (3.22)
and (3.31) yields

U(Gmax) = U(Gmin) ~= Uo + %WZ“Z = U+ AU. (3-45)
Note that all quantities involved are functions of time. The term
AU, if we neglect the integral term in (3.19), corresponds to the
maximum value of ¢2/2, that is the value this term has when
the field is at the bottom of the potential. Since we are basically
considering a classical harmonic oscillator, this is an expected
result. Substituting the explicit values, we find

18 [nA(2n 4+ 1) (1 — )2 |Re[4#+2 Tn+1 T,

AU =~ Ton 5

(3-46)

As mentioned before, this result depends essentially on the vari-
ation of the shape of the potential and on the increase of the
energy of ¢, not on the assumption of harmonicity. Therefore,
we will assume that AU continues to follow (3.46) even away
from the harmonic region. In particular, we are interested in the
region very close to the singularity, namely ¢, >~ «. We will see
numerically that this assumption is in good agreement with exact
results.

Near the singularity, the term in the potential (3.21) linear in
¢ goes to zero more rapidly than the other term, so it can be
neglected; therefore, the request that

UG —a)=U+AU, (3-47)
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FIGURE 3.4 — Numerical solution for: n = 3, A = Ry = 1,
029 = 2-10?, 19 = 5-1077. Top Panel: as ¢ approaches
the singularity, its oscillations around ¢, start showing
anharmonic features. Bottom Panel: the lower values of
¢ — Cq are clearly different from the naively predicted
value (3.39), the dashed line in the picture, whereas the
refined result of Eq. 3.48 (thin, solid line) is in very good
agreement with the numerical solution.

using equation (3.22), leads to the solution

2n+1

Uo(t) + Au(tq o
3AR.(2n + 1)

(1) = 8a(t) — o0 | (.49
The explicit forms of Uy and AU for the models considered are
given, respectively, by equations (3.32) and (3.46).

In figure 3.4, we show ¢ approaching the singularity, with
Cmin < Ca. As expected, the old estimate (3.39) no longer repro-
duces the behaviour of numerical solutions, whereas the new
result (3.48) works very well.

3.3.3 Generation of the Singularity

We are now ready to make the final calculations in order to
derive the critical energy/mass density Tj;,g corresponding to the
curvature singularity. We can either use (3.48) or equivalently the
condition

Up + AU = U(Esing) = 0,
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FIGURE 3.5 — Relative errors of table 3.1. The discrepancy be-
tween analytical estimates and exact values decreases as
teontr increases, but tends to a constant value of about
0.2%. The “cusp” at small errors at tjy =~ 1072 corre-
sponds to a change in sign of ATyne/ Tsing. See the text
for further details.

to obtain
_ - T
Tsing . T§n+4
T - ~ 2
To | 6An2(2n+1)2(1 — )2 |R. 2+ Ty

(3-492)

1

[ B2 (14 2ARp9/ 029) 4]
An2(2n +1)2(1 — x)2 R348

12

The corresponding timescale for the formation of the singularity,
using equation (3.2) and (3.13), is simply

%:M_lzni”g_éh\_l (3.49b)

tcontr TO TO —4A ) 349
In table 3.1, we show a comparison of a few analytical estimates
with exact numerical results. The agreement increases with in-
creasing tcouty (and increasing Tiing), which in fact corresponds to
the situation in which the assumptions of adiabaticity are partic-
ularly reliable, see for instance Eq. 3.23.
Even for the smallest values of ¢, considered in Tab. 3.1, the dis-
crepancy between the numerical and analytical values is at most
a few percent. Notice that this is a considerable and perhaps sur-
prising result, since for the first value in table 3.1 (t;p =1 - 1079)
we have

wo Econtr

~2,
27

so that the condition (3.23) is actually barely fulfilled, and yet the
analytical estimates work more than sufficiently well.

In general, the accuracy of our analytical estimate should in-
crease with increasing wy tqontr, as the adiabatic approximation is
more and more accurate. Instead, the relative errors seem to tend
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Tsing/TO Tsing/TO

t1o Eq. (3.49) exact t1o Eq. (3.49) exact

-107%  1.40877 1.56622 1.0-107° 2.23276 2.23157
-107%  1.61826 1.66162 1.2-107% 2.31567 2.3125

2107 175495  1.77693 1.4-107° 2.38818  2.38475
-107®  1.85889 1.87618 1.6-107° 245282 2.44829
-107%  1.94373 1.95447 1.8-107° 2.51128 2.5066

-107%  2.01591 2.02037 20-107° 2.56476 2.55936
-107® 2.07903  2.08139 25-107° 268182  2.67566
-107%  2.1353 2.13753 3.0-107° 278141 2.77482

O 0 NI O Ul & W N -

-107%  2.1862 2.18478 50-107° 3.0806 3.07293

TaBLE 3.1 — Critical energy/mass density Ty, obtained us-
ing (3.49a), compared to the exact numerical result. Pa-
rameters are n = 3, A = Ryg =1, x = 0.5, 009 = 102, so
results depend on the value of t:out;.

asymptotically (mind the logarithmic scale) to a fixed, though
quite small, value 0.2%, for which we have not found an explana-
tion; possibly, this feature could be due to numerical computation
issues. Anyway, the accuracy of our analytical estimates is good
enough for all practical purposes.

One could argue that we should have displayed results for
longer tqntr and perhaps larger oo, which are physically more
realistic. Unfortunately, exploring that range of parameters is
almost prohibitive from a computational standpoint, due to the
massive number of oscillations occurring until ¢ reaches f;y,.
Using equations (3.18) and (3.49) and assuming for simplicity
tsing/tcontr > 1, we obtain in fact

5n+5

tsin
Nyse =~ / fwdt (95’9“ t10> e (3.50)
Jto

so even a small increase in ¢y9 and/or tig, especially for large
n, can lead to an enormous increase in the time required for
computations.

Nevertheless, we have no reason to believe that the satisfactory
agreement of our estimates and numerical results would not hold
in the case of more realistic values of parameters.
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3.4 SLOW-ROLL REGION

Let us relax the assumptions of adiabaticity of section 3.3, and
focus instead on the opposite regime, that is

w tcontr
27T

<1, (3.51)

corresponding to Eq. (3.24) with inverted inequality sign. This
is a slow-roll regime, in which the initial “velocity” of the field
dominates over the acceleration due to the potential. In first
approximation, assuming that & # 0, which is equivalent to
x # 0 in (3.37), we have

Z(t) =&+ ot (3.52)

Notice that ¢ < 0. This behaviour, i.e. the fact that ¢ is roughly
linear in ¢, can also be understood as follows. Considering equa-
tion (3.16), we see that neglecting R 4 T we are left with

¢=0, (3-53)

which has exactly the solution (3.52). This does not mean that we
are precisely sitting on the solution R 4+ T = 0, because &(R+ T =
0) = &, # 0; otherwise, we would not have any singularity since
R would simply follow the smooth evolution of T. Rather, it
means that (3.53) coincides with (3.16) up to corrections of order
R+ T. Since we can estimate

¢

g~ 2 (3.54)
contr
and
~ oUu
R+T=— ~w? )
+ 9% wg, (3-55)

we find that

& 1
R + T wztgontr

> 1. (3.56)

This means that (3.16) and (3.53), in this regime, are equal pro-
vided that we neglect terms of order (w tw,w)2 ; this is a legitimate
approximation when (3.51) holds.

The reader may compare this to the assumptions of Sec. 3.3,
where instead we had neglected terms o t_2, . In that regime,
the dominant contribution to ¢ was oscillatory, with

Eutiar ~ WE,

because we had w teonr > 1.
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R/Ry
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FIGURE 3.6 — Numerical results for parameters: n =3,
A =Ry =1, 029 =30, tjg=1-10"°, x = 0.5. Initially,
wo teontr /27 = 0.2, so the condition (3.51) is narrowly ful-
filled. Top Panel: only a portion of R/Rq (which diverges)
is shown, in order to have a comparison with T/Tj (thin,
solid line); the singularity is reached at tsing/ teontr =~ 0.3
(dashed vertical line; see Tab. 3.2). Initially, the slope
of R/Ry is different from that of T/T, because « # 1.
Bottom panel: ¢ does not follow ¢, (gray line) at all, but
rather decreases roughly linearly with time, in qualitative
agreement with (3.52).

3.4.1 Generation of the Singularity

With the simple solution (3.52), it is straightforward to see that ¢
reaches the singularity g, = 0 at

¢o

éO Econtr

tsing = _gO ’ Tsing ~ Ty <1 -
0

> +4A. (3.57)

Using the explicit expressions for the models under consideration,
we obtain the very simple expression

tsing ~ 1 +4A/TO

~ , .58a
teontr (204 1)k (.582)
or equivalently
Ty 1
el (3.58b)

To (2n+1)x’
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In figure 3.6, we show the typical behaviour of ¢ and R in this
regime, until the singularity.

Basically, we are assuming that the motion of ¢ is completely
dominated by the initial conditions, and that the acceleration due
to the potential is negligible. Of course, for x — 0 the approxima-
tion loses its validity because the initial velocity is practically zero,
but this is not worrisome because the most physically sensible
choices are those with k¥ ~ 1. The theoretical estimates of Tab. 3.2
are in remarkable agreement with the exact numerical values,
and as expected the two results differ significantly only when
x < 1. The relative errors are depicted in Fig. 3.7.

As expected, errors decrease for increasing values of «, ex-

cept for the region x ~ 0.6, which is most likely a numerical
feature and should have no physical meaning. Nonetheless, the
agreement between analytical and numerical values is excellent,
especially considering that the slow-roll condition (3.51) is barely
fulfilled, in fact wq teonsr /27w ~ 0.2.
The particular choice of parameters was motivated by the require-
ment of a somewhat realistic value of f,, in particular not too
small. Taking larger values of 029 and tuning tio to have, say,
w0 teontr /27T < 1072 yields estimates in outstanding agreement
with numerical calculations, because the approximations (3.8)
and (3.51) are all the more accurate. As an example, consider:

n=
A=Rpy =1

029 = 10? = % ~ 0.2%, (3-59)
tip=107"

which gives the terrific value

Aty
% ~3.-1077. (3.60)
sing

The price to pay, however, is to have unnaturally small contraction
times, for instance f,+ = 10 years in this case, therefore further
similar results were not explicitly shown. Still, it is good to notice
that the mathematical accuracy of our estimates improves as
expected.
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K

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9
1.0

tsing / teontr

Eq. (3.58)

1.52381

0.761905
0.507937
0.380952
0.304762
0.253968
0.217687
0.190476
0.169312
0.152381

exact

0.73706

0.592958
0.466093
0.370184
0.302237

0.253789
0.218171

0.191103

0.169917
0.152918

K

1.1
1.2
1.3
1.4
1.5
1.6

1.7
1.8

1.9
2.0

tsing / teontr

Eq. (3.58)

0.138528
0.126984
0.117216
0.108844
0.101587
0.0952381
0.0896359
0.0846561
0.0802005

0.0761905

exact

0.13899
0.127378

0.117551
0.109129

0.101831
0.0954476
0.0898169
0.0848133
0.0803378
0.076311

TABLE 3.2 — Comparison of analytical estimates and numerical

results for tsing /tecontr. The parameters used are: n =3,
A =Ry =1,009 =230,tp=1-1072.

3.5 REMARKS ON THE VALIDITY OF THE APPROXIMATIONS
USED

3.5.1

Low Gravity: guy =~ My

At the beginning of section 3.2, we made the substitution

(3.61)

assuming the homogeneity of the cloud and low gravity. The
latter approximation is usually quite reasonable for astronomical
densities, except for compact stars. However, one may be argue

Atsing/zsing

0.5008

0.100 |-
0.050 |-

0.010 |
0.005 -

0.001 |-

I I I
0.15  0.20 0.30

I
0.50

I
0.70

I I I
1.00 1.50  2.00

|7-6]

F1GURE 3.7 — Relative errors of table 3.2. Noticeably, only for

very small values of «, say less than a few percent, there
is an appreciable difference between our estimate and the
exact result.
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that if R — oo, even with relatively low ¢, we are no longer in
low-gravity regime, and thus the approximation fails. In order to
show that ¢,y ~ 17,y and R — oo are compatible, let us assume
the simple homogeneous, isotropic line element

ds® = dt* — [1+ (1)) dx?, lpl <1, (3.62)

with (t) parametrising the deviation from Minkowski. In this
case, the scalar curvature is
3¢

R=-"" ek —37, (3-63)

so we have

1 tsing t / /
P(tsing) ~ —5/ at [ dt R()
to to
1 tsin( t ~

~ = [ ar [ ar T()

3 Ji fo
-~ To tging To tging
6 18 tcontr

X
~ 028 029 5% (1+ g) . (3.64)

where we have expanded R as in Eq. (3.40), neglected A and
defined

tsing

= (3.65)

contr
Low-gravity corresponds, roughly, to having (3.64) smaller than
unity. Firstly, we focus on the case x < 1, and assume that we are
in the fast-roll (adiabatic) regime. Since in this case we can use
Eq. (3.49), the condition x < 1 becomes

2n+1
0.28 Q29 t%o Q29 i < 23n+1 (3 66)
)\1’12(271 + 1)2(1 - K)2 Rzg ~ ! ’

so that 029 t%o < 1 as well, since 029 > Rpg. Therefore,

P~ optiyx <1. (3.67)
If on the other hand x 2 1, the condition ¢ < 1 yields roughly

029 5o x°> < 10, (3.68)
that is

3
[/\nz(Zn +1)%(1 - K)ZR%“}

In+7 S 4. 103n+1 7
th

029

It is easy to check that for all explicit numerical results presented
in the text, this condition is very well satisfied. One should also
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keep in mind that when tj,¢/tcontr > 1 the behaviour ¢ ~ t and
thus the results of this Chapter are in any case expected to be less
reliable.

The discussion of the slow-roll regime is even more straightfor-
ward, since x < 1 (see Egs. 3.51 and 3.58a) and

) Rzg 2n+1
029 t1g ~ wo teontr @ <1, (3.69)

so ¢ is safely smaller than unity.

3.5.2 Negligible Pressure: p < 0

Let us now consider the assumption of pressureless dust. We can
combine the trace equation (3.12) with the time-time component
of the modified Einstein equations (3.5) assuming the equation of
state p = wo, obtaining;:

. 81 87(1 —3w)o
E+R+2F= 5 (0-3p)= —5 =,
My My (370)
1— & Ry — f_8me
3) T2 ms,

Then, as in GR, the space-space equation is automatically ful-
filled4, hence:

&\  f & _8mp _ 8muwe
(1 3 Ru+2 37w, " g, (3.71)

This is true for any equation of state w, including of course the
non-relativistic case w = 0, which corresponds to assuming
_ 8r

<1 = T;f ~o 0. (3.72)
!

P

The mathematical consistency of the Einstein equations is there-
fore guaranteed regardless of the assumed equation of state. Phys-
ically, we know from statistical mechanics that for non-relativistic
particles

2
P2
0~ 3 (3.73)
where v is the typical velocity of the dust particles and c is the

speed of light. Given the total mass of the cloud M and its radius

3M\ V3
rz(w) , (3.74)

For simplicity we have also assumed isotropy, that is Ryx = Ryy = Rz; and
Px = Py = Pz, but the result can be easily generalised.
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the velocity of the particles at time t should approximately be

7o

U~ T ) .
Y 3 teontr (1 + t/tcontr)l/?’ (3-75)
Ultimately, this yields
2/3

4 -9 My

o~ ’ (3.76)

¢ t%O Q%S(l + t/tcontr)g/s
where

M M

M = (3-77)

100M, ~ 2-10%My, g

In basically any conceivable astronomical situation, except for
very massive, rarefied clouds with short, perhaps unnatural con-
traction times, this quantity is much smaller than one, so that p
is indeed negligible.

We should be completely honest and point out that for the
smaller values of f, shown in table 3.1, taking M1 ~ 1 gives a
ratio p/o > 1, which seems to invalidate the initial assumptions.
However, because of the considerations at the end of section 3.3.3,
we can disregard these problems provided that we carefully
choose physically realistic parameters. In other words, some of
the values in table 3.1 are unlikely to describe existing physical
systems, but are nonetheless a useful indication of the accuracy
of our analytical estimates.

3.6 DISCUSSION AND CONCLUSIONS

The possibility of curvature singularities in DE f(R) gravity mod-
els has been confirmed and studied in a rather simple fashion.
The trace of the modified Einstein equations has been rewrit-
ten, under the simplifying assumptions of homogeneity, isotropy
and low-gravity, as an oscillator equation for the scalaron field
¢, which moves in a potential U depending on the external en-
ergy/mass density and thus on time. In the two models consid-
ered [198, 199], the potential is finite in the point corresponding
to the curvature singularity |R| — oo, that is Gsing = 0; the energy
conservation equation associated with ¢ indicates that the devel-
opment of the singularity can be triggered by an increase in the
external energy/mass density.

The ratio between the typical contraction time and the inverse
frequency of the scalaron determines two distinct regimes. In the
adiabatic regime the oscillations of ¢ are very fast compared to rel-
evant variations of U, and such oscillations are almost harmonic.
Performing a linear analysis, we have estimated the scalaron am-
plitude and frequency analytically. The singularity is expected to
be reached when the amplitude of the oscillations of ¢ exceeds the
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separation between the “average” value ¢,, which corresponds
at each instant to the position of the bottom of the potential, and
the singular point Csjyg-

In the slow-roll regime, the typical oscillation time of the field
¢ is much longer than the typical contraction time, which also
determines the timescale for significant changes in the potential.
Thus, ¢ is mainly driven by its initial conditions, and the slope
of the potential is not enough to stop the field from reaching the
singular point. This may occur on relatively short timescales.

In both regimes, our analytical estimates and numerical re-
sults are in remarkable agreement (see tables 3.1 and 3.2, and
figures 3.5 and 3.7).

In principle, the results of this work could provide simple
methods to constrain and possibly rule out models [198, 199], and
most likely the same technique could be applied to other models
already proposed as well as to more sophisticated evolution laws
different from (3.2). The development of a curvature singularity
could reveal unexpected consequences in a more detailed analysis
of the models, and the mechanisms described herein may play
a highly non-trivial role, for instance, for the study of Jeans-like
instabilities and hydrodynamical stellar (non-) equilibrium [204-
207]. This goes beyond the scope of this Chapter, and could be
subject of further research.

Two effects could on one hand hinder the development of sin-

gularities, and on the other hand provide additional methods to
constrain models: ultraviolet gravity modifications and gravita-
tional particle production.
Ultraviolet corrections to the gravitational action should start
dominating at large R, and set a limit to its growth; in turn, R
would never reach the singularity (for details see e.g. [209, 212]).
Recently, a few works have investigated even more general ul-
traviolet aspects of (modified) gravity; a fully non-perturbative
approach seems to point towards the altogether absence of singu-
larities in gravity [214, 215].

Gravitational particle production, as is well known, is univer-
sal whenever curvature oscillates, and could in principle be a
detectable source of high energy cosmic rays [2, 5]. The back-
reaction on curvature is a damping of its oscillations, so this
damping may prevent R from reaching infinity as well. This is
particularly important in the adiabatic regime, where there can
be very many oscillations before ¢ reaches siny and therefore a
large amount of energy could be released into SM particles. The
produced cosmic rays would carry model-dependent signatures
which could provide us valuable information to improve the
constraints on the known models and maybe even suggest new
gravitational theories.
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GRAVITATIONAL PARTICLE PRODUCTION IN
f(R) GRAVITY DURING STRUCTURE
FORMATION

E.V. Arbuzova, A.D. Dolgov, L. Reverberi, Eur. Phys. ]. C 72, 2247 (2012),
E.V. Arbuzova, A.D. Dolgov, L. Reverberi, Phys. Rev. D 88, 024035 (2013).

4.1 INTRODUCTION

The initial suggestion [154-156] of gravity modification with
F(R) ~ u*/R suffered from strong instabilities in celestial bod-
ies [158, 159]. Because of that, further modifications have been
suggested [197-199] which are free of these instabilities.

The suggested modifications, however, may lead to infinite-R
singularities in the past cosmological history [212] and in the
future in astronomical systems with rising energy/matter den-
sity [200, 202, 203, 209]. Some properties of the singularity found
in [209] were further studied in [173, 210]. These singularities can
be successfully cured by the addition of an R*-term into the ac-
tion. Such a contribution naturally appears as a result of quantum
corrections due to matter loops in curved space-time [136—138].

Another mechanism which may in principle eliminate these
singularities is particle production by the oscillating curvature.
If the production rate is sufficiently high, the oscillations of R
are efficiently damped and the singularity could be avoided (see
below).

The R? term may also have dominated in the early universe
where it could lead to strong particle production. The process
was studied long ago in [138, 185, 186]. Renewed interest to
this problem arose recently [1, 216], stimulated by the interest in
possible effects of additional ultraviolet terms, ~ R?, in infrared-
modified F(R) gravity models.

In this paper we discuss the behaviour of a popular F(R) model
of dark energy in the case of a contracting system, discussing
the evolution of the curvature scalar R and the related effects
of gravitational particle production. The calculations are done
both numerically and analytically. For realistic values of the
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parameters, especially for extremely small coupling constant g,
see Eq. (4.8), numerical calculations are not reliable, so we have
found an approximate analytical solution and compared it with
numerical one with small but not too small values of g, for which
numerical solutions are reliable. The comparison confirms the
very good precision of the analytical solution.

4.2 BASIC FRAMEWORKS AND EQUATIONS

We consider the model proposed in [199]:

R\ "
where 7 is an integer, A > 0, and |R.| is of the order of 8710,/ m%l,
where ¢, is the present day value of the total cosmological energy
density. More precisely the value of R, is determined by equation
(4-4) below. The R2-term, absent in the original formulation, has
been included to prevent curvature singularities in the presence
of contracting bodies [209], and is relevant only at very large
curvatures, because we need m > 10° GeV in order to preserve
the successful predictions of the standard BBN [1].
The evolution of R is determined from the trace of the modified
Einstein equations:

RZ

F(R):_/\Rc —W,

(4.1)

3V?Fr—R+RFg—2F =T, (4.2)

where V2 = V, V¥ is the covariant D’Alambertian operator,
Fr=dF/dR, T = 8nT; /m3; and Ty, is the energy-momentum
tensor of matter.

To describe the accelerated cosmological expansion, the func-
tion F(R) is chosen in such a way that equation (4.2) has a non-
zero constant curvature solution, R = R, in the absence of matter.
Observational data demand

R= —L?AQC, (4-3)
My
where () ~ 0.75 is the vacuum-like cosmological energy density,
deduced from the observations under the assumption of validity
of the usual General Relativity (GR) with non-zero cosmological
constant. Using this condition we can determine R, from the
solution of the equation:

R — RFR(R) 4+ 2F(R) = 0. (4-4)

This equation has two different limiting solutions for sufficiently
large A, roughly speaking A > 1, namely R/R. = 2A and R/R, =
1/[n(n + 1)A]'/3. Following [199], we should consider only the
maximal root R < 2AR.. Moreover, for the sake of simplicity and
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definiteness, we will neglect these subtleties and assume A ~ 1
and

R.~R~1/t, (4-5)

where t;; ~ 4 - 10 s is the universe age. Still, for a more detailed
study of the parameter space of the model, it could be necessary
to consider the full numerical solution of Eq. (4.4) for all values
of A.

We are particularly interested in the regime |R;| < |R| < m?,
in which F can be approximated by

. ( & > 2n
R

We consider a nearly-homogeneous distribution of pressureless

matter, with energy/mass density rising with time but still rel-

atively low (e.g. a gas cloud in the process of galaxy or star

formation). In such a case the spatial derivatives can be neglected

and, if the object is far from forming a black hole, the space-time
would be almost Minkowski. Then equation (4.2) takes the form

2
. (4.6)

F(R) ~ —R, -~

30fFr —R—T =0. (4.7)

Let us introduce the dimensionless quantities®

() _ T _ ou(t)
z = = =7, .8a
T(tm)  To  omo (4.52)
R
_ Tgn+2 _ 1 omo 2n+2 (480
&= 6n(—R.)>Hm?  6n(mty)? \ oc ’ '
T=m/3gt, (4.8d)

where ¢, &~ 107%° g/cm? is the cosmological energy density at the
present time, 0,0 is the initial value of the mass/energy density
of the object under scrutiny, and Ty = 8700/ m>%,. Next let us
introduce the new scalar field:

1 TO 2n+1 B 1
g 2”(Rc) F,R—W—gy,, (4.9)

in terms of which Eq. (4.7) can be rewritten in the simple oscillator
form:

I"+z-y=0, (4.10)

where a prime denotes derivative with respect to 7. The potential
of the oscillator is defined by:

ou _
oc

1 The parameter g should not be confused with det g,

z—=y(g). (4.11)
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The substitution (4.9) is analogous to that done in [209] but now
y cannot be analytically expressed through ¢ and we have to use
approximate expressions.

It is clear that (4.10) describes oscillations around y = z (the
“bottom” of the potential), which corresponds to the usual GR
solution R + T = 0. So we can separate solutions into an average
and an oscillatory part. For small deviations from the minimum
of the potential, solutions take the form:

1 .
£(0) = |y — 950 +ale)sinF (D) o
= Ga(T) +G1(7),
where
T
F(1) E/ dt' Q(t'), (4.13)
T
and the dimensionless frequency () is defined as
02U
2 —_
0= (4-14)

taken at y = z. From (4.10), we find that it is equal to

2n+1 -1
= <Zzn+2 +g> . (4.15)
y=z

B 1

Iy
2= = _—
9%/ dy

=~ 3%

The conversion into the physical frequency w is given by

w=Q0m/g. (4.16)

y=z

It is assumed that initially {(7) sits at the minimum of the
potential, otherwise we would need to add a cosine term in (4.9).
If initially ¢(79) was shifted from the minimum, the oscillations
would generally be stronger and the effect of particle production
would be more pronounced.

4.2.1  Potential for ¢

One cannot analytically invert Eq. (4.9) to find the exact expres-
sion for U(¢). However, we can find an approximate expression
for qy*"*2 < 1 (¢ > 0) and gy*"2 > 1 (¢ < 0). The value ¢ =0
separates two very distinct regimes, in each of which () has a very
simple expression [see Eq. (4.15)] and ¢ is dominated by either
one of the two terms in the r.h.s. of Eq. (4.9). Hence, in those
limits the relation ¢ = ¢(y) can be inverted giving an explicit
expression for y = y(&), and therefore the following form for the
potential:

U(g) = U (8)0(3) + U-(5)0(-¢), (4.172)
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0.05
0.00

-0.05

FIGURE 4.1 — Examples of the variation of potential (4.17) for
different values of parameters. Left panel (n = 2,z =
1.5) solid line: g = 0.02, dashed line: ¢ = 0.01, dotted
line: g = 0.002; the part of the potential at < ¢, is
increasingly steeper as ¢ decreases; the bottom of the
potential also moves. Right panel (n =2, g = 0.01) solid
line: z = 1.3, dashed line: z = 1.4, dotted line: z = 1.5;
the bottom of the potential moves to higher values of U
and lower values of ¢, as z increases.

where
2n
qu (é) = ZC —_ znzjl— 1 |:<C +g§21%) il —_ g2512:| ,
1 ) (4.17b)
u_é = (z — 9 2nf2 C—f—i
( ) ( 8 ) 29

By construction U and dU /d¢ are continuous at ¢ = 0. The shape
of this potential is shown in Fig. 4.1. We can write a conservation
equation for a quantity which is analogous to the “energy” of the
field ¢:

const. = %C'Z +U(¢) — /TOT dﬂglnl
1, T o9
= @U@~ [ dng o) (418)

where ¢ and ¢’ are taken at time moment T coinciding with
the upper integration bound. The oscillating part of ¢ in the
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last integral term in (4.18) would be integrated away for fast
harmonic oscillations of ¢. However, since the oscillations at late
time become strongly asymmetric, this term rises with time, see
Fig. 3 and Sec. 3.3.1 below.

The bottom of the potential, as it is obvious from Eq. (4.11),
corresponds to the GR solution R = —T, or y({) = z, and its
depth (for gz2"*2 < 1) is

1

Uo(T) ~ om0 (4.19)

We will use a very simple form for the external energy density

z, namely
z(t) =1+x(t— 1) (4.20a)
t—t
o(t) = oo (1 vt °> (4.20b)
contr
k1= m/ teontr - (4.20¢)

Here, k1 and t.onr are respectively the dimensionless and phys-
ical timescales of the contraction of the system; analogously, 1
and to are respectively the dimensionless and physical initial
times, which for simplicity and without loss of generality will be
taken equal to o. This evolution law may not be accurate when
t/tcontr > 1, but results obtained with more sophisticated func-
tions describing the contraction of the system are most likely in
qualitative agreement with our results, provided that ¢ remains
positive at all times.

It is also useful to express physical parameters such as m,
the initial energy density g0, etc., in terms of their respective
“typical” values. Let us define

Om0

029 = —, (4.21a)
Oc
—__m
ms = 105 GV / (4.21b)
to = teontr (4.21C)

~ 10 years’

where g. = 1072 g cm 3 is the present (critical) energy density
of the Universe. In terms of these quantities, we can rewrite g

and « as
QZn+2
g~12x 10~ 11231% , (4.22a)
n
Kk~19 n+\1f (4.22b)

029 " t10 '
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4.3 SOLUTIONS
4.3.1  Oescillations of ¢

At first order in ¢, equation (4.10) can be written as

[+ =2, (4-23)
with Q given by (4.15). The term ¢/ is proportional to k2, which

is usually assumed small, so in first approximation it can be
neglected, though an analytic solution for constant () or in the

limit of large () can be obtained considering this term as well.

Using (4.12) and neglecting ", we obtain

o 04
22—~ —— .
x Q 4 (4 24)
SO
QO 1 g 1/4 g —-1/4
~ — = 1 :
L=y =% <z2n+2+2n+1> Tt

(4.25)

Here and in what follows sub-o means that the corresponding
quantity is taken at initial moment T = 1. We impose the
following initial conditions

yt=wn)=z(t=wn)=1,

y'(t =)=y,
which correspond to the GR solution at the initial moment. In

terms of ¢ it means that ¢1(1) = 0. The initial value of the
derivative | (1) can be expressed through y;, which we keep

(4.26)

as a free parameter; according to (4.9): &, = —y,(2n+1+g).

Differentiating Eq. (4.12) with respect to T and using (4.25) we
find:

ay = (K —yp)(2n +1+8)°2 (427)
Correspondingly:

1/4
@) = o~ 1497 (B wg) L e
Because of the assumptions made to obtain (4.25), we expect this
result to hold when |y, — x| ~ « or slightly less. In this regime the
numerical results, shown in Fig. 4.2, are in excellent agreement
with the analytical estimate (4.28). We remark that the agreement
improves for larger ¢ and/or smaller x, while for small g and

“large” x it may become significantly worse (see paragraph 4.3.3).

For y;, = x and §1(7) = 0, it would seem from Eq. (4.28) that
oscillations are not excited. However, this is an artifact of the
approximation used. In fact, the "source” term in the r.h.s. of
Eq. (4.23) produces oscillations and hence deviations from GR
with any initial conditions.
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FIGURE 4.2 — Numerical results for ¢;(7), in the case n = 2,
k = 0.01, ¢ = 0.01 and initial conditions yo = 1, y{, = x/2.
The amplitude and the frequency of the oscillations are
in very good agreement with the analytical result (4.28).

4.3.2  Oescillations of y

We shall now exploit this result to evaluate the amplitude of
the oscillations of y. We first expand y as it was done for ¢ in

Eq. (4.12):

y(t) = z(1) + B(7) sin F(7) = y,(7) + B(7) sin </: dt’ Q) ,

0

(4-29)

where it is easy to prove that () must coincide with that given by
Eq. (4.15). For |B/z| < 1, we expand ¢ as

1

é - z2n+1 [1 + (ﬁ/z) SinF(T)]2n+l —& (Z + ﬁ81nF<T))
e (B g G

Comparing this expression with Egs. (4.12) and (4.15), we find
that

2n+1, \ 7'
Bl = ol ( Stz +8) = lalc?. (431
Accordingly, B evolves as:

2n+1 —3/4
ﬁ(T)z\yé—K\(2n+1+g)5/4<ZZn+2 +g> . (432)

This is in reasonable agreement with numerical results, especially
in both limiting cases gz*"*? < 1 and gz*"™2 > 1, as expected.

4.3.3 “Spike-like” Solutions

We have found simple analytical solutions for ¢ and y in two
separate limits: gz>"*2 < 1 and gz?"*2 >> 1. However, in the



4.3 SOLUTIONS

KT
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FIGURE 4.3 — “Spikes” in the solutions. The results presented
are for n = 2, ¢ = 0.001, x = 0.04, and y, = /2. Note
the asymmetry of the oscillations of y and ¢ around y = z
and their anharmonicity. See the text for further details.

intermediate case numerical calculations show interesting fea-
tures which are worth discussing. As shown in figure 4.3, when ¢
approaches (and even crosses) zero but ¢, does not, that is when
gy?"2 ~ 1 but gz?"*2 < 1, we have the largest deviations from
the harmonic, symmetric oscillations around y = z. This happens
especially when g is very small and « is not too small.

The reason for this behaviour is qualitatively explained by the
following considerations. Inspecting Eq. (4.17) and/or figure 4.1,
we see that when ¢ < ¢, the potential becomes increasingly steep,
hence reducing the time spent in that region. Moreover, a given
variation é¢ in this region corresponds to a large variation of y.
Thus there appear high, narrow “spikes” in y. On the other hand,
for { > ¢, the potential is much less steep, and the oscillation
in that region lasts longer, yielding slow “valleys” between the
spikes of y.

Please note that in the region with spikes, the assumption ] B/ Z[ <
1 is no longer accurate, and we have deviations from the ana-
lytical estimate (4.32), which is usually smaller than the exact
numerical value.
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4.3.3.1 Estimate of B

In order to obtain an estimate of B in this region we use an
analogous approach to that of [3]. Let us first introduce some
new notations:

U(r) = UfE(r),2(0)], Un(r) = UlG(),2(0)) (439)
Remember that according to Eq. (4.12) & (1) = z(1)~ 1) —
¢z(7T) is the value of { where the potential has its minimum value.
Let us denote by 7, the time at which ¢ hits the minimum of
the potential, i.e. {(7;) = §4(7;) and correspondingly ¢;(7;) = 0.
Note that U(7,;) = U, (1), while they are evidently different at
other values of 7. We will examine Eq. (4.18) choosing the initial
value of time at the moment when ¢ passes through the minimum
of the potential. Correspondingly U (1)) = U, (1) and hence we
denote 19 as T,0. With this initial value of 1) we rewrite Eq. (4.18)
as

E P+ U) = [ dnz () Ealn) + & 01)] = Un(rin) + 52 (o)

(4-34)

N~

We start by noticing that the first term under the integral in the
Lh.s. of this equation can be explicitly integrated and is equal to

[ anz ) &) = Un(x) ~ Un(). 439)

So U, (Tta0) disappears from this equation.

Assume that the upper limit of integration, 7, is sufficiently
high, such that the nearest minimum value of ¢ is negative. Let us
first take T exactly equal to T, i.e. to one of the numerous values
when ¢ hits a minimum, ¢ = i, < 0. At this point ¢'(7,) = 0
and we obtain:

() = Ua() + 5 (o) P+ [ dn (). 436

Now we need to estimate the last term (integral) in this equation.
To this end let us use again Eq. (4.34) but now take the upper
integration limit equal to the moment when ¢ happens to be at
the minimum of U, at the nearest point from 7, taken above, so
that T = 7,. According to Eq. (4.35) the potential terms and the
integral of z', cancel out and we are left with

[anzmain =3 E@P-E @R G

When ¢ passes through the minimum of the potential its velocity
reaches maximum value for a given oscillation and [¢(T,)']*> =
0?a?, where a and Q) are given by (4.28) and (4.15) respectively.
Notice that [¢(7;)']? rises with time and thus for large time
[¢'(720)]* may be neglected. It worth noting that in the limit
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of harmonic oscillations symmetric with respect to the minimum
of U the integral in the rh.s. of Eq. (4.37) does not rise with
time but, as we have seen above, the oscillations are strongly
asymmetric with respect to ¢, and because of that the integral
rises with time and Eq. (4.37) is self-consistent.

The upper integration limits in Egs. (4.36) and (4.37) are slightly
different: T, corresponds to the moment when ¢ reaches its mini-
mum value (since { < 0, maximum in absolute value), while 1, is
the nearest time moment when ¢ passes through the minimum
of the potential. So they differ by about a quarter of a period as
calculated when ¢ is on the left side of the potential minimum.
Since this time interval is quite short the difference between these
two integral can be neglected.

So we finally obtain

U(t) = Ua(t) + 5[ (P~ 5 (202 = ) (459

Using expression (4.17b) for U_(¢) and relation between ¢ and y:
y =~ —¢/g, we find

1 1
y* —2zy — 2 {wzﬂz - nzz,& =0, (4-39)

which yields the amplitude

1 1
Bspikes = ¢ g (zxzﬂz — ZM) +22. (4.40)

Quite remarkably, this result is exactly equivalent to (4.32) in the
limit gz>"*2 >> 1, so we will assume that from the moment the
harmonic approximation fails to be accurate,  will follow (4.40)
up to the asymptotic harmonic regime where ¢z"*2 > 1. In
particular, the moment of transition from harmonic to spike
regime is roughly the time at which

,Bharm = ,Bspikes . (441)
4.4 GRAVITATIONAL PARTICLE PRODUCTION

As is well known, an oscillating curvature gives rise to gravi-
tational particle production. Basically, the energy stored in os-
cillating gravitational degrees of freedom is released into pairs
of elementary particles/antiparticles. As shown in [1] in the
case of a minimally-coupled scalar field, the energy released into
particles per unit volume and unit time is

. A% w
Opp =~ Hgﬁ , (4-42)
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where Ap is the amplitude of the oscillations of R, and w is their
(physical) frequency. In our case,

ArR=BTo. (4-43)
Moreover, the lifetime of oscillations of R is
48 m%l
=" (4-44)

Rigorously speaking, this result is valid when the oscillations of
R are perfectly harmonic, or at least when R can be separated
in a slowly-varying and an oscillating part, which is supposed
to have a constant (or almost constant) frequency. As we have
seen in the previous section, solutions of Eq. (4.10) show spikes,
which are very far from being harmonic oscillations. Thus, we
must find a more general result than (4.42).

We consider the gravitational particle production of pairs of
massless scalar particles ¢, quantised in the usual way:

3
27)72Ex (4-45)

wat| = 27268 (k- K) .

At first order in perturbation theory, the amplitude for the cre-
ation of two particles of 4-momenta p; and p» is equal to [1]:

1 .
Apgn = g [ @t ExRE) (1, p2l 9%10)

(r)

3v2

In terms of the Fourier transform of R, defined by

5® (p1 + p2) / dER(E) BRI (4 46)

— 1 D —iwt
R(t) = ﬁ/dw R(w)e ", (4-47)
we can recast Eq. (4.46) as
(2m)® ) 5
A ~-—Z 4 +p2) R(E1 + E2). 48
= (p1+ p2) R(E1 + E2) (4-48)

In order to calculate the number of particles produced per unit
time and unit volume, we need to integrate |A,, ,,|* over all
phase space and to divide by the 3-dimensional volume and time
duration of the process, At. This yields

2
’ , (4-49)

fipp = m /dw ‘ﬁ(w)
and correspondingly, because each particle is produced with
energy E = w/2,

1 - 2

0~ SErZAT /dww ‘R(w)‘ (4.50)
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The time duration of the process At may be considered infinitely
large if the characteristic frequency satisfies the condition w, At >
1. Correspondingly, the square of the delta functions in R would
be proportional to 6(0) ~ At. For instance, when R is a perfect
sine or cosine of frequency w, one has

R(e) ~6(e - w) + (e +w), (4.51)
and
6(e + w)|* = ZA—;&(sj:aJ). (4-52)

Thus At does not appear in the probability of particle production
per unit time. The physical cut-off of At in the considered case
is given roughly by 1z in Eq. (4.44), therefore for w > 1/1x the
approximation used here is accurate enough. Moreover, since
frequencies must be positive, only the first delta function in (4.51)
gives a non-vanishing contribution.

4.4.1  Regular Region

First, let us concentrate on the “regular” region (see subsections
3.1 and 3.2). Substituting Ax = BT in (4.42), using (4.32) and
(4.16), and taking y;, ~ 0 for simplicity, we find

mven  tgo'tt (2n+1+g)%?
-1 2
18 my 2,000 (2n+1+g)

contr 22142

2
_ C( tu ) Q
= 1 ,
Econtr mpltll

where the coefficient C has the following expressions in the two
limits:

QPP, reg —

(4.53)

; m\/6n(2n+1 N\
C(gz"? < 1) = 1(8) <QQO> gt (4.542)
5/2 4 5n+3
C(gZZn—i-Z > 1) _r [6?1(211 +1 +g>] (mtu) O )
(4.54b)

The last factor in Eq. (4.53) is extremely small. Since ¢? ~ m‘})l /tt,
this factor is about 1/#],. So unless C is very large, particle
production in the regular region would be negligible. The most
favorable possibility would be small g and large z, but keep in
mind that g ~ sz'6+2. We present an estimate of the flux in the
conventional units as:

4n+4

_rprs 5100 C1(0812) 2
GeVs 'm-3 05 o
7 Caln,8,2) mi3

5n+3 tz
29 10

(4.55)
~ 25 x 10%
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The coefficients C; and C; are convenient to use when gz2”+2 <1
and gz?"*2 >> 1. They are respectively:

- 2n+1+g¢ z
Ci=y\/n2n+1+g) <21’Z—|—1—|—g22”+2)
n(2n+1), (4.56a)
2n+1+g
— 45/2 2 4n+4
G=m""ynt+l+gg <2n+1+g22n+2> z
~ [n(2n +1)]>/2. (4.56Db)

4.4.2  Spike Region

In the spike region the particle production rate would be strongly
enhanced due to much larger amplitude of the oscillations of
R. We parametrise the solutions in this region as a sum of
gaussians with slowly varying amplitude Ag(t), superimposed
on the smooth power-like background, —T(t):

R(t) = —T(t) + Ag(t ZeXp[ t_]tl) } (4-57)

Here t; is the time-shift between the spikes and ¢ is the width of
the spikes. The values of these parameters are determined from
the solution obtained above. The slow variation of the functions
T(t) and Ag(t) means that T < T/t; and Ag < Ar/t.

In principle, N could be infinitely large, which for Ag = const.
corresponds to an infinitely long duration of the process. As we
have mentioned before, this does not have an essential impact on
the probability of particle production per unit time.

In accordance with the solutions of the equations determining
the evolution of curvature, we consider the case ¢ < t1, that is
the spacing between the spikes is much larger than their width.
At high frequencies the Fourier transform of (4.57) is dominated
by the contribution of the quickly-varying gaussians, i.e.

~ 2 20 elNwh 1
R((U) ~ 27 AR‘0-|€ w ot/ 2tiwh m . (4.58)

When squared, this gives

w202 Sin? Nwty /2

‘ﬁ(a))‘z ~ 2R o%e (
~ 27AR 4-59)

sin® wty /2

The dominant part of this expression comes from w = w; =
2j7t/t;, where it is equal to N2. Around these points we have

sin? Nwti /2 <sin[N(wt1/2—jn)]>2

wt1 /2 —jr (4.60)

sin? wt /2 w=2jn/h
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We take the limit N — co and use a representation of Dirac’s
delta function to write

.2
sin” Nwt /2 <wt1 . ) 27
—_— ~ | — —jm )| = — 0 (w—wj)| ,
sin? wtq /2 ]Z 2/ ; t ( )
(4.61)
which yields
2 42N gt WAL 27
‘R(w)‘ ~ R 2 Z(S( ]) . (4.62)
1

Each particle produced by the oscillation component of frequency
w has energy w/2, so the gravitational particle production rate is

. 1 W | ~ 2
e = 288n2At/dwE‘R(w)‘
A% 0 2mj 0\
72t3 ;]ex})[ ( t >
_5767Tt1‘

(4.63)

In the last step, we have again assumed that ¢/t; < 1, so that
the summation over j can be replaced by an integral. Remarkably,
the dependence on ¢ has disappeared from the result. Lastly, we
use Ar = B Tj and (4.40), obtaining

(61’1)3/2(21’1 +1 +g)5/2 2t3 Z2n+2 Q3n+3

- (4.64)
18(2n +1+gz2"+2) 2 mb, o3

contr

QPP,sp =

or in conventional units:

Opp,sp 47 G3(n,8,z)m 2 222
——— ~30x10" .6
GeVs 'm-3 2, Q%g“ (4:65)

where
2 1 5/2,,3/2
Oy LI o 1) 2. (4.66)

(2n 41+ gz21+2)

All elementary particles couple to gravity, so in order to get an
order-of-magnitude estimate of the overall particle production
one should multiply (4.55) and (4.65) by the number of elementary
particle species, N;, with masses bound from above by m < 27t /0.

4.4.3 Backreaction on Curvature and Mode-dependent Damping

So far we have not taken into account that the oscillation am-
plitude should be damped due to the back reaction of particle
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production. Neglecting such damping would be an accurate ap-
proximation up to t/Tg ~ 1; for larger times, however, the damp-
ing should be taken into consideration. In the regular region
oscillations are practically harmonic, so only a single frequency
mode is involved and one simply needs to add the exponential
damping factor exp[—2T'(w)t] to (4.42) and (4.55). In the spike
region the problem is more complicated because, according to
Eq. (4.44), the damping depends upon the frequency, so different
modes are damped differently and this can noticeably distort the
form of the initial R(t). A simple approximate way to take into
account this damping is to introduce the factor exp[—t/Tr(w)]
into the integrand of Eq. (4.47). After a sufficiently long time,
only the modes with the lowest frequency survive and one may
naively expect that the lowest frequency modes give the dominant
contribution to particle production. However, one should keep
in mind that the time duration is finite: in fact, it is equal to the
time of stabilisation of the collapsing system and is surely shorter
than the cosmological time t, & 4 - 101" s. Thus the the energy is
predominantly emitted with the frequencies determined by the
condition At/Tr(w) ~ 1, see discussion below Eq. (4.71).

So to take into account the damping of R-oscillations we intro-
duce into the amplitude (4.46) the damping factor exp[—I'(w)t],
where I'(w) = 1/1r (w) = w?®/48m3; and integrate over time up
to a finite upper limit:

Appy = (;\[) (p1 + p2) / / dt o (Er+Ea—w)t —T(w)¥

_ (27.[) ) w el i(2QE—w)t—T(w)t _ 1
B RS “’2)/ER(“’ i2E—w) —T(w)’
(4.67)
where E = E; = E; and t has here the same meaning as At in

(4-49)- _
As we have seen above, R(w) can be written as:

R(w) ~ V212 Ag oo 7 /2 ¢i® Y6 (w;l - 7rj> , (4.68)
i

where exp(i®) is a phase factor of modulus unity. Substituting
this expression in Eq. (4.67) and integrating over w, we find up
to a phase factor:

(27T)7/2AR o (3) —0 w2/2 1—e
p1.p2 3\/§t1 (P1+p2) ; € +il;
where w; = 271j/t1, €; = 2E — wj, and T} = T'(wj).

The energy density of the produced particles is:

(ze]-fl“j)t

N

(4.69)

A% o? /°° 22 1472t — 267 T cos(e;t)

= dEEY e 7Y
¢ 727t Z e]Z + 1"]2

(4.70a)
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A% o 1+e 2t —2e i cos

2887Tt2 Z /w,-t 17](17] Wi ) 17]2 + (r]t)Z
(4.70b)

We have introduced here a new integration variable 77; = ¢;t. It
was also assumed that the diagonal terms with j = k dominate
in the double sum over j and k in the expression for |A(p1, p2)|?;
this is a good approximation for small I', in particular, I' < w.
Assuming w;t > 1, the integral is easily taken at the poles of the
denominator and we finally obtain:

7TAR0' Uzwz 1—e —2T;t
= Y je -

448 5 T

(4.71)

For I'jt <1 this result coincides with (4.63) after dividing by the
total elapsed time t. The summation over j can be separated into
two regions of large and small I';t. The boundary value of w; is
given by the condition 2I'yt = wjt/24m3; = 1. Correspondingly

wy, ~ 180MeV (t./t)"2, (4.72)

where t. = 4-10Y s is the cosmological time. The boundary
value of j is

. wptt Wy
=50 = Qm./g’

(4.73)

where we took t; = 271/ w with w defined in egs. (4.15) and (4.16).
In particular, for small g we have Q ~ z"*1/1/2n + 1 and using
Eq. (4.22b) we find

e g V@t n [t e
o= 16107 Sy (t> : (4.74)

Accordingly, the time t; can be estimated as

(2n+1)n

t~4-108g Y~
1 s (z029)"H1

(4.75)

Separating the summation over j into two intervals of small and
large T';t, we obtain:

A2

0~ A% o [2t Z]e (w4 Z je~ ij)z] 6)
~~ 3 . .
1447 &,

If o ~ 1/m, the exponential suppression factor exp(—cfwj)2 is

weak near j = j, and the sums over j can be easily evaluated:

A20? [ . 6m3, 3
o~ R (J%H —P1 (477)

144 t:f 3
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Alternatively, using the fact that o/t; < 1, we can replace the
summation with an integral, obtaining the similar, more general
result:

NA%{ o2 Jo o 0o .je“’z“’fz
0~ 2t / djje ” " + / dj
1%@[ 0 o I;
A%t 2 2
~ 1—e wh}
5767 [ ¢ +
A2 112, o2
% [e"’z“}g —Vrow, erfc(awb)} , (4.78)
where erfc(x) is the complementary error function:
2 o 2
erfc(x) = —/ dte ",
(x) VT Jx
Note that for cw;, < 1, as was assumed before, this gives
N A% wi o? ; 48m%l _ A%{ w% o2t (4.79)
T 5761t w; 1927tt; '

which is exactly equivalent to (4.77). For cwy, > 1, instead, we
recover (4.63). This makes sense, because cw;, > 1 corresponds
to j, — oo and hence to the limit in which the time elapsed is not
long enough for particle production to have had a noticeable back-
reaction on curvature. Nonetheless, during this time particles
may have been effectively produced.
These estimates are valid even in the spike region when ¢z?"2? <

1 but gy*"™2? may reach values much larger than unity.

4.4.4 Damping of Oscillations

As we have seen, having a wide frequency spectrum of the Fourier
transform of R makes it impossible to simply use an exponential
damping R — Re 1 to include the effects of particle production.
Moreover, the increasing energy density acts as a source term
and increases the amplitude of the oscillations of R, which makes
things even more complicated. However, the picture for the field
¢ is relatively simple, because its oscillations are almost harmonic.
We still have a source component, given by the increasing z,
but we can once again use the energy conservation equation to
determine the time at which oscillations basically stop due to
the damping. The effect of particle production on the evolution
equation for ¢ (see Eq. 4.23) is to transform it into

V+29(Q) 8 + Q0% = ¢, (4.80)

where

y(oy = OVE) Do
T omyg 48 m3,

7 (481)
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which in fact for 7/Q < 1 and ¢/ /{] < 1 generates the wanted
behaviour

¢1~e T sinQr. (4.82)

Correspondingly, the energy conservation (4.18) becomes

3O U@ +2 [Ty i - [y = S5+ U@) (489

Let us consider values of T in which ¢(7) = ,(7). In this case the
potential disappears from this equation [see Eq. (4.35)], which can
be now symbolically written as an equality between the variation
of the kinetic energy and two integral terms:

AK = Isource — I, (4.84a)
where

AK=K—Ko = %(6’2 -3, (4.84b)

Lsource = /T OT dnz' ¢, (4-840)

=2 e (4:84)

By definition ¢ = ¢, is the position of ¢ at the minimum of the
potential. So when ¢ = ¢, the kinetic energy, K, reaches one of
the local maxima (in time). This picture is particularly clear if
we compare the system with a classical oscillator: when the field
passes through the equilibrium point, the potential has minimal
value and the velocity is maximal.

We estimate the effect of damping perturbatively applying the
energy balance (4.83) with unperturbed functions ¢(7) for which
the effects of damping are neglected. In the absence of damping,
the condition (4.84) turns into AK = ILspurce, Which is essentially
Eq. (4.37). Evidently the impact of damping on the oscillations
of ¢ starts to be important when I, becomes of the order of AK.
Though the damping coefficient is small, i.e. I' < w, the integral
I, rises with time faster than AK and ultimately it will overtake
it. So we need to check when the condition

O () ~2 [y ) 455)

starts to be fulfilled with a and Q) given by (4.28) and (4.15).

Keeping in mind that vt = I't and using Eq. (4.44) forT' = 1/t
with w = Om, /g, we find that the equality (4.85) is satisfied when
the energy density is equal to

24(2n +1)32(4n + 5)x m?,
gm?

3n+4 __
Z"/ =
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_ 24(2n+1)>2(4n +5) (@)3 1

g3/2 m mpj teontr
n(2n+1)1*"2(4n +5
~ 6 102 11 ) ]3,1 +(3 ) (4.86)
t10 039

The corresponding boundary value of t is t,, = z, teontr-

For times smaller than ¢, the effects of damping are negligi-
ble and particle production can be very effective giving rise to
substantial production of cosmic rays, as we shall see in the next
section. Particle production is especially pronounced in the spike
region when the amplitude of R is very large.

As we have seen, the spikes” width is o ~ m~! while their
spacing, which determines the effective frequency, is t; ~ w1,
High frequency oscillations of R should be damped very rapidly,
since T ~ w?, but due to the non-harmonicity of the potential
and the non-linearity of the relation between ¢ and y or R, the
low frequency oscillations are efficiently transformed into high
frequency spikes of small amplitude in ¢ but of very large am-
plitude in R. It is worth noting in this connection that the bulk
of the energy density associated with the oscillations of R is con-
centrated at low frequencies, Qpsc ~ A%ml%l/ w?, so the energy
reservoir at low frequencies is deep enough to feed up the spikes.

The physical frequency, w = Qm, /g, depends upon the prod-
uct Q = ¢z?"*2. If Q < 1 the frequency may be rather low, of the
order of hundred MeV, while for Q > 1 the frequency reaches the
maximum value w = m. In the first case the lifetime of harmonic
oscillations could be larger than the universe age, while in the
second case it would be shorter than a second.

4.5 ESTIMATE OF COSMIC RAY EMISSION
4.5.1 Regular Region

Let us consider a cloud (e.g. a protogalaxy) with total mass M
and density ¢. Particles would be uniformly produced over its
whole volume, which is equal to:

M
V= i 2x 107 em® —, (4-87)

where the mass of the cloud, M, is expressed in terms of the solar
mass Mg:

M M
10MM,  2x10% g’

My = (4.88)
In the regular case the oscillations of R are almost harmonic, so we
can rely on the adiabatic approximation and use Eq. (4.42) for the
particle production rate or Eq. (4.55) corrected by the damping
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factor exp[—2I'(w)t]. To be more precise, in the exponent we
should take the integral of I" over time to take into account the
(slow) variation of w.

The total luminosity relative to gravitational particle production
is obtained multiplying the rate of energy production per unit
time and volume (4.55) by the total volume (4.87), that is L =

V(t)Qpp(t), or

An+3
Lreg 73 %1074 N, (2n 41+ g)n My 2" 2 I T(w) ,

GeVs 1 g72n+2 2 .
1+ 029 to

2n+1
(4.89)

where w depends upon time due to the variation of z(t), see

egs. (4.15), (4.16). The initial time o should be taken at the onset
of structure formation, when the energy density locally started to
rise.

For ¢z?"*2 < 1, the luminosity is negligible with respect to
the luminosity in the spike region (see below), so we will not
consider this case further. When ¢z?"*2 becomes larger than unity
and w ~ m, the lifetime of oscillations turns out to be at most
a few seconds and an explosively fast particle production takes
place. The integrated luminosity can be approximately obtained
from Eq. (4.89) dividing it by I'(m) and taking the exponential
factor equal to 1. The time duration of the production process, of
the order of a few seconds, is close to that of some Gamma Ray
Bursts but the characteristic particle energies are much higher,
instead of MeV it is of the order of the scalaron mass m > 10°
GeV.

If ¢ > 1, oscillations are very mildly excited and particle pro-
duction is negligible. This can be seen from (4.32) with ¢ > 1,
keeping in mind that x ~ ¢~1/2. Alternatively one may use Eq.
(4-89) with ¢ > 1 taking into account that a large value of ¢
corresponds to large values of 029 and/or of n.

4.5.2  Spike Region
There remains to consider the spike region, where we need to

use (4.65) instead of (4.55), or (4.71) and (4.77). Equation (4.65)
yields

L CaN. M 2 2n+1
P60 x 1020 2 T (4.90)
GeV s~ t10 059

where C; is given by Eq. (4.66). This result is valid when I'jt <
1 for all essential values of j, see Eq. (4.71), that is when the
damping due to particle production is negligible. See also the
discussion in Sec. 4.4.4.
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In the opposite case, we cannot use the approximate account
of damping made above (see Eq. 4.89) because oscillations are
strongly anharmonic. If modes with both I';t greater and smaller
than unity are essential, we have to use egs. (4.71) or (4.78). We
start by rewriting Eq. (4.79) using w} = 24m?,/t, Ag = Bspikes To
and t; = 271/w, where Bgpirs and w are given, respectively, by
(4.40) and (4.15)-(4.16). This yields, assuming ¢z*"™? < 1 and

t~z tcontr/

0 40 C3 (Um)222n+7/3

————— ~11x10 (4.91)

GeVm ™ 5”035
and

Q = 63 (Um)222”+4/3

—— ~69%x10 , .92

GeVs 'm-3 t%3 Qgg“ (4.92)
where

~ 2n+1)(n+1

Cy = ( J(n+1) 3. (4.93)

(2n + 1+ gz21+2)
From (4.71) it is clear that for each mode labelled by j we have
e

.~ ] .

which has the predicted behaviour ¢ ~ e 2'*. However, this

behaviour is not obvious in the complete solution (4.92). This
means that in this case the overall effect is more complicated
than a simple exponential damping. The anharmonicity of the
oscillations and the dependence of both ¢ and I on the frequency
give non-trivial results which were impossible to predict without
performing explicit calculations.

When the damping due to particle production is relevant, the
total luminosity becomes

% ~ 14100 S Mgl/lg((f? i (4.95)
GeV s £50° oo t?
This value, though smaller than (4.90), might not be completely
negligible, especially for short contraction times and relatively
small initial densities. This means that even with the damping of
oscillations taken into account, the produced cosmic rays could
in principle be detectable.

4.6 DISCUSSION AND CONCLUSIONS

We have shown that in contracting astrophysical systems with
rising energy density, powerful oscillations of curvature scalar
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R are induced. Initially harmonic, these oscillations evolve to
strongly anharmonic ones with high frequency and large ampli-
tude, which could be much larger than the value of curvature in
standard General Relativity.

Such oscillations result in efficient particle production in a
wide energy range, from a hundred MeV up to the scalaron
mass, m, which could be as large as 10! GeV (and maybe even
larger). Such high frequency oscillations could be a source [2]
of ultra high energy cosmic rays (UHECR) with E ~ 101 — 10%°
eV, see e.g. the review in [217], which might avoid the GZK
cutoff [218, 219], and may even have implications for the so-called
“ankle” problem [220-223].

Possibly the considered mechanism would give too large a
fraction of high energy photons in UHECRs, see e.g. [224, 225],
if no special care is taken, because gravity couples to all elemen-
tary particles with the same intensity. However, direct photon
production may be suppressed due to the conformal invariance
of electrodynamics. To avoid a too strong indirect photon pro-
duction one may need to introduce “photo-fobic” heavy particles
predominantly created by the oscillating curvature.

It is tempting to explain gamma bursts by these curvature
oscillations, but the emitted particle energy seems to be much
above the MeV range. To this end some modification of the
model or a mechanism of energy depletion would be necessary,
and could be an interesting subject of future research.

The oscillations considered here may also have an essential
impact on the gravitational (Jeans) instability in F(R) gravity
studied for instance in [206, 207, 226], where this effect was not
taken into consideration.

The efficiency of particle production strongly depends upon
the system under scrutiny, the values of the parameters of the
theory, and upon the explicit form of the function F(R). These
problems deserve further study, but the framework presented in
this paper can be applied to many possible cases.
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SPHERICALLY SYMMETRIC SOLUTIONS IN
f(R) GRAVITY AND GRAVITATIONAL
REPULSION

E.V. Arbuzova, A.D. Dolgov, L. Reverberi, Astropart. Phys. 54, 44 (2014).

5.1 INTRODUCTION

Popular F(R) models phenomenologically acceptable for cosmol-
ogy have been suggested in [197-199]. They are more or less
equivalent, particularly the former two, and in what follows we
will use the specific F(R) of [199]:

R*\ "l R?
1— <1 + > ] - —, (5.1)
R3 6m?

where Ry is a constant parameter with dimensions of curvature
and similar in magnitude to the cosmological curvature at the
present day universe, A is a dimensionless constant of order unity
and the power 7 is usually taken to be an integer (though not
necessarily so).

The last term is introduced to avoid infinite R singularities in
the past cosmology [212] or in the future in astronomical systems
with rising energy density [3, 200, 209].

The corresponding field equations are

F(R) = —ARg

R—+F 8
(1 + F,R) RHV - T gHV + (gva - VHVV)F,R - mT Tyv s (5-2)
Pl
whose trace is
30Fgr —R+RFg —2F =T, (5.3)

with T = TV” and T#v =8 Tw/m%,.

A detailed study of the solutions of the modified gravity equa-
tions in the present day universe was performed in [2, 5] for
finite-size astronomical objects. It was found that if the energy
density rises with time, fast oscillations of the scalar curvature
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are induced, with an amplitude possibly much larger than the

usual GR value R = —T. The solution has the form:
R = Rgr(r)y(t), (5.4)
where Rggr = —T(r) is the would-be solution in the limit of GR,

while the quickly oscillating function y(t) may be much larger
than unity. According to [5] the maximum value of y in the
so-called spike region is:

y(t) ~ 6n(2n—|—1)mtu< ty ) [Qm(t)](nJrl)/Z < oc >2n+2’ -

contr Om0 Omo

where t, is the universe age, t.u is the characteristic contraction
time, so the energy density of the contracting cloud behaves
as 0m(t) = omo(1 + t/tcontr), With 00 being the initial energy
density of the cloud, and o, = 10-% g/ cm® being the present
day cosmological energy density. According to [1], the mass
parameter m entering eq. (5.1) should be larger than about 10°
GeV to avoid a conflict with BBN. So the factor mt, is enormous:
mt, > 10* and y can reach a very high value, if not suppressed
by a small ratio (0./0mo)*" "2, when n is large.
As shown in [5], such spikes of high amplitude are formed if

2 3n+1 2n+2
612 (2n + 1)2 <t> {Q’"(t)] <QC> >1. (5.6)

tcantr Omo0 Om0

The values of the densities 0,,0 and ¢, (¢) depend upon the objects
under scrutiny. If we speak about formation of galaxies or clusters
thereof, the following ratios can be expected: 0m0/0, = 1 —
10® and 0(t)/0mo varying in the range 1 — 10°. Indeed the
oscillations of curvature in such systems are excited if their mass
density rises with time. For large scale structures this process
began when they decoupled from the overall Hubble flow, which
mostly took place at redshifts in the interval z = 10 — 0, and
could result in creation of galaxies with energy density 5 orders
of magnitude higher than the present day cosmological one. If
we consider the formation of stellar or planetary objects from the
intergalactic gas with initial density 1072* g/cm?, then 0,0/ 0. =
10° and 0y (t)/0mo can vary in the range 1 — 10* or even larger.

If the condition (5.6) is not fulfilled and the spiky solution
with high amplitude is not excited, still as calculations of refs. [2,
5] show, both numerically and analytically, the amplitude of
y(t) would be larger than unity, which is essential for the result
presented below about gravitational repulsion inside systems
with rising energy density.

5.2 SPHERICALLY SYMMETRIC SOLUTIONS IN f(R) GRAVITY

The analysis in [2, 5] has been done under the assumption that
the background space-time is nearly flat and so the background
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metric is almost Minkowsky. However, the large deviation of
curvature from its GR value, found in these works, may invalidate
the assumption of an approximately flat background and should
be verified.

In what follows we consider a spherically symmetric bubble
of matter, e.g. a gas cloud or some other astronomical object,
which occupies a finite region of space of radius r,,, and study
spherically symmetric solution of the field equations 5.2 assuming
that the metric has the Schwarzschild form:

ds* = A(r,t)dt*> — B(r,t)dr* — r*(d6* +sin”0d¢p?).  (5.7)

A metric of this type in F(R) theories was analysed e.g. in [213,
227] but the curvature oscillations, which are in the essence of
our work (see below), were not taken into account there. If these
oscillations are not taken into account our results agrees with the
papers cited above.

We assume that the metric coefficients A and B weakly deviate
from unity and check when this is true. The nonzero components
of the Ricci tensor corresponding to the metric (5.7) are:

A"~ B (B2—A'B AB— (A2 A

Roo = =33 4B2 iAg T 6%
B-A" (A —-AB A'B —(B)? B
Rrr - A + 4A2 + 4AB + E ’ (5.8b)
1 B rA’
Rog = —— 4+ 2> 0 g 8
0= "B 2B 24B " (5.80)

1 B rA ) .
Rop = (_B T2 T 2aB " 1> sin”@ = Rggsin”6, (5.8d)

B
ROV = E . (5.86)
Here a prime and an overdot denote differentiation with respect
to r and ¢, respectively. The corresponding Ricci scalar is equal

to:

1 1 1 1
R=—Rop— ~Ry — =Rgg — ———R
A 00 B rr 7’2 06 72 sin2 9 PP
LAY B (B A AB- (A

AB 2ABT T 2A%B
w w2 2
rAB rB2 ' 2B 2

2 2B’ 2 2
= "Roo— -5+ o= — —. :
A0 B2 * 2B 12 (5.9)
We assume that the metric is close to the flat one, i.e.
Aij=A—-1«<1land Bj=B-1x1 (5.10)

and study if and when this assumption remains true for the
solutions with very large values of R found in our previous
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works [2, 5]. It is convenient to use equations (5.2) in the following
form:

Too + AFR + F/2 — RFR/2

Roo—R/2 = .
00 / 1+ Iz , (5.11)
T 2 2 _
,R

because their left hand sides contain only first derivatives of the
metric coefficients. In the weak field limit, when derivatives of
A(r,t) and B(r, t) are sufficiently small so that their square can
be neglected, we obtain the following expressions for the Rop and
R, components of the Ricci tensor and for the Ricci scalar R:

A/I o B A/
Roo ~ 5 — (5.13a)
B . A/l B/
Ry =———+—, (5.13b)
2A” 2B" 2(1—B
RzA"—B—l———T (r2 ) (5.13¢)

If the energy density of matter inside the the cloud, i.e. for
r < rp, is much larger than the cosmological energy density, the
following restrictions are fulfilled:

FrRr<1l and F<R (5.14)

For static solutions the effects of gravity modifications in this limit
are weak and, as we will see in what follows, the solution is quite
close to the standard Schwarzschild one in agreement with other
works on this subject. We assume that the spatial derivatives
of Fy are small in comparison with the time derivatives. This
assumption is justified a posteriory because we use in what
follows the solution with quickly oscillating R found in refs. [8,9].
The characteristic time variation of this solution is microscopically
small, while the space variation scale is macroscopically large.
So from eq. (5.3) it follows that (92 — A)Fg = (T + R)/3 and we
find:

B _
B + 71 = rToo, (5.15a)
A 3By 4 o~ o= T T,
A =20 = “ L By Ty — 2T + 2 P =5,.
17 7 T B+ 1w rt 2 +r2sin29 Sa
(5.15b)

Since we assumed small deviations from the Minkowsky metric,
we neglected the corresponding corrections in Ty,,. The validity
of this assumption is precisely what we have to check.

Equation (5.15a) has the solution:

_ Ca(t)

1 7 ~
By(r,t) + /0 dr'r?Too (7', 1) . (5.16)
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To avoid a singularity at r = 0 we have to assume that Cp(f) = 0.
Then this expression for B; formally coincides with the usual
Schwarzschild solution, while the equation determining the met-
ric coefficient A; allows for an additional freedom:

T'm "m d;/‘
Aq(r, 1) = Cra()r? +Caa(t) +/ drir / r—zz Sa(ra,t). (5.17)
r 1
The integration limits are chosen in such a way that the singularity
at r, = 0 is avoided. Using equation (5.16) with Cp = 0 we can
rewrite S 4 as:

r - 1 r .
SA = —% /0 d1’,1’,2T()()(1’,,t) + ; /0 d?’/T’IZTOQ(VI,t) -+

~ T, T,
+ Too — 2Tw+ﬁ+ . (5.18)
r4sin“ 0

Accordingly we obtain the following expression for A;(r,t):
A1 (7’, t) = ClA(t)Vz + CZA(t)+
T'm "m dy ~
+ / dryry / = [Too(rz, t)—
r r2

1

= Too(ra,t) | Typ(rat)
—2T t
rr(7’2; ) + 1’2 + 1’2 Sin2 9

/ drlrl/mdrz [ / dr' v Too (1, t) —
n

- dr’r’ZToo(r t)] (5.19)
2 JO

5.2.1 The Schwarzschild Case

It is instructive to check how solutions (5.16) and (5.19) reduce to
the vacuum Schwarzschild solution in GR. The mass of matter
inside a radius r is defined in the usual way:

r r
M(r, t) = /0 dr Too(r, 1) = 47'(/0 drr* Too (7, ) (5.20)

If all matter is confined inside a radius r,,, the total mass is
M = M(ry,) and due to mass conservation it does not depend on
time. Since Ty = 87 Tyo/ m%l, we obtain for r > r,,, as expected,
By =rg/r, wherer, = 2M/ m%l is the usual Schwarzschild radius.

Let us turn now to the calculation of A; (5.19). Evidently, for
r > 1y the first integral term vanishes because r; is also larger
than 7, in fact in this region we have T,, = 0. The integral

containing Ty is also zero due to total mass conservation. The
remaining integral can be easily taken:

Ym Ym d 3 T" r 2 3r
/ d?’l ri / 1’2 / dr’r’zTog (7’ t) —|— g 5.3 — =8 .
r no 1 r2 2rs, 21
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(5.21)

Thus the metric coefficient outside the source is:

A = _1’7g + {ClA(t) — 21;%1] r? + [CZA(t) -+ 23::51:| . (5.22)
Choosing Ci4 = rg/(2r3,), to eliminate the r>-term at infinity,
and Cp4 = —3r¢/(2ry,) we obtain the usual Schwarzschild so-
lution. Note that it is not necessary to demand that the space-
independent constant in A; must vanish, because it can be re-
moved by a redefinition of the time variable.

5.2.2  Modified Gravity Solutions

In the modified theory the internal solution remains of the same
form (5.16) and (5.19), where the coefficient C; 4, however, may
depend non-trivially on time. This coefficient can be found from
eq. (5.13c¢) if the curvature scalar is known. As previously men-
tioned, we have shown in papers [2, 5] in systems with rising
energy density that the curvature scalar may be much larger than
its value in GR. Using egs. (5.16) and (5.19) and comparing them
to eq. (5.13c) we can conclude that the dominant contribution
into such form of the curvature is given by A” +2A'/r, i.e.
R(#)

C]A(t) ~ T, (523)

where R(t) is given by egs. (5.4,5.5).

There is an essential difference between the modified and the
standard solutions in vacuum. In the standard case the term
proportional to r?* appears both at r < r,, and r > r,, with the
same coefficient and hence it must vanish. On the other hand,
for modified gravity such condition is not applicable and the
Cyar3-term may be present at r < r,, and absent at 7 > r,,,. The
vacuum solution for R is presumably R ~ R., where R, is the
(small) cosmological curvature, plus possible oscillating terms.

Thus to summarise, the metric functions inside the cloud are
equal to:

R(t)r?

A(r,t) =1+ — + AESCh)(r,t) , (5.24a)
B(r,t) =1+ M =1+ BEM (5.24b)
me,r

In other words we construct the internal solution assuming that
it consists of two terms: the Schwarzschild one and the oscil-
lating part generated by the rising density as is shown in our
works [2, 5]. The expression for A%SCh)(r, t) can be found from
(5.19) with constant C41; = rg/Zr% and Cap = —3ry /1y, as de-

termined from eq. (5.22). As for the integrals in eq. (5.19), we
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calculated them assuming that matter is nonrelativistic, so the
space components of T, are negligible in comparison to Tgpg, and
that the matter/energy density, Too = 0 (f), is spatially constant
but may depend on time. The first two integrals in eq. (5.19) can-
cel out and only the integral containing the second time derivative
of the mass density survives. So for the Schwarzschild part of the
solution we find:

I B TR

A(SCh) r,t) = —r
) 215, 2rpm 3m3, "

(5.25)

As we noted at the end of Sec. 5.1, R(t) is typically larger
that the GR value: |Rggr| = 870,/ m3,, so the second term in
eq. (5.24a), R(t)r?/6, gives the dominant contribution into A; at
sufficiently large r. Indeed, r*R(t) ~ r?yRgg with y > 1, while
the canonical Schwarzschild terms are of the order of ry /7y ~
omr3,/m%, ~ 12 Rgr.

As already mentioned, the solution with large oscillating R()
was obtained [2, 5] under the assumption that the background
metric weakly deviates from the flat Minkowsky one. Though this
is certainly true for the Schwarzschild part of the solution (5.25),
this may be questioned for the r2R(t)/6 - term. Evidently the
flat background metric is not noticeably distorted if ¥ < 6/R(t).
If the initial energy density of the cloud is of the order of the
cosmological energy density, i.e. Rgr ~ 1/t2, then the metric
would deviate from the Minkowsky one for clouds having radius
'm > tu//y, where the maximum value of y is given by eq. (5.5).
For systems where very large values of y are reached, the flat
space approximation may be broken already for non-interestingly
small r. However, at the stage of rising R(t) when y > 1 but not
too large, the flat space approximation would be valid over all
the volume of the collapsing cloud. For large objects or large v,
such that Rr?/6 ~ 1, the approximation of flat background metric
becomes inapplicable and one has to solve the exact non-linear
equations (5.8a-5.8e); this situation will be studied elsewhere. If
Aq becomes comparable with unity, the evolution of R(t) may
significantly differ from that found in [2, 3, 5], but it seems evident
that once a large y > 1 is reached, it would remain larger than
unity despite a possible back-reaction of the non-flat metric.

One more comment is in order here. Above we presented the
solution which tends to the flat one at large distances, though
strictly speaking this should not be the case, since in the consid-
ered F(R) theory the metric of the empty space has the De Sitter
form. Nevertheless our is approximation is good enough when
the deviation of the metric from the flat one is large in comparison
with the cosmological part of the metric, i.e. A; or By are large in
comparison with the De Sitter part. It is completely analogous
to the case of the usual GR, when the gravitational field of an
isolated body is close to the Schwarzchild one for sufficiently
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small distances from the center despite the cosmological FRW
metric at large distances.

In the lowest order in the gravitational interaction the motion
[the geodesic equation in metric (5.7)] of a non-relativistic test
particle is governed by the equation:

T}

) 3
3 Ty,

T3 2

(5.26)

where A is given by eq. (5.24a). Since R(t) is always negative and

large, the modifications of GR considered here lead to anti-gravity

inside a cloud with energy density exceeding the cosmological

one. Gravitational repulsion dominates over the usual attraction
if

‘R|r$)n — ’R‘r?ﬂm%’l — ‘R’T’%Wl%l — @ =y>1 ( > )

3rq 6M 8mors, Too vyt 527

This condition may be misleading, in that it seems that whenever
R oscillates, so that its absolute value exceeds the GR value ~ Ty
(for non-relativistic matter), the f(R) dynamics should lead to
repulsive gravity. This is of course not the case, and the reason is
the following: to obtain (5.27), and particularly in deriving (5.24),
we have assumed that R oscillates with large amplitude so that

IR| > Too (5.28)

at the “top” of oscillations, as found in Chapters 3 and 4, see [2,
3, 5]. Clearly, the condition (5.27) is implied by (5.28), so it
fails in giving us additional information as to when we may
expect antigravity. Ultimately, the true condition for antigravity is
thus (5.28), which ensures that (5.23) holds. It is probably possible
to derive a more precise condition, we plan to address this issue
in the future.

So, we have seen that in modified gravity and in systems with
rising energy density, the curvature scalar would typically exceed
the GR value Rgpg, i.e. y > 1, and thus the gravitational repulsion
would dominate over the usual Schwarzschild attraction. The
back-reaction of this repulsion would slow down the contraction
but evidently not stop it. Moreover, the repulsion could overtake
the contraction at sufficiently large radius. As a result shell type
structures could be formed. Hence the gravitational repulsion
found here might be responsible for the formation of cosmic
voids but the lengthy analysis of realistic scenarios is outside the
framework of this Chapter.

5.3 CONCLUSIONS

As it was shown in [2, 5], the time evolution of curvature exhibits
a periodic succession of high narrow spikes with R > Rgg over
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some smooth background with relatively low R —see e.g. eq. (4.17)
of [5]. These oscillations are damped due to gravitational particle
production but the corresponding life-time could be comparable
or even larger than the cosmological time. So structure formation
in modified gravity would be different from that in the standard
GR. Sufficiently large primordial clouds would not shrink down
to smaller and smaller bodies with more or less uniform density
but could form thin shells empty (or almost empty) inside, except
possibly for some central mass. At least for some types of objects
this result would modify the recent studies of the formation and
stability of astronomical structures in F(R) gravity [206, 207]. We
should however stress that those works neglected time derivatives,
so the contrast with our results is mainly due to the different
physical phenomena involved.
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CONCLUSIONS

Among modified theories of gravitation, f(R) theories are pos-
sibly the most straightforward and “natural” purely geometric
extension of GR. The first appearance of modified gravity theories
dates back to the 1920’s [113, 114], although their relevance and
popularity vastly increased about 40 years ago, when pioneering
works [136-138] showed the possibility of generating the early
inflationary period with quadratic theories, which arise naturally
from quantum corrections in curved spacetime.

After the discovery of the cosmic acceleration [34-37], new life
was infused into f(R) theories, sparked by the early works [153-
157]. These models were soon realised to suffer from severe insta-
bilities [158, 159], because the additional scalar degree of freedom
acquires an imaginary mass. During the following years, an
impressive amount of work was directed to determining the cos-
mological viability conditions of f(R) models [160-169]. Clearly,
despite the conceptual simplicity of f(R) theories, the additional
dynamics and the higher-order equations make it difficult — and
fun — to come up with “good” models to model dark energy.

Furthermore, these models must be tested in a variety of cosmo-
logical and astrophysical situations, and may lead to important
detectable signatures which could in principle be observed soon.
As important as inventing new models is, finding new ways to
constrain and even exclude them is no smaller task. It is believed
that f(R) models can be considered as low-energy phenomeno-
logical limits of some more fundamental theory such as string
theory, etc. [139-141]. Every step towards the “right” f(R) model
may very well be a step towards the “right” theory of quantum
gravity, so there is no overestimating the relevance of any result
in this direction. This has been precisely the intent of my work.

Chapter 1 is devoted to introducing the vacuum energy prob-
lem. After a brief review of the standard cosmological scenario
and of the main observational indications for a vacuum energy
component, I presented a few of the most important theoreti-
cal models proposed to explain the cosmic acceleration, from
both the modified matter (dark energy) and modified gravity
standpoints.

In Chapter 2, I studied the radiation-dominated epoch in R + R?
gravity, discussing the modified curvature dynamics analytically
and numerically. The curvature scalar exhibits fast oscillations
around some power-law behaviour which may or may not corre-
spond to the standard GR solution. These curvature oscillations
are however damped due to gravitational particle production
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effects, so that eventually the solutions relax to the GR ones, but
with an additional relic density of gravitationally produced parti-
cles which can in principle give some imprint on the cosmological
evolution and perhaps even make up an effective mechanism to
produce dark matter.

In Chapter 3, I investigated the formation of curvature singu-
larities inside astronomical contracting systems within the frame-
work of two recently proposed f(R) models [198, 199], studying
the problem analytically and comparing my estimates with exact
numerical results. I showed that such infinite-R, finite-¢ singular-
ities can arise in a number of physically reasonable systems, and
derived the time scales for this to happen.

Naturally, as R approaches infinity, one expects high-curvature
effects to come into play. In Chapter 4, I studied the curvature
evolution in the models [198, 199] with the addition of an R? term
(irrelevant for cosmology, but important for large R). I showed
that this term prevents the formation of the curvature singularity
while still allowing R to reach very large values, and in turn
may lead to strong particle production. I calculated the particle
production rate, which depends on both physical properties of the
system and on model parameters. These high-energy cosmic rays
could in principle be detectable and, if observed, would represent
a unique model-dependent signature. Some unexplained features
in the cosmic ray spectrum, e.g. the so-called “ankle” [220—223],
might find a fascinating explanation in this framework.

In Chapter 5, I discussed another interesting and unexpected
consequence of these high-R solutions, namely the possibility
of gravitational repulsion in contracting systems. The modified
Einstein equations lead to new solutions for the metric in spher-
ically symmetric systems, and the new geodesic equation for a
test particle essentially shows repulsive behaviour if curvature is
large compared to its GR value. The phenomenology of such an
anti-gravitational behaviour, which has not been fully explored
yet, is probably rather interesting and may lead to additional
interesting discoveries.

We are experiencing astonishing advances in experimental,
observational and theoretical physics. We should be very excited
at what the next years and decades will bring, and I personally
cannot wait until the next discovery shakes the physics world
again. Among the very many problems modern physicists must
face, that of dark energy is possibly the most important, the
most difficult, and perhaps the farthest from being solved. The
solution to this problem will likely require contributions from a
variety of sectors of experimental and theoretical physics, and
those contributions will surely help us shed light on other related
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problems. It is entirely possible that we will need to abandon the
current paradigms of quantum and gravitational physics.

I 'am honoured that I have had the chance to do my part in this
fantastic journey, and wish to continue to do so in the future.






FIELD EQUATIONS FOR MODIFIED
GRAVITATIONAL THEORIES

A.1 GENERAL MODIFIED GRAVITATIONAL ACTION

The variation of the action
A= [dx /=g f(R¢) (A1)

with respect to the metric yields

SA = /d4x [f6/—8 + /—g5f]
= /d4x [f6/=8 +/—8fr (Ruw 08" + g 0Rw)] ,

(A.2)

where fr =df/dR and 6f = fr IR is the functional derivative
of f with respect to R. Using

1
0V —8 = =5V ~8 8", (A.3)

we obtain

1
sa= [t /=g |(fuRpw = 3 fom ) 05+ fg™ 0B,

(A.4)
The Ricci tensor is
Ry = Rl = 04T, — 0,14, + T3, T0, —T5,T7,, (A.5)
and its variation is given by the Palatini identity
SR = Va(0Ty,) — Vi (0T%,) - (A.6)

Please note that although the affine connection is not a tensor,
its variation is a tensor, and hence its covariant derivative makes
sense (see e.g. [7]). The metric compatibility condition V,g,, =0
also yields

§" 6Ry = V(g T}, — g oTy, ) . (A7)
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Now we need to calculate the variation of the affine connection,
or Christoffel symbols, defined by

1
F;‘:V = E glm (ayg/\v + avg/\y - a/\gyv) . (A8)

In all calculations, we will assume that we are working in a
torsion-free manifold, namely that the Christoffel symbols are
symmetric under permutation of the lower indeces. Assuming
that the variation () and partial derivative (d) operators commute,
we obtain

4 1 X
ory, = [(sg A (ang +0vgan — aAgw)} +

=3
1
5 [ (0udgn + 0050 —andgw)| - (A9)

Substituting the expression for the covariant derivative of the
metric tensor

Vadguw = 0208 — Ladgrs — Ta08as (A.10)
and using (A.3), equation (A.9) becomes
oTs, = % [(5g“ (0ugrv + 0ugan — a)‘gw)} +
N % 8" [ V1dgun + Vidgur — Vadgyu + 275,080
= 588508 [Bugan + Dty — g +
+ %g“ [Vidgun + Vidgur — Vadgu] — 8op0gP T
_ %g”“\ (V8801 + Vidgun — Vadgu] - (A.11)

Evidently, in the last step, the first term has canceled with the
third. In similar fashion, one can prove that

1
oTY, = 5 8" V03, (A.12)
so that

v 1 v_Aa
gﬂ (SR;W = E Va [8” 8)‘ (v}ldng + Vvégya - vtxfsgyv) -

_g}l)xgwcvy(sgm}
= V”VV(SgW — g”“VzégW
= g V26" — Vv, V,6g", (A.13)

where in obvious notation V2 = V,, V¥ is the covariant D’ Alambertian
operator. In order to be able to integrate by parts, it is useful to
define the following quantities:

Me = fr&uwVr (68") — 68" gV (fr)

A.
NY = f,R vy<5gﬂa) — (ngwvy (f,R) . ( 14)
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A.2  f(R) THEORIES

One can see that

5 / d*x /=g [fr(R)g"OR,] =
- /d4x /=8 08" (V2 — V.V, fr(R) +

+ / i*x /=g (VM + VoN) .
(A.15)
The second term on the right-hand side, with the aid of the Gauss-
Stokes theorem, can be expressed as a surface integral, and can be
basically put to zero by requiring that the variations dg;, vanish

on the boundary’.
Collecting all terms, we obtain

v 1
0A = /d4x v —8dg" [f,RRVV - Efgﬂv + (gﬂvvz - vﬂvv) fr
(A.16)

Adding a matter action S,,, and defining the energy-momentum
tensor as
2 Ay
pr =V <
/_g 5g]/l1/

the complete field equation take the form

(A.17)

1 1
SRRy = 5 fgu + (gwV?—VuVy) fr= —5 T (A18)

General relativity is recovered with the choice

- Pl R A.
=1 R (A.19)
which leads to the standard Einstein equations
1 87
Guw=Ruw—sRguw=—7Tuw. (A.20)
2 m3,

A.2  f(R) THEORIES

It is now straightforward to compute the field equations for more
particular cases. With f(R), the trick is trivial, since one only
needs to put f = f(R) in (A.18). Thus, the action

2
AfR) — —%/d%\/—igf(m + Am(¢; gu) (A.21)

produces the field equations

1
fR(R)Ryw — > fR) g + (gWVZ —ViVy)fr(R) = 81G Ty .
(A.22)

More formally, one can see that the term arising from the evaluation of the
integral perfectly cancels out with the Gibbons-York-Hawking like boundary
term [146].
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A.3 SCALAR-TENSOR THEORIES

In the case of scalar-tensor gravities, this is just slightly more
complicated. We substitute f = f(¢) in (A.18) and consider the
complete action

1
T [ty [ S @) g L g - Vo) | + Awlig),

(A.23)
where

(99) = & 9updup- (A-24)

Variation with respect to metric yields the field equations

f(9)Gu = 87G (T + Thh ) + (V¥ = gu VAf(9), (A25)

where
1
Tﬁ’v = 0up v — > guV(a‘P)z + 8w V(9) (A.26)

is the usual energy-momentum tensor for a minimally-coupled
scalar field.
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