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Introduction

The flow of the classical model of viscous fluids (i.e. Newtonian fluids) is governed by
the well known Navier-Stokes equations. The boundary value problems associated
to these equations are difficult to solve due to their nonlinearity. Nevertheless if the
geometry of the problem is simple or if there are some particular symmetries, then
it is possible to find exact solutions (closed form solutions or numerical solutions).
Such solutions are a valuable and irreplaceable resource. Actually, as far as the
theoretical point of view is concerned, exact solutions of the full equations may
be useful as test to check the accuracy of numerical methods and as a basis for
stability analysis. Moreover, they have many practical applications because they
allow to describe important physical situations: flows in a channel or in a pipe (i.e.
Poiseuille and Couette flow), flow induced by a rotating plane (i.e. von Karman
and Berker flows), and so on . . . . These solutions hence represent fundamental fluid
dynamic flows so that these basic phenomena can be more closely studied.
Exact solutions often arise as similarity solutions in the sense that by means of
suitable transformations (similarity transformations) it is possible to reduce the
number of independent variables by one or more. In such a way the PDEs that
govern the motion are reduced to ordinary non-linear differential equations. An
example of motion described by similarity solutions is the stagnation-point flow.
A stagnation point in a fluid flow field is a point where the velocity is zero. These
points may occur in the interior or on the boundary of the motion region. The
latter possibility appears when the fluid moves past an obstacle. Since this is a
common physical situation, stagnation-point flows are ubiquitous in the sense that
they inevitably appear as a component of more complicated flow fields.
Hence the research in this area is motivated by its relevance to a wide range of
engineering, industrial and technical applications in addition to the possibility of
solving exactly the full equations near the stagnation point. Actually, this topic has
attracted many studies during the past several decades.

The aim of this Ph.D. Thesis is to study how the steady stagnation-point flow
of a Newtonian or a micropolar fluid is influenced by an external electromagnetic
field.

As it is well known, an impressed electromagnetic field may modify the motion
of an electrically conducting fluid because of the presence of the Lorentz forces.

v
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Example of electrically conducting fluids are liquid metals, biological fluids, elec-
trolyte solutions, ionized gases. The macroscopic interactions between such fluids
and electromagnetic fields are studied by Magnetohydrodynamic, which is involved
in many natural phenomena and it has relevant engineering, technical and biomed-
ical applications. MHD stagnation-point flow is an area of investigation discussed
by several Authors in recent years (see for example [2], [17], [25], [42], [43], [44]).
One of the greatest advantages of having exact solutions to these magnethohydro-
dynamic problems is that the fluid and the electromagnetic field near the obstacle
can be described as functions of the parameters and some insight into the nature of
magnethohydrodynamic flows can be achieved.

As far as the two models of fluid are concerned, we will focus our attention to
the incompressible ones (real liquids). The Newtonian fluid is perhaps one of the
best known models and it represents a fluid whose stress at each point is linearly
proportional to the strain rate at that point. The constant of proportionality is
known as the viscosity. This model well summarizes the behaviour of many real
gases and liquids. Indeed the micropolar fluids physically represent fluids consisting
of rigid randomly oriented particles suspended in a viscous medium which have an
intrinsic rotational micromotion. Extensive reviews of the theory and its applications
can be found in [20], [21] and [41]. The main advantage of using the micropolar fluid
model in comparison to other classes of non-Newtonian fluids is that it takes into
account the rotation of fluid particles by means of an independent kinematic vector
called the microrotation vector. This model is considered to describe, for example,
biological fluids in thin vessels and in capillaries, polymeric suspensions, slurries,
liquid crystals, colloidal fluids. We point out that in most of the studies found
in literature a restrictive approach has been followed on the material parameters
which makes the equations to contain only one parameter ([1], [31], [32], [37]).
In our research we have not required restrictive conditions so that three material
parameters appear in the dimensionless ODEs (see for example [27]).

As far as the boundary conditions are concerned, we associate to the two models
the no-slip condition for the velocity and the strict adherence condition for the
microrotation.
Further we require a condition deduced from the physical experience: we suppose
that the pressure and the flow of a viscous fluid approach the pressure and the flow
of an inviscid fluid far from the obstacle. So the region where the viscosity appears is
only a small region near the obstacle and far from it there is no trace of the viscous
nature of the fluid. However it is important to underline that the stagnation-point
of the inviscid fluid, whose behaviour is approached by the viscous fluids far from
the obstacle, does not coincide with the stagnation-point of the viscous fluid (see for
example [47] for the Newtonian case). Hence in order to study the stagnation-point
flow for a Newtonian or a micropolar fluid, it is convenient to start with the same
flow for an inviscid fluid.
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In this Thesis, we will consider three different types of steady stagnation-point
flow for incompressible fluids: plane orthogonal, plane oblique and three-dimensional.

Orthogonal stagnation-point flow appears when a fluid impinges orthogonally on
a obstacle. Hiemenz ([33]) was the first to study the two-dimensional stagnation-
point flow for a Newtonian fluid using a similarity transformation to reduce the
Navier-Stokes equations to a non-linear ordinary differential equation.
The orthogonal plane and axially symmetric stagnation-point flow of a micropolar
fluid were treated by Guram and Smith ([27]), who reduced the equations to di-
mensionless form, including three dimensionless parameters, and integrated them
numerically. Previously Ahmadi ([1]) obtained self-similar solutions of the bound-
ary layer equations for micropolar flow asking restrictive conditions on the material
parameters which make the equations to contain only one parameter.

Oblique stagnation-point flow appears when a jet of fluid impinges obliquely on
a rigid wall at an arbitrary angle of incidence. From a mathematical point of view,
such a flow is obtained by combining the traditional orthogonal stagnation-point
flow with a shear flow directed parallel to the wall. The steady two-dimensional
oblique stagnation-point flow of a Newtonian fluid has been the object of many
investigations starting from the paper of Stuart in 1959 ([50]). One interesting
feature of this problem is that the angle of incidence of the impinging stream does
not appear in the equations governing the motion. The oblique solution was later
studied by Tamada ([52]), Dorrepaal ([16], [18]), Wang ([54], [55]); recently Drazin
and Raley ([19]) and Tooke and Blyth ([53]) reviewed the problem and included a
free parameter associated with the shear flow component. This free parameter alters
the structure of the shear flow component by varying the magnitude of the pressure
gradient.

An important example of flow past a body, where the three velocity components
appear, is the three-dimensional stagnation-point flow.
The steady three-dimensional stagnation-point flow of a Newtonian fluid has been
studied by Homman ([35]), Howarth ([36]), Davey and Schoffield ([13], [48]). Simi-
larity transformations reduce the Navier-Stokes equations to a system of nonlinear
ODEs, to which suitable boundary conditions have to be appended. The ODEs sys-
tem obtained depends on a parameter which is a measure of three-dimensionality.
Guram and Anwar Kamal ([26]) studied the analogous problem for a micropolar
fluid, but they didn’t consider the occurrence of the reverse flow, the thickness of
the boundary layer and the influence of some parameters on the solution.

As we have already pointed out, the aim of this Ph.D. Thesis is to understand
how an external electromagnetic field modifies the steady stagnation-point flow of a
Newtonian or a micropolar fluid. The motions we find depend on the orientation of
the applied electromagnetic field relative to the object boundary, which is supposed
to be a rigid plane wall. In every case through similarity transformations we reduce
the PDEs, which govern the motion, to a system of nonlinear ODEs.
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Due to the nonlinearity of the ODEs problems, the solutions cannot be expressed
in closed form, but we can use a numerical technique to find them. Some numerical
examples and pictures are given in order to illustrate the effects due to the magnetic
field in all the cases. These numerical solutions are obtained by using the bvp4c

MATLAB routine. Such a routine is a finite difference code that implements the
three-stage Lobatto IIIa formula. This is a collocation formula and here the collo-
cation polynomial provides a C1-continuous solution that is fourth-order accurate
uniformly in [0, 5]. Mesh selection and error control are based on the residual of the
continuous solution. We set the relative and the absolute tolerance equal to 10−7.
The method was used and described in [49].
Moreover, in all the physical situations here analyzed, we will always compute both
the velocity profiles and the pressure field. In the chapters, we will underline the
importance of the pressure field, which usually is not computed in the literature (see
for example [37], [39]). Actually, the approach followed by several Authors uses the
equations of the boundary layer and the stream function to derive the ODEs bound-
ary problem which governs the motion. In this way the ODEs problems are the
same as ours, but this approach is not mathematically justified. Further, it can’t be
applied to the three-dimensional stagnation-point flow and it doesn’t compute the
pressure field, which is very important to understand the behaviour of the motion.

The geometry of the problems is always the same: the coordinate axes are fixed
in such a way that the stagnation-point is the origin and that the motion occurs
in the region x2 > 0. The obstacle is represented by the plane x2 = 0, which is
supposed to be rigid and fixed. In the first four chapters the vacuum occupies the
region x2 < 0 under the obstacle, while in Chapters 5, 6, 7 the rigid wall x2 = 0
is the boundary of a solid which is a rigid uncharged dielectric at rest occupying
x2 < 0.

The Thesis has been organized as follows:

• Chapter 1 is devoted to define the three different types of stagnation-point
flow for Newtonian and micropolar fluids. Actually, we will recall and extend
the results found in literature in the absence of an external electromagnetic
field (see for example [19], [33], [35], [47], [50], [55]).

• In the second chapter we analyze the MHD orthogonal stagnation-point flow of
a Newtonian or a micropolar fluid when an external uniform electromagnetic
field (E0,H0) is applied.
First of all, we introduce the MHD PDEs which govern the motion and the
suitable boundary conditions for the electromagnetic field. We then consider
the inviscid fluid analyzing three cases which are significant from a physical
point of view. In the first two cases an external constant electric or magnetic
field is impressed parallel to the rigid wall. In both cases we find that an or-
thogonal stagnation-point flow exists and we get the exact induced magnetic
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field. The presence of the electromagnetic field modifies the pressure p, which
is smaller than the pressure in the purely hydrodynamical flow. In the third
case, we suppose that E0 vanishes and H0 lies in the plane of the flow with
a direction not parallel to the boundary. Under the hypothesis that the mag-
netic Reynolds number is small, we neglect the induced magnetic field, as it
is usual in the literature. We prove that the orthogonal stagnation-point flow
exists if, and only if, H0 is orthogonal to the wall x2 = 0. The presence of
H0 modifies p, which becomes smaller than the pressure in the purely hydro-
dynamical flow.
In the second part we consider the same problems for a Newtonian fluid. As
it is usual when one studies the plane stagnation-point flow for a Newtonian
fluid, we assume that at infinity the flow approaches the flow of an inviscid
fluid for which the stagnation-point is shifted from the origin ([19], [47]). The
coordinates of this new stagnation-point contain a constant A, which is deter-
mined as part of the solution for the flow. The existence of this constant can
be obtained from the numerical integration and it has been proved theoreti-
cally by Hartmann in [28].
As far as the flow is concerned, in the first two cases we find the same equations
of the orthogonal stagnation-point flow in absence of electromagnetic field and
the induced magnetic field is obtained by direct integration. Hence, the exter-
nal uniform electromagnetic field doesn’t influence the flow and modifies only
the pressure.
When H0 is orthogonal to x2 = 0, we find that the flow has to satisfy an ordi-
nary differential problem whose solution depends onH0 through the Hartmann
number M2. In this case, A (and so the stagnation-point) depends onM2 and
decreases as M2 is increased. The influence of the viscosity appears only in
a layer near the wall depending on M2 whose thickness decreases as M2 in-
creases from zero, as it is usual in magnetohydrodynamics.
For this class of fluids also, the external uniform electromagnetic field doesn’t
influence the flow, and modifies only the pressure p. The induced magnetic
field is obtained by direct integration.
Finally, in the case in which H0 is orthogonal to x2 = 0, we find that the
flow has to satisfy an ordinary differential problem whose solution depends on
H0 through the Hartmann number M2, as for the Newtonian model. When
the material parameters are fixed, the effect of the viscosity appears only in
a layer near the wall depending on M2 whose thickness decreases as M2 in-
creases from zero and is smaller than in the Newtonian case.
We have also considered the influence of the three material parameters in-
volved in the micropolar fluids on the motion.
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• In Chapter 3 we study how the steady oblique stagnation-point flow of a New-
tonian or a micropolar fluid is influenced by an external uniform electromag-
netic field (E0,H0). The results obtained in this chapter have been published
in [5] and [6].
First of all, as in the previous chapter, we consider an inviscid fluid and an-
alyze three cases which are relevant from a physical point of view. As in the
orthogonal stagnation-point flow, in the first two cases an external constant
electric or magnetic field is applied parallel to the rigid wall. In both cases we
find that an oblique stagnation-point flow exists and we get the exact induced
magnetic field. The presence of the electromagnetic field modifies the pres-
sure p, which is smaller than the pressure in the purely hydrodynamical flow.
In the third case, we suppose that E0 vanishes and H0 lies in the plane of
the flow with a direction not parallel to the boundary. Under the hypothesis
that the magnetic Reynolds number is small, we neglect the induced magnetic
field and we prove that the oblique stagnation-point flow exists if, and only
if, H0 is parallel to the dividing streamline. In regard to this result we point
out that the analysis contained in [25] appears incorrect because the Authors
carry out their analysis by supposing the external magnetic field orthogonal
to the boundary, but we prove in Theorem 3.1.5 that in that case the oblique
stagnation-point flow does not exist for an inviscid fluid. The presence of H0

parallel to the dividing streamline modifies p, which is smaller than the pres-
sure in the purely hydrodynamical flow.
In the second and third part we consider the same problems for a Newtonian or
a micropolar fluid, respectively. As usual, we assume that at infinity the flow
approaches the flow of an inviscid fluid for which the stagnation-point is shifted
from the origin ([19], [47], [53]). The coordinates of this new stagnation-point
contain two constants A,B, where A is determined as part of the solution for
the orthogonal flow and B is free.
In the first two cases the external uniform electromagnetic field influences only
the pressure and the induced magnetic field is obtained by direct integration.
Moreover, ∇p has a constant component parallel to the wall proportional to
B − A, which does not appear in the orthogonal stagnation-point flow. This
component determines the displacement of the uniform shear flow parallel to
the boundary. The flow is obtained for different values of B by numerical in-
tegration. We remark that the thickness of the layer affected by the viscosity
is larger than that in the orthogonal stagnation-point flow.
In the case in which H0 is parallel to the dividing streamline of the inviscid
flow, we find that the flow has to satisfy an ordinary differential problem whose
solution depend on H0 through the Hartmann number M2. In this case, A
and the thickness of the boundary layer decrease as M2 increases.
We then analyze the behaviour of the flow near the wall; it depends on the
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Hartmann number in the third case.
We calculate along the wall, three important coordinates: the origin, which
is the stagnation-point, the point of maximum pressure and the point of zero
tangential stress (zero skin friction) where the dividing streamline meets the
boundary. These points depend onM2 in the third case. The ratio of the slope
of the dividing streamline at the wall to its slope at the infinity is independent
of the angle of incidence; in the last case it depends on M2.
The presence of the microrotation influences all the descriptive quantities of
the motion, which are smaller than in the Newtonian case.

• Chapter 4 presents the study of the influence of a uniform external electro-
magnetic field (E0,H0) on the steady three-dimensional stagnation-point flow
of an electrically conducting Newtonian and micropolar fluid. The results are
contained in [4], [7], and [8].
First of all, we study the steady three-dimensional stagnation-point flow of an
inviscid fluid in the presence of a uniform external magnetic field H0 and when
the induced magnetic field is neglected. Under this assumption we prove that
H0 has to be parallel to one of the axes.
Then we consider the same problems for a Newtonian and a micropolar fluid.
Taking into account the results obtained for an inviscid fluid, we find that the
flow has to satisfy an ordinary differential problem depending on two parame-
ters: c and M2. As usual, c is a measure of three-dimensionality and M2 is
the Hartmann number.
As far as the micropolar fluids are concerned, in all three case, in addition to
the well known phenomenon of the reverse flow, we have found a new inter-
esting result: there is a zone of reverse microrotation for some negative values
of c. The range of c for which the reverse microrotation appears is included in
the range of c for which the reverse flow occurs.
By means of our numerical results, we find that H0 tends to prevent the oc-
currence of the reverse flow, which occurs in the absence of the magnetic field
for suitable negative values of c ([13]). The influence of the magnetic field on
the reverse flow was also found in [3] in other physical situations.
In the micropolar case, we find that H0 tends to prevent also the occurrence
of the reverse microrotation.
The presence ofH0 modifies the thickness of the boundary layer of the velocity
and of the microrotation, which decreases as M2 increases. This effect occurs
in all cases studied.
We have also classified the stagnation-point as nodal or saddle point and as
attachment or separation point. The classification depends on c and M2. In
CASE II-N-M and CASE III-N-M, as for M2 = 0, the origin is a point of at-
tachment. In CASE I-N-M, we find a new result: when M2 is sufficiently large
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and c assumes suitable negative values, then the stagnation-point becomes a
separation point. In all the three cases, if c > 0 or where there is the reverse
flow, the origin is a nodal point, while when c < 0 and the reverse flow does
not appear, it is a saddle point.
We also stress that the three dimensional displacement thickness hd can be
negative and we find that hd is always negative when the reverse flow appears.
Finally, the solution does not exist for c < −1 in CASE III-N ([13]), while the
non existence in CASEs I-II-N is proved for c < −1 and M2 < −2c.

• In Chapter 5 we analyze the MHD orthogonal stagnation-point flow of a New-
tonian or a micropolar fluid when the magnetic field H is parallel to the flow
at infinity. We underline thatH is not uniform and it depends on a sufficiently
regular unknown function h = h(x2) to be determined under a hypothesis as-
suring that far from the obstacle H× v = 0.
We assume that an external magnetic field He permeates the whole space and
the external electric field is absent.
The region where the motion appears is bordered by the boundary of a solid
which is a rigid uncharged dielectric at rest.
We point out that this problem has been studied in [17] for a Newtonian fluid,
but the Authors didn’t explain properly the physics of the problem and didn’t
take into consideration the thickness of the boundary layer, the behaviour of
the solution and the influence of the parameters on the solution. We remark
that the results presented for the micropolar fluids are new ([9]).
First of all, we consider an inviscid fluid and the situation of the solid.
As far as the electromagnetic field in the solid (Hs,Es) is concerned, of course
Es is zero and we determine Hs by asking that the non-degenerate field lines
of Hs tend to x2 = 0 as x1 goes to infinity.
For the inviscid fluid we have that (H,E) = (He, 0) and the pressure field is
not modified by the presence of H.
In the second and third part of the chapter we consider the same problem
for a Newtonian and a micropolar fluid assuming that at infinity the flow ap-
proaches the flow of an inviscid fluid for which the stagnation-point is shifted
from the origin.
We find that the pressure field and the flow depend on h(x2). H and v satisfy
an ordinary differential boundary value problem which depends on two para-
meters Rm and βm. Rm is the Reynolds number, while βm is a measure of the
strength of the applied magnetic field. The parameter βm has to be less than
1 in order to preserve the parallelism of H and v at infinity, as it is underlined
in [17].
For both fluids we find that the thickness of the boundary layer depends on
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Rm and βm. More precisely, it increases when βm increases, while it decreases
when Rm increases. This behaviour is not surprising because as it is under-
lined in [17] when the magnetic field is strong the disturbances are no longer
contained within a boundary layer along the wall. This means that boundary
conditions can no longer be prescribed at infinity. In particular, in [17] it is
proved that in a perfectly conducting fluid the displacement thickness becomes
infinite as βm goes to 1−.
As far as the dependence of the thickness of the boundary layer on Rm is con-
cerned, this fact is in agreement with the results obtained for the orthogonal
stagnation-point flow in Chapter 2, where we have shown that the thickness
of the boundary layer decreases when the Hartmann number M2 increases.
Actually, Rm and M2 are both proportional to the electrical conductivity.
Finally, we display the streamlines and the magnetic field lines in order to
underline that the flow and the magnetic field are completely overlapped far
from the obstacle and the more Rm increases the more the two lines coincide.

• The purpose of Chapter 6 is to study the MHD oblique stagnation-point flow
of a Newtonian or a micropolar fluid when the magnetic field H is parallel to
the flow at infinity. H is not uniform and it depends on two sufficiently regular
unknown functions h = h(x2), k = k(x2).
We suppose that an external magnetic fieldHe and an external uniform electric
field Ee (perpendicular to the plane of the flow) permeate the whole space.
As in Chapter 5, the region where the motion appears is bordered by the
boundary of a solid which is a rigid uncharged dielectric at rest.
This problem has been studied in [17] for a Newtonian fluid and that the
results presented for the micropolar fluids are new ([10]).
First of all, we consider an inviscid fluid and the situation of the solid.
As far as the electromagnetic field in the solid (Hs,Es) is concerned, of course
Es = Ee and we determine Hs by asking that the non-degenerate field lines of
Hs, which are hyperbolas, have centre in the origin and they tend to x2 = 0
as x1 goes to infinity.
For the inviscid fluid we get E = Ee and it is univocally determined by He.
Moreover, we find that H = He and that the pressure field is modified by the
presence of H.
In the second and third part of the chapter we consider the same problem for
a Newtonian and a micropolar fluid. As usual, we assume that at infinity the
flow approaches the flow of an inviscid fluid for which the stagnation-point is
shifted from the origin. The coordinates of this new stagnation-point contain
the constants A,B.
As far as the flow is concerned, we find that the pressure field and the flow
depend on h(x2) and k(x2). H and v satisfy an ordinary differential boundary
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value problem which depends on Rm, βm and B − A. The gradient of the
pressure has a constant component parallel to the wall proportional to B−A,
which does not appear in the orthogonal stagnation-point flow and which now
depends on H. This component determines the displacement of the uniform
shear flow parallel to the boundary.
For both the models of the fluid we find that the thickness of the boundary layer
depends on Rm and βm. More precisely, it increases when βm increases, while
it decreases when Rm increases (as it happens in the orthogonal stagnation-
point flow). The thickness of the layer affected by the viscosity is larger than
that in the orthogonal case.
We underline that the more Rm is small and the more βm is close to 1 the
more the thickness of the boundary layer is larger than in the other cases of
oblique stagnation-point flow treated in this Thesis (see Chapters 1.2 and 3).
We calculate along the wall the point of maximum pressure and the point of
zero tangential stress. These points depend both directly and indirectly on βm
and Rm. In this situation also the ratio of the slope of the dividing streamline
at the wall to its slope at the infinity is independent of the angle of incidence.
Finally, we see that the flow and the magnetic field are completely parallel far
from the obstacle.

• Chapter 7 is dedicated to the analysis of the MHD three-dimensional stagnation-
point flow of a Newtonian or a micropolar fluid when the magnetic field H is
parallel to the flow at infinity. H is not uniform and it depends on two suf-
ficiently regular unknown functions h = h(x2), k = k(x2) to be determined
under a hypothesis assuring that far from the obstacle H× v = 0. Further H
depends on c (the measure of the three dimensionality of the flow).
We assume that an external magnetic field He permeates the whole space and
the external electric field is absent.
All the results of this chapter are original ([11]).
First of all, we consider an inviscid fluid and the situation of the solid.
As far as the electromagnetic field in the solid (Hs,Es) is concerned, of course
Es = Ee and we compute Hs by asking that the non-degenerate field lines of
Hs belong to a surface which tends to x2 = 0 as |x1|, |x3| goes to infinity.
For the inviscid fluid we have that (H,E) = (He, 0) and the pressure field is
not modified by the presence of H.
In the second and third part of the chapter we consider the same problem for
a Newtonian and a micropolar fluid.
We prove that the three dimensional stagnation-point flow is possible if, and
only if, the motion is axial symmetric with respect to x2 axis.
The pressure field and the flow depend on h(x2). H and v satisfy an ordinary
differential boundary value problem which depends on Rm and βm.
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For both the models of the fluid we find that the thickness of the boundary
layer depends on Rm and βm. More precisely, it increases when βm increases,
while it decreases when Rm increases (as it happens in the orthogonal and the
oblique stagnation-point flow).
We underline that the more Rm is small and the more βm is close to 1 the
more the thickness of the boundary layer is larger than in the other cases of
three-dimensional stagnation-point flow treated in this Thesis (see Chapters
1.3 and 4).
Finally, we classify the origin: the stagnation-point is now always a nodal
point of attachment.

• In Chapter 8 the results obtained are summarized and compared and some
open problems are proposed.

To facilitate access to the individual topics, the chapters are rendered as self-
contained as possible.

All the MHD results here obtained reduce to that found in literature when
M2 = 0 or Rm = 0 and βm = 0.
It can be interesting to compare the results of the micropolar fluid with the corre-
sponding results for the Newtonian fluid: the micropolar fluids reduce the thickness
of the boundary layer, and in general all the descriptive quantities of the motion.

In all cases here considered the results continue to hold even if there are external
conservative body forces by modifying the pressure field appropriately. Moreover,
our analysis can be applied when the obstacle is the surface of a body with any shape,
because near the stagnation-point the body may be represented by its tangent plane.

Finally, it should be pointed out that a number of aspects of these problems
should be further investigated, for example the consideration of temperature or
time dependence and the proof of the existence or the non-existence of solutions of
the problems here considered (especially in the micropolar case).
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Chapter 1

The stagnation-point flow

This chapter is devoted to define three different types of stagnation-point flow for
Newtonian and micropolar fluids. Actually, even if the aim of this Thesis is to study
the Magnetohydrodynamic aspects of such motions, it is appropriate to start by
recalling the results found in the literature in the absence of an external electromag-
netic field. As we will see, part of the results presented in this chapter extend the
existing ones.

First of all we note that a stagnation point in a flow is a point where fluid velocity
components are zero. These points occur very often physically: for example when
a fluid hits an obstacle (see Figure 1.11) or when an object moves in a fluid. Hence
stagnation-point flows appear generally as a part of more complicated flow fields.
In our analysis, we will consider fluids which move towards to a rigid material wall.
From a mathematical point of view, these flows belong to a specific class of exact
solutions of the PDEs which usually govern the motion of such fluids: similarity
solutions. The main feature of similarity solutions is that they reduce the PDEs
through similarity transformations to a system of nonlinear ODEs to which appro-
priate boundary conditions should be appended.
For these reasons, the stagnation-point flow is a fundamental topic in fluid dynamics
and it has attracted many investigations during the past several decades.
Since we want to find exact solutions of the PDEs which usually govern the motion,
we search classical solutions.
Due to the nonlinearity of the ODEs problem, we will use a numerical technique
to find the approximate solution. These numerical solutions are here obtained by
using the bvp4c MATLAB routine, as described in [49].

As far as the models of fluid are concerned, the Newtonian one is perhaps the
best known model and it represents a fluid whose viscosity does not change with rate
of flow. This model well summarizes the behaviour of many real gases and liquids.
As it is well known, the motion of Newtonian fluid is governed by the Navier-Stokes
equations. This important system of PDEs has, however, a limitation: it cannot

1
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x1

x2

x1O rigid boundary

region of viscosity

Figure 1.1: In Figure 1.11 it is shown a picture of the orthogonal stagnation-point
flow ([47]), while Figure 1.12 elucidate the region where the viscosity appears.

describe fluids with microstructures which are very important in practical applica-
tions ([41]). The theory of micropolar fluids introduced by Eringen is one of the
best theory of Non-Newtonian models which takes into account the microstructures
([20], [21]). Briefly, the micropolar fluids physically represent fluids consisting of
rigid randomly oriented particles suspended in a viscous medium which have an
intrinsic rotational micromotion. The rotation of the fluid particles is described by
the microrotation field.

We associate to these two models the no-slip condition for the velocity and the
strict adherence condition for the microrotation. Moreover, we add another condi-
tion deduced from the physical experience: we suppose that the pressure and the
flow of a viscous fluid approach the pressure and the flow of an inviscid fluid far
from the obstacle. So the region where the viscosity appears is only a small region
near the obstacle and far from it there is no trace of the viscous nature of the fluid
(see Figure 1.12).
This is why the starting point of our analysis will always be to study the stagnation-
point flow of an inviscid fluid.
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x1

x2

O

Figure 1.2: Orthogonal stagnation-point flow description.

1.1 Orthogonal stagnation-point flow

Orthogonal stagnation-point flow appears for example when a jet of fluid impinges
orthogonally on a rigid wall.
Hiemenz ([33]) was the first to study the two-dimensional stagnation-point flow for
a Newtonian fluid and to obtain a similarity solution of the governing Navier-Stokes
equations.
The same flow of a micropolar fluid was treated by Guram and Smith ([27]), who
reduced the equations to dimensionless form, including three dimensionless parame-
ters. It is noteworthy that previously Ahmadi ([1]) obtained exact solutions of the
boundary layer equations for micropolar flow asking restrictive conditions on the
material parameters. Under these conditions the dimensionless ODEs that describe
the motion contain only one parameter.
In our analysis we will always follow the Guram and Smith’s approach ([27]) and
we won’t impose any restrictive condition on the parameters.

1.1.1 Inviscid fluids

Consider the steady plane flow of a homogeneous, incompressible inviscid fluid near
a stagnation point occupying the region S (see Figure 1.2) given by

S = {x ∈ R
3 : (x1, x3) ∈ R

2, x2 > 0}. (1.1)

The boundary of S having the equation x2 = 0 is a rigid, fixed wall.

The coordinate axes are fixed so that the stagnation-point is the origin. As usual,
we denote by (e1, e2, e3) the canonical base of R

3.
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The equations governing such a flow in the absence of external mechanical body
forces are:

ρv · ∇v = −∇p,
∇ · v = 0, in S (1.2)

where v is the velocity field, p is the pressure, ρ is the mass density (constant > 0).

Remark 1.1.1. Equations (1.2) continue to hold even if there are external conser-
vative body forces. Indeed in this case it is sufficient to modify the pressure field
appropriately.

To equations (1.2) we append the usual no-penetration boundary condition for
v:

v2 = 0 at x2 = 0. (1.3)

We are interested in the orthogonal plane stagnation-point flow so that

v1 = ax1, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (1.4)

with a constant. The constant a has to be positive because the fluid moves towards
the wall x2 = 0.

As it is easy to verify, the following theorem holds:

Theorem 1.1.2. Let a homogeneous, incompressible, inviscid fluid occupy the region
S. The steady orthogonal plane stagnation-point flow of such a fluid has the form:

v = ax1e1 − ax2e2, p = −1
2
ρa2(x21 + x22) + p0, p0 ∈ R, x1 ∈ R, x2 ∈ R

+.

Remark 1.1.3. Here and subsequently, the constant p0 represents the pressure at
the stagnation-point.
Moreover, in the following p∗0 will indicate a suitable constant.

Remark 1.1.4. As we will explain in the details in the next section, in order to
study the orthogonal stagnation-point flow for Newtonian and micropolar fluids, it is
convenient to consider a more general flow. More precisely, we suppose the inviscid
fluid orthogonally impinging on the flat plane x2 = A, so that

v1 = ax1, v2 = −a(x2 −A), v3 = 0 x1 ∈ R, x2 ≥ A, (1.5)

with A = constant.
In such a way the stagnation point is not (0, 0) but the point (0, A) and the pressure
field is given by:

p = −1
2
ρa2

[

x21 + (x2 − A)2
]

+ p0.
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1.1.2 Newtonian fluids

Consider now the steady two-dimensional orthogonal flow of a homogeneous, incompres-
sible Newtonian fluid near a stagnation point occupying the region S given by (1.1).

The equations governing such a flow in the absence of external mechanical body
forces are the equations (1.2) where (1.2)1 is replaced by:

v · ∇v = −1
ρ
∇p+ ν△v, (1.6)

where ν is the kinematic viscosity. Of course, Remark 1.1.1 holds.
As far as the boundary conditions are concerned, we modify the condition for v,

assuming the no-slip boundary condition :

v|x2=0 = 0. (1.7)

Since the velocity field given by (1.4) does not satisfy the no-slip condition, it
is not an acceptable solution of the equations of viscous flow. This is why we shall
search a velocity field of the form ([33])

v1 = ax1f
′(x2), v2 = −af(x2), v3 = 0, x1 ∈ R, x2 ∈ R

+, (1.8)

together with f sufficiently regular unknown function (f ∈ C3(R+)). This function
represents the similarity transformation which reduces the Navier-Stokes equation
to a nonlinear ordinary differential equation. The form of the velocity assures that
the fluid is incompressible.

Condition (1.7) supplies

f(0) = 0, f ′(0) = 0. (1.9)

As it is reasonable from the physical point of view, we assume also that at infinity
the flow of a viscous fluid approaches the flow of an inviscid fluid whose velocity is
given by (1.5) ([19]).
Therefore to (1.6) and (1.2)2 we must also append the following boundary condition

lim
x2→+∞

f ′(x2) = 1. (1.10)

The previous condition implies

lim
x2→+∞

v1 = ax1,

while for the second component of the velocity we can only conclude that

v2 ∼ −ax2 for x2 → +∞,
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because, as can be easily obtained from the L’Hôpital’s rule, if f ′(x2) = 1 for
x2 → +∞, then

lim
x2→+∞

f(x2)

x2
= 1,

that is f ∼ x2 for x2 → +∞.
Actually, as we will see from the numerical integration, there exists a constant A
different from zero such that the asymptotic behaviour of f at infinity is related to
A in the following way:

lim
x2→+∞

[f(x2)− x2] = −A. (1.11)

Further A is not an arbitrary constant but is determined as part of the solution of
the flow ([47]). The existence of this constant has been proved by Hartmann in [28].

As it is well known, it is easy to prove the following ([33]):

Theorem 1.1.5. Let a homogeneous, incompressible Newtonian fluid occupy the
region S. The steady orthogonal plane stagnation-point flow of such a fluid has the
following form:

v = ax1f
′(x2)e1 − af(x2)e2,

p = −ρa
2

2
[x21 + f 2(x2)]− ρaνf ′(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where f satisfies equation

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1 = 0, (1.12)

with the boundary conditions (1.9) and (1.10).

If we put

η =

√

a

ν
x2, ϕ(η) =

√

a

ν
f

(
√

ν

a
η

)

, (1.13)

then we can write problem (1.12), (1.9), (1.10) in dimensionless form

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 = 0,

ϕ(0) = 0, ϕ′(0) = 0,

lim
η→+∞

ϕ′(η) = 1. (1.14)
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Figure 1.3: Plot showing the behaviour of ϕ (Hiemenz function), ϕ′, ϕ′′.

With this transformation, we also denote by

α =

√

a

ν
A. (1.15)

The function ϕ satisfies the well known Hiemenz equation ([47], [19], [33]).
Due to the non-linearity of (1.14), the solution of the Hiemenz stagnation-point
flow cannot be expressed in closed form, however we can compute it by a numerical
integration.
Existence and uniqueness of the solution to Hiemenz stagnation-point flow were
shown by Hartmann ([28]), Tam ([51]), Craven and Peletier ([12]).

We have solved numerically problem (1.14) using the bvp4c MATLAB routine.
Figure 1.3 shows the graphics of Hiemenz function and its derivatives.

Remark 1.1.6. As one can see from Figure 1.3, the solution ϕ of problem (1.14)
satisfies the conditions

lim
η→+∞

ϕ′′(η) = 0, lim
η→+∞

ϕ′(η) = 1;

therefore we define:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99.

Hence if η > ηϕ, then ϕ
∼= η−α and in this region the Newtonian fluid behaves like

an inviscid one.

The thickness of the layer affected by the viscosity is δv := ηϕ

√

ν

a
.
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Figure 1.4: Plots showing the streamlines in the orthogonal stagnation-point flow
of a Newtonian fluid.

From the numerical integration, we get

• ϕ′′(0) = 1.2326;

• at η = 2.3796 one has ϕ′ = 0.99 and if η > 2.3795 then ϕ ∼= η − 0.6479.

Hence α = 0.6479 and the viscosity appears only in a small region near the boundary
whose thickness is

δv = 2.3796

√

ν

a
.

Figure 1.4 shows the streamlines of the flow (ξ =
√

ν
a
x1). Our results are consistent

with the previous studies ([33], [19], [55]).

1.1.3 Micropolar fluids

Let us consider the steady two-dimensional orthogonal stagnation-point flow of a
homogeneous, incompressible micropolar fluid towards a flat surface coinciding with
the plane x2 = 0, the flow being confined to the region S having the equation (1.1).

In the absence of external mechanical body forces and body couples, the equa-
tions for such a fluid are ([41])

v · ∇v = −1
ρ
∇p+ (ν + νr)△v + 2νr(∇×w),

∇ · v = 0,

Iv · ∇w = λ△w + λ0∇(∇ ·w)− 4νrw + 2νr(∇× v), (1.16)
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where w is the microrotation field, ν is the kinematic newtonian viscosity coefficient,
νr is the microrotation viscosity coefficient, λ, λ0 (positive constants) are material
parameters related to the coefficient of angular viscosity and I is the microinertia
coefficient. Of course, Remark 1.1.1 holds.
We notice that in [20], [21], eqs. (1.16) are slightly different, as they are deduced as
a special case of much more general model of microfluids. For the details, we refer
to [41], p.23.

As far as the boundary conditions are concerned, of course, we modify condition
(1.3) and we prescribe the strict adherence condition for the microrotation w, i.e.

v|x2=0 = 0, w|x2=0 = 0. (1.17)

Other boundary conditions for the microrotation are possible. We refer to Eringen
([20], p.17-18) for a complete discussion. In our studies we will always assume the
strict adherence condition for the microrotation field.

Following Guram and Smith ([27]) we use the following similarity transformation
to the describe the velocity and the microrotation

v1 = ax1f
′(x2), v2 = −af(x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F (x2), x1 ∈ R, x2 ∈ R
+, (1.18)

where f, F are sufficiently regular unknown functions (f ∈ C3(R+), F ∈ C2(R+)).

From conditions (1.17) we get

f(0) = 0, f ′(0) = 0, F (0) = 0. (1.19)

As explained previously, we assume that at infinity, the flow approaches the flow of
an inviscid fluid given by (1.5).
Therefore to (1.18) we also append the following conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

F (x2) = 0. (1.20)

Condition (1.20)2 means that at infinity, w =
1

2
∇ × v, i.e. the micropolar fluid

behaves like an inviscid fluid whose velocity v is given by (1.5).

As for the Newtonian fluid, the asymptotic behaviour of f at infinity is related
to the constant A, which is determined as part of the solution of the problem, in
the following way:

lim
x2→+∞

[f(x2)− x2] = −A. (1.21)
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Theorem 1.1.7. Let a homogeneous, incompressible micropolar fluid occupy the
region S. The steady orthogonal plane stagnation-point flow of such a fluid has the
following form:

v =ax1f
′(x2)e1 − af(x2)e2, w = x1F (x2)e3,

p =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds+ p0,

x1 ∈ R, x2 ∈ R
+,

where (f, F ) satisfies the problem

ν + νr
a

f ′′′ + ff ′′ − f ′
2
+ 1 +

2νr
a2
F ′ = 0,

λF ′′ + aI(fF ′ − f ′F )− 2νr(2F + af ′′) = 0, (1.22)

and (1.19), (1.20), provided F ∈ L1([0,+∞)).

Remark 1.1.8. If νr = 0, then (1.22)1 is the equation governing the orthogonal
stagnation-point flow of a Newtonian fluid (Hiemenz equation, see previous section).

We now write the system (1.22), together with the conditions (1.19) and (1.20),
in dimensionless form. To this end we put

η =

√

a

ν + νr
x2, ϕ(η) =

√

a

ν + νr
f

(

√

ν + νr
a

η

)

,

Φ(η) =
2νr
a2

√

a

ν + νr
F

(

√

ν + νr
a

η

)

. (1.23)

So system (1.22), (1.19) and (1.20) can be written as

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 + Φ′ = 0,

Φ′′ + c3(ϕΦ
′ − ϕ′Φ)− c2Φ− c1ϕ

′′ = 0,

ϕ(0) = 0, ϕ′(0) = 0, Φ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0, (1.24)

where

c1 =
4ν2r
λa

, c2 =
4νr(ν + νr)

λa
, c3 =

I

λ
(ν + νr) (1.25)
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are the material parameters which describe the micropolar nature of the fluid.
We put

α =

√

a

ν + νr
A. (1.26)

Problem (1.24) is a nonlinear ordinary differential boundary value problem so it
is possible to compute numerically its solution.

Remark 1.1.9. The numerical integration reveals that

lim
η→+∞

ϕ′′(η) = 0, lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0.

Therefore we denote by:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99;

• ηΦ the value of η such that Φ(ηΦ) = −0.01.

Hence if η > ηϕ then ϕ ∼= η − α, and if η > ηΦ, then Φ ∼= 0. This means that
the influence of the viscosity on the velocity and on the microrotation appears only
in a layer lining the boundary whose thickness is ηϕ for the velocity and ηΦ for the
microrotation.
The thickness δ of the boundary layer for the flow is defined as

δ := max(ηϕ, ηΦ).

Further, the thickness of the layer affected by the viscosity is proportional to

√

ν + νr
a

.

We have solved numerically problem (1.24) for different values of c1, c2, c3,
chosen according to Guram and Smith ([27]).

Figure 1.51 shows the graphics of ϕ function and its derivatives for c1 = 0.5, c2 =
3.0, c3 = 0.5, while the behaviour of Φ and Φ′ for c1 = 0.5, c2 = 3.0, c3 = 0.5 is
displayed in Figure 1.52.
We have provided these two representative graphs to elucidate the trends of the func-
tions describing the velocity and the microrotation. The other choices of c1, c2, c3
modify the trends of these functions very slightly.

The values selected of c1, c2, c3 are given in Table 1.1, where we reported also
the consequent values of α, ϕ′′(0), Φ′(0), ηϕ, ηΦ.

From Table 1.1 it appears that if we fix two parameters among c1, c2, c3, then
the values of α, ϕ′′(0), Φ′(0), have the following behaviour :

• they increase as c2 or c3 increases;
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Figure 1.5: Plots showing the behaviour of ϕ, ϕ′, ϕ′′ and Φ, Φ′, respectively, for
c1 = 0.5, c2 = 3.0, c3 = 0.5.

Table 1.1: Descriptive quantities of the motion for some values of c1, c2, c3.

c1 c2 c3 ϕ′′(0) Φ′(0) α ηϕ ηΦ δ

0.1 1.5 0.1 1.2218 -0.0532 0.6446 2.3257 1.6004 2.3257
0.5 1.2231 -0.0510 0.6448 2.3369 1.3324 2.3369

3.0 0.1 1.2250 -0.0444 0.6453 2.3466 1.0012 2.3466
0.5 1.2256 -0.0434 0.6454 2.3517 0.8459 2.3517

0.5 1.5 0.1 1.1780 -0.2659 0.6310 2.1269 2.9083 2.9083
0.5 1.1848 -0.2553 0.6321 2.1676 2.4321 2.4321

3.0 0.1 1.1943 -0.2220 0.6350 2.2154 2.3427 2.3427
0.5 1.1972 -0.2173 0.6356 2.2389 2.1179 2.2389
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Figure 1.6: Plots showing the behaviour of ϕ′ and Φ for c1 = 0.5, c2 = 3.0 fixed,
and for different values of c3.

• they decrease as c1 increases.

The influence of c1 appears more considerable also on the other quantities quoted
in the Table.

Figures 1.6, 1.7, and 1.8 elucidate the dependence of the functions ϕ′, Φ on the
parameters c1, c2, c3. We can see that the function which appears most influenced
by c1, c2, c3 is Φ, in other words the microrotation. More precisely, the profile of
Φ rises as c3 or c2 increases and c1 decreases. As it happened for the descriptive
quantities of the motion, c1 is the parameter that most affects the microrotation.
The function ϕ′ does not show considerable variations as c1, c2, c3 assume different
values.

From Table 1.1, it appears also that the presence of the microrotation modifies
the values of α, ϕ′′(0), ηϕ, which are smaller than in the case of a Newtonian fluid
(see Chapter 1.1.2). Hence the thickness of the boundary layer for the velocity is
smaller than that of the Newtonian fluid.

Our results are consistent with the studies available in the literature and extend
them.

Finally, Figure 1.9 shows the streamlines of the flow for c1 = 0.5, c2 = 3.0, c3 =
0.5.

1.2 Oblique stagnation-point flow

From a mathematical point of view, it is possible to combine the orthogonal stagna-
tion-point flow with a shear flow parallel to the wall. In this way we get the oblique
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Figure 1.7: Plots showing the behaviour of ϕ′ and Φ for c1 = 0.5, c3 = 0.5 fixed,
and for different values of c2.
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Figure 1.9: Plots showing the streamlines in the orthogonal stagnation-point flow
of a micropolar fluid for c1 = 0.5, c2 = 3.0, c3 = 0.5.

stagnation-point flow, which appears physically for example when a jet of fluid
impinges obliquely on a rigid wall at an arbitrary angle of incidence.

The steady two-dimensional oblique stagnation-point flow of a Newtonian fluid
has been studied for the first time by Stuart in 1959 ([50]). The oblique solution
has attracted many investigations during the past several decades (i.e. [52], [16],
[18], [54], [55]). It should be mentioned among the recent papers that Drazin and
Raley ([19]) and Tooke and Blyth ([53]) reviewed the problem and included a free
parameter associated with the shear flow component. As we will see, this free
parameter alters the structure of the shear flow component by varying the magnitude
of the pressure gradient.

The oblique stagnation-point flow of a micropolar fluid has been studied in [39],
and [40] under restrictive assumptions on the material parameters and following a
different approach from ours. Hence the results presented here for this model of
fluids are new.

In order to study such a flow for a Newtonian and a micropolar fluid, it is
appropriate to start with the analysis of the same flow for an inviscid fluid.

1.2.1 Inviscid fluids

Consider the steady plane flow of a homogeneous, incompressible inviscid fluid near
a stagnation point occupying the region S given by (1.1).
The equations governing such a flow in the absence of external mechanical body
forces are (1.2) to which we append the no-penetration condition (1.3) for the ve-
locity v.
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x1

x2

O

Figure 1.10: Oblique stagnation-point flow description.

The oblique plane stagnation-point flow of such a fluid is described by a velocity
field of the form

v1 = ax1 + bx2, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (1.27)

with a, b constants (a > 0).
As known, the streamlines of such a flow are hyperbolas whose asymptotes have

the equations:

x2 = 0 and x2 = −
2a

b
x1.

These two straight-lines are degenerate streamlines too (see Figure 1.10).
It is easy to check that it holds:

Theorem 1.2.1. Let a homogeneous, incompressible inviscid fluid occupy the region
S. The steady oblique plane stagnation-point flow of such a fluid has the following
form:

v = (ax1 + bx2)e1 − ax2e2,

p = −1
2
ρa2(x21 + x22) + p0, x1 ∈ R, x2 ∈ R

+.

Remark 1.2.2. As in the orthogonal case, in order to study the oblique stagnation-
point flow of Newtonian or micropolar fluids, it is convenient to consider a more
general flow. Actually, we suppose the fluid obliquely impinging on the flat plane
x2 = A and

v1 = ax1 + b(x2 − B), v2 = −a(x2 −A), v3 = 0, x1 ∈ R, x2 ≥ A, (1.28)

with A,B = constants.

In this way, the stagnation point is

(

b

a
(B − A), A

)

and the streamlines are hyper-

bolas whose asymptotes are x2 = −
2a

b
x1 + 2B − A and x2 = A.
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It is easy to compute the pressure field:

p = −1
2
ρa2
[(

x1 −
b

a
(B − A)

)2

+ (x2 −A)2
]

+ p0.

Hence under these new assumptions, the result contained in Theorem 1.2.1 continues

to hold by replacing x1, x2 with x1 −
b

a
(B −A), x2 − A, respectively.

1.2.2 Newtonian fluids

We now consider the same flow of a homogeneous, incompressible Newtonian fluid.
The equations governing the oblique stagnation-point flow of such a fluid in the

absence of external mechanical body forces are the equations (1.2) where (1.2)1 is
replaced by (1.6).
We prescribe the no-slip boundary condition (1.7) for the velocity.

We are interested in the oblique plane stagnation-point flow so that

v1 = ax1f
′(x2) + bg(x2), v2 = −af(x2), v3 = 0, x1 ∈ R, x2 ∈ R

+, (1.29)

with f, g sufficiently regular unknown functions (f ∈ C3(R+), g ∈ C2(R+)).
The condition (1.7) supplies

f(0) = 0, f ′(0) = 0, g(0) = 0. (1.30)

Likewise to the orthogonal stagnation-point flow, we assume that at infinity the
flow approaches the motion of an inviscid fluid given by (1.27) ([19], [53]).
Therefore f, g have also to satisfy the following boundary conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1. (1.31)

In particular, the asymptotic behaviour of f and g at infinity is related to the
constants A,B in Remark 1.2.2 in the following way:

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B. (1.32)

As we will see, A is determined as part of the solution of the orthogonal flow ([47]),
instead B is a free parameter ([19]).

The results found in literature can be summarize in

Theorem 1.2.3. Let a homogeneous, incompressible Newtonian fluid occupy the
region S. The steady oblique plane stagnation-point flow of such a fluid has the
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following form:

v = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2,

p = −ρa
2

2

[

x21 − 2
b

a
(B −A)x1 + f 2(x2)

]

− ρaνf ′(x2) + p0, x1 ∈ R, x2 ∈ R
+,

(1.33)

where (f, g) satisfies the problem

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1 = 0,

ν

a
g′′ + fg′ − f ′g = B − A, (1.34)

together with the boundary conditions (1.30) and (1.31).

We remark that the function f satisfies the same differential problem that governs
the orthogonal stagnation-point flow (Chapter 1.1.2).

As we can see from (1.33)2, ∇p has a constant component in the x1 direction
proportional to B − A, which does not appear in the orthogonal stagnation-point
flow. This component determines the displacement of the uniform shear flow parallel
to the wall x2 = 0.

If we put

η =

√

a

ν
x2, ϕ(η) =

√

a

ν
f

(
√

ν

a
η

)

, γ(η) =

√

a

ν
g

(
√

ν

a
η

)

, (1.35)

we can write problem (1.34), (1.30), (1.31) in dimensionless form

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 = 0,

γ′′ + ϕγ′ − ϕ′γ = β − α,

ϕ(0) = 0, ϕ′(0) = 0, γ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1, (1.36)

where

α =

√

a

ν
A, β =

√

a

ν
B. (1.37)

Notice the one-way coupling, that the function ϕ influences the functions γ, but
not viceversa.
The function ϕ satisfies the Hiemenz equation ([47], [19]). As we said in Chapter



1.2 Oblique stagnation-point flow 19

1.1.2, the solution of the Hiemenz stagnation flow cannot be expressed in closed
form but we can compute it numerically. From the numerical integration we also
get the value of α and so we just have to fix the value of β in order to solve problem
(1.36)2,5,7.
Nevertheless, if we regard f as a known function, then the solution of problem
(1.36)2,5,7 is formally obtained as ([19])

γ(η) = (α− β)ϕ′(η) + Cϕ′′(η)Ξ(η), (1.38)

with

C = ϕ′′(0)[γ′(0)− ϕ′′(0)(α− β)], Ξ(η) =

∫ η

0

[

(ϕ′′(s))−2e−
∫ s

0
ϕ(t)dt

]

ds. (1.39)

We note that the constant C contains α, ϕ′′(0), γ′(0), which are not a priori assigned
but their values are determined by part of the solutions of problem (1.36).

We have computed the functions γ, γ′ (as well as ϕ, ϕ′, ϕ′′) numerically for various
values of the parameter β. Precisely we have chosen β−α = −5−α, −α, 0, α, 5−α
(as in [53]). Other Authors (e.g. Stuart ([50]) and Tamada ([52])) take β = α,
while Dorrepaal takes β = 0 ([16], [18]). Equations (1.36)1,2 have been solved
simultaneously.

Remark 1.2.4. As pointed out by Dorrepaal ([16], [18]), along the wall x2 = 0 there
are three important coordinates: the origin x1 = 0, which is the stagnation point, the
point x1 = xp of maximum pressure and the point x1 = xs of zero tangential stress
(zero skin friction) where the dividing streamline of equation

ξϕ(η) +
b

a

∫ η

0

γ(s)ds = 0, ξ =

√

ν

a
x1 (1.40)

meets the boundary.
In consideration of (1.33) and (1.29), one shows that

xp = b

√

ν

a3
(β − α), xs = −b

√

ν

a3
γ′(0)

ϕ′′(0)
. (1.41)

We note that the ratio
xp
xs

= (α− β)
ϕ′′(0)

γ′(0)

is the same for all angles of incidence.
Finally, studying the small-η behaviour of

∫ η

0
γ(s)ds

ϕ(η)
,
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the slope of the dividing streamline at the wall is given by ([19]):

ms = −
3a[ϕ′′(0)]2

b[(β − α)ϕ′′(0) + γ′(0)]

and it does not depend on the kinematic viscosity. Thus, the ratio of this slope to
that of the dividing streamline at infinity

mi = −
2a

b

is the same for all oblique stagnation-point flows and it is given by

ms

mi
=
3

2

[ϕ′′(0)]2

[(β − α)ϕ′′(0) + γ′(0)]
. (1.42)

This ratio is independent of a and b, depending on the constant pressure gradient
parallel to the boundary through B − A ([18]).

Remark 1.2.5. As we will see, ϕ and γ satisfy conditions (1.36)6,7. Further we find
that

lim
η→+∞

[ϕ(η)− η] = −α, lim
η→+∞

[γ(η)− η] = −β.

Similarly to the orthogonal stagnation-point flow of a Newtonian fluid, we define:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99;

• ηγ the value of η such that γ′(ηγ) = 0.99, if β − α ≥ 0, or γ′ = 1.01, if
β − α < 0.

From the previous definitions follows that if η > ηϕ (η > ηγ), then ϕ ∼= η − α
(γ ∼= η − β).

We define by δ := max(ηϕ, ηγ) the thickness of the layer lining the boundary

where the effect of the viscosity appears. This layer is proportional to

√

ν

a
.

Figure 1.11 shows the behaviour of Hiemenz function and its derivatives. As one
can see,

lim
η→+∞

ϕ′′(η) = 0, lim
η→+∞

ϕ′(η) = 1.

At η = 2.4 =: ηϕ one has ϕ
′ = 0.99 and if η > ηϕ then ϕ ∼ η−0.6479, so α = 0.6479.

From the numerical integration, we get ϕ′′(0) = 1.2326. Our results are the same as
in the previous studies and of course as in Chapter 1.1.2 since ϕ doesn’t depend on
β.
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Figure 1.11: Plot showing the behaviour of ϕ (Hiemenz function), ϕ′, ϕ′′.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12

η

γ

β − α =-5.6479

β − α =-0.6479

β − α =0

β − α =0.6479

β − α =4.3521

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8

η

γ′

β − α =-5.6479

β − α =-0.6479

β − α =0

β − α =0.6479

β − α =4.3521

Figure 1.12: Figures 1.121 and 1.122 show γ and γ′ with, from above, β − α =
−5− α, −α, 0, α, 5− α, respectively.

Table 1.2: Descriptive quantities of the motion for different values of β − α.

β − α α β ϕ′′(0) γ′(0) C xp

xs

ms

mi
ηϕ ηγ δ

-5.6479 0.6479 -5 1.2326 7.5695 0.7494 0.9197 3.7485 2.3795 3.0577 3.0577
-0.6479 0.6479 0 1.2326 1.4066 0.7494 0.5678 3.7485 2.3795 3.1099 3.1099

0 0.6479 0.6479 1.2326 0.6080 0.7494 0 3.7485 2.3795 3.1911 3.1911
0.6479 0.6479 1.2957 1.2326 -0.1906 0.7494 4.1892 3.7484 2.3795 3.2523 3.2523
4.3521 0.6479 5 1.2326 -4.7564 0.7494 1.1278 3.7484 2.3795 3.4556 3.4556
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Figures 1.121, 1.122 show the profiles of γ(η), γ′(η), for β−α = −5−α, −α, 0, α,
5− α.

As far as γ′(0) is concerned, we report in Table 1.2 its values for different β
(β = −5, 0, α, 2α, 5) together with the other characteristic quantities of the
motion.

Table 1.2 points out that the constant C given by (1.39)1 has always the same
value, ≃ 0.749. This is in agreement to the value determined by Stuart and Glauert
([50], [22]) by means of asymptotic estimate of the integral Ξ(η) at infinity.

In Table 1.2 we list also the numerically computed values of ηϕ and of ηγ. We
have that ηγ is always greater than ηϕ. Hence the influence of the viscosity appears
only in a layer lining the boundary whose thickness is ηγ. This thickness is larger

than that in the orthogonal stagnation-point flow which is 2.3795

√

ν

a
.

Observing again Table 1.2 we notice that xs (given by (1.41)2) has the sign of b
if β − α > 0 and the sign of − b if β − α ≤ 0. If b is positive (negative) xs increases
(decreases) as β − α increases. As far as |xs| is concerned, if β − α increases from a
negative value to zero, |xs| decreases and so xs approaches the origin, otherwise, as
β − α increases from zero to a positive value, |xs| increases and so xs departs from
the origin.

Figures 1.131, 1.132, 1.133 show the streamlines and the points

ξp =

√

a

ν
xp, ξs =

√

a

ν
xs

for
b

a
= 1 and β − α = −α, 0, α, respectively.

1.2.3 Micropolar fluids

Let us now discuss the steady two-dimensional oblique stagnation-point flow of a
homogeneous, incompressible micropolar fluid towards a flat surface coinciding with
the plane x2 = 0. The region where the motion occurs is S (given by (1.1)) and the
origin is the stagnation-point.

In the absence of external mechanical body forces and body couples, the equa-
tions for such a fluid are (1.16) and the boundary conditions are (1.17).

Examination of equations (1.16) shows that these equations admit a similarity
solution fo the form

v1 = ax1f
′(x2) + bg(x2), v2 = −af(x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F (x2) +G(x2), x1 ∈ R, x2 ∈ R
+, (1.43)

where f, g, F,G are sufficiently regular unknown functions (f ∈ C3(R+), g, F, G ∈
C2(R+)).
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Figure 1.13: Plots showing the streamlines and the points ξp, ξs for
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= 1 and

β − α = −α, 0, α, respectively.
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The conditions (1.17) supply

f(0) = 0, f ′(0) = 0, g(0) = 0,

F (0) = 0, G(0) = 0. (1.44)

Moreover, as it is reasonable from the physical point of view, we assume that
at infinity, the flow of the micropolar fluid approaches the flow of an inviscid fluid
given by (1.28).
Therefore to (1.44) we must also append the following conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = −
b

2
. (1.45)

We stress that conditions (1.45)3,4 assure that at infinity w =
1

2
∇ × v, i.e. the

micropolar fluid behaves like an inviscid fluid whose velocity v is given by (1.28).

The asymptotic behaviour of f and g at infinity is related to the constants A,B,
in the following way:

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B. (1.46)

As we will see and as it happened in the Newtonian case, B is the only free pa-
rameter because the value of A is computed as part of the solution of the orthogonal
flow.

It is easy to prove the following:

Theorem 1.2.6. Let a homogeneous, incompressible micropolar fluid occupy the
region S. The steady oblique plane stagnation-point flow of such a fluid has the
following form:

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, w = [x1F (x2) +G(x2)]e3,

p =− ρ
a2

2
[x21 − 2

b

a
(B −A)x1 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds+ p0, x1 ∈ R, x2 ∈ R
+, (1.47)
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where (f, g, F,G) satisfies the problem

ν + νr
a

f ′′′ + ff ′′ − f ′
2
+ 1 +

2νr
a2
F ′ = 0,

ν + νr
a

g′′ + fg′ − gf ′ +
2νr
ab
G′ = B −A,

λF ′′ + aI(fF ′ − f ′F )− 2νr(2F + af ′′) = 0,

λG′′ + I(afG′ − bgF )− 2νr(2G+ bg′) = 0, (1.48)

with boundary conditions (1.44), and (1.45), provided F ∈ L1([0,+∞)).

It is worth noting that in the literature, the oblique stagnation-point flow of a
micropolar fluid has been studied in [39], and [40] under restrictive assumptions on
the material parameters, and following a different approach. Hence Theorem 1.2.6
extends the results known.

Remark 1.2.7. If νr = 0, then (1.48)1 and (1.48)2 are the equations governing the
oblique stagnation-point flow of a Newtonian fluid (Chapter 1.2.2).

We observe that (1.48)1 and (1.48)3 have the same form as the equations found
by Guram and Smith ([27]) for the orthogonal stagnation-point flow of a micropolar
fluid (Chapter 1.1.3).

Now we write the system (1.48), together with the conditions (1.44) and (1.45),
in dimensionless form in order to facilitate the numerical integration. To this end
we use the following dimensionless change of variables

η =

√

a

ν + νr
x2, ϕ(η) =

√

a

ν + νr
f

(

√

ν + νr
a

η

)

,

γ(η) =

√

a

ν + νr
g

(

√

ν + νr
a

η

)

, Φ(η) =
2νr
a2

√

a

ν + νr
F

(

√

ν + νr
a

η

)

,

Γ(η) =
2νr

b(ν + νr)
G

(

√

ν + νr
a

η

)

. (1.49)

So system (1.48) can be written as

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 + Φ′ = 0,

γ′′ + ϕγ′ − ϕ′γ + Γ′ = β − α,

Φ′′ + c3(ϕΦ
′ − ϕ′Φ)− c2Φ− c1ϕ

′′ = 0,

Γ′′ + c3(ϕΓ
′ − Φγ)− c2Γ− c1γ

′ = 0, (1.50)



26 1. The stagnation-point flow

where

c1 =
4ν2r
λa

, c2 =
4νr(ν + νr)

λa
, c3 =

I

λ
(ν + νr),

α =

√

a

ν + νr
A, β =

√

a

ν + νr
B. (1.51)

The boundary conditions in dimensionless form become:

ϕ(0) = 0, ϕ′(0) = 0, γ(0) = 0,

Φ(0) = 0, Γ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1

lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = −c1
c2
. (1.52)

Problem (1.50), (1.52) can be integrated numerically in order to find the be-
haviour of the solution.

Remark 1.2.8. As in the Newtonian case, along the wall x2 = 0, there are three
important coordinates: the origin x1 = 0, which is the stagnation point, the point
x1 = xp of maximum pressure, and the point x1 = xs of zero tangential stress (zero
skin friction) where the dividing streamline of equation

ξϕ(η) +
b

a

∫ η

0

γ(s)ds = 0, ξ =

√

ν + νr
a

x1 (1.53)

meets the boundary.
In consideration of (1.47), we see that

xp = b

√

ν + νr
a3

(β − α). (1.54)

The wall shear stress is given by

τ = ρ(ν + νr)
∂v1
∂x2

∣

∣

∣

x2=0

and the position xs is obtained by putting τ = 0. Hence

xs = −b
√

ν + νr
a3

γ′(0)

ϕ′′(0)
. (1.55)
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We point out that the ratio

xp
xs

= (α− β)
ϕ′′(0)

γ′(0)

is the same for all angles of incidence.
We then compute the slope of the dividing streamline at the wall:

ms = −
3a[ϕ′′(0)]2

b[(β − α− Γ′(0))ϕ′′(0) + (1 + Φ′(0))γ′(0)]
.

This slope does not depend on the kinematic viscosities so that the ratio of ms to the
slope of the dividing streamline at infinity

mi = −
2a

b

is the same for all oblique stagnation-point flows and it is given by

ms

mi
=
3

2

[ϕ′′(0)]2

[β − α− Γ′(0)]ϕ′′(0) + [1 + Φ′(0)]γ′(0)
. (1.56)

This ratio is independent of a and b, depending on the constant pressure gradient
parallel to the boundary through B −A, as with Newtonian fluids ([18]).

Remark 1.2.9. Our numerical results show that ϕ, γ, Φ and Γ satisfy condition
(1.52)6,7,8,9, therefore let us denote by:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99, if β − α ≥ 0, or
γ′ = 1.01, if β − α < 0);

• ηΦ (ηΓ) the value of η such that Φ(ηΦ) = −0.01
(

Γ(ηΓ) = −
c1
c2
+ 0.01

)

.

Hence if η > ηϕ (η > ηγ), then ϕ
∼= η−α (γ ∼= η− β), and if η > ηΦ (η > ηΓ), then

Φ ∼= 0

(

Γ ∼= −c1
c2

)

.

The effect of the viscosity on the velocity and on the microrotation appears only
in a layer lining the boundary whose thickness is δv = max(ηϕ, ηγ) for the velocity
and δw = max(ηΦ, ηΓ) for the microrotation. The thickness δ of the boundary layer
for the flow is defined as

δ := max(δv, δw)

and it is proportional to

√

ν + νr
a

.
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Table 1.3: Descriptive quantities of motion for some values of c1, c2, c3 and β − α.

c1 c2 c3 β − α α β ϕ′′(0) γ′(0) Φ′(0) Γ′(0) xp

xs

ms

mi

0.1 1.5 0.1 -0.6446 0.6446 0 1.2218 1.3648 -0.0532 -0.0892 0.5770 3.6488
0 0.6446 0.6454 1.2218 0.5772 -0.0532 -0.0550 0 3.6490

0.6446 0.6446 1.2901 1.2218 -0.2104 -0.0532 -0.0207 3.7439 3.6492
0.5 -0.6448 0.6448 0 1.2231 1.3652 -0.0510 -0.0889 0.5777 3.6454

0 0.6448 0.6449 1.2231 0.5765 -0.0510 -0.0560 0 3.6454
0.6448 0.6448 1.2897 1.2231 -0.2121 -0.0510 -0.0231 3.7180 3.6455

3.0 0.1 -0.6453 0.6453 0 1.2250 1.3818 -0.0444 -0.0658 0.5721 3.6872
0 0.6453 0.6455 1.2250 0.5912 -0.0444 -0.0372 0 3.6872

0.6453 0.6453 1.2908 1.2250 -0.1993 -0.0444 -0.0085 3.9657 3.6872
0.5 -0.6454 0.6454 0 1.2256 1.3822 -0.0434 -0.0652 0.5723 3.6872

0 0.6454 0.6454 1.2256 0.5911 -0.0434 -0.0372 0 3.6872
0.6454 0.6454 1.2909 1.2256 -0.1999 -0.0434 -0.0092 3.9572 3.6872

0.5 1.5 0.1 -0.6310 0.6310 0 1.1780 1.1972 -0.2659 -0.4282 0.6209 3.2527
0 0.6310 0.6342 1.1780 0.4538 -0.2659 -0.2604 0 3.2534

0.6310 0.6310 1.2661 1.1780 -0.2897 -0.2659 -0.0925 2.5661 3.2540
0.5 -0.6321 0.6321 0 1.1848 1.1988 -0.2553 -0.4275 0.6247 3.2374

0 0.6321 0.6326 1.1848 0.4499 -0.2553 -0.2661 0 3.2375
0.6321 0.6321 1.2648 1.1848 -0.2990 -0.2553 -0.1047 2.5048 3.2375

3.0 0.1 -0.6350 0.6350 0 1.1943 1.2826 -0.2220 -0.3200 0.5913 3.4421
0 0.6350 0.6357 1.1943 0.5241 -0.2220 -0.1790 0 3.4423

0.6350 0.6350 1.2709 1.1943 -0.2343 -0.2220 -0.0380 3.2365 3.4424
0.5 -0.6356 0.6356 0 1.1972 1.2846 -0.2173 -0.3174 0.5923 3.4424

0 0.6356 0.6357 1.1972 0.5237 -0.2173 -0.1793 0 3.4424
0.6356 0.6356 1.2713 1.1972 -0.2372 -0.2173 -0.0412 3.2081 3.4424

The boundary values problem (1.52), (1.50) was solved numerically using the
MATLAB program bvp4c.

The values of the parameters c1, c2, c3 were chosen according to Guram and
Smith ([27]) and are given in Table 1.3, where we also assign some values to β (i.e.
β−α = −α, 0, α). The consequent values of α, ϕ′′(0), γ′(0), Φ′(0), Γ′(0), xp

xs
, ms

mi

are reported in this table.
From Table 1.3 it appears that if we fix two parameters among c1, c2, c3, when

β − α is positive, then γ′(0) and Γ′(0) decrease as c3 increases, otherwise the values
of α, ϕ′′(0), γ′(0), Φ′(0), Γ′(0) have the following behaviour :

• they increase as c2 or c3 increases;

• they decrease as c1 increases.

As it happened in the orthogonal stagnation-point flow, the influence of c1 ap-
pears more considerable.

We have displayed some representative graphs to elucidate the trend of the func-
tions describing the velocities.
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Figure 1.14: Plots showing the behaviour of ϕ, ϕ′, ϕ′′ and Φ, Φ′, respectively, for
c1 = 0.5, c2 = 3.0, c3 = 0.5.

In particular, Figures 1.14, 1.15, and 1.16 show ϕ, ϕ′, ϕ′′, Φ, Φ′, γ, γ′, Γ, Γ′ for
c1 = 0.5, c2 = 3.0, c3 = 0.5. If we change the values of these parameters, then the
trend of the velocities doesn’t change much.

Of course, the behaviour of ϕ, Φ doesn’t depend on β − α, unlike γ,Γ.
If we compare the velocity profile with the solution for Newtonian flow, then we

see that the behaviour is very similar, as was found in [27] and in Chapter 1.1.3 for
orthogonal stagnation-point flow.

Figures 1.17, 1.18, and 1.19 elucidate the dependence of the functions ϕ′, γ, Φ, Γ
on the parameters c1, c2, c3. As it was easy to figure out, the influence of these
parameters appears more on the functions Φ, and Γ (i.e. the microrotation). The
other two functions, ϕ′ and γ, do not show considerable variations as c1, c2, c3
assume different values. From the pictures we have that the profile of Φ rises as c3
or c2 increases and c1 decreases, while the profile of Γ rises as c2 increases and c1 or
c3 decreases. Further c1 is the parameter that most influences the microrotation.

In Table 1.4 we list the values of ηϕ, ηγ, ηΦ, ηΓ when c1, c2, c3 and β−α change.
We see that ηγ is always greater than ηϕ, as in the Newtonian case (see previous
section). Thus the effect of the viscosity on the velocity appears only in a layer lining
the boundary of thickness ηγ which is larger than that of the orthogonal stagnation-
point flow.
The presence of the microrotation modifies ηϕ and ηγ, which are smaller than those
of the Newtonian fluids (see Table 1.2).
As far as the microrotation is concerned, ηΓ is almost always bigger than ηΦ. So the
region where the influence of the viscosity on the microrotation appears is a layer
lining the boundary of thickness ηΓ. This region is larger than that in the orthogonal
stagnation-point flow.
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Figure 1.15: Figures 1.151 and 1.152 show γ and γ′ for c1 = 0.5, c2 = 3.0, c3 = 0.5
and with, from above, β − α = −α, 0, α, respectively.
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and with, from above, β − α = −α, 0, α, respectively.
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Table 1.4: Thickness of the boundary layer for some values of c1, c2, c3 and β − α.

c1 c2 c3 β − α ηϕ ηγ ηΦ ηΓ δv δw δ

0.1 1.5 0.1 -0.6446 2.3257 0.7367 1.6004 1.8319 2.3257 1.8319 2.3257
0 2.3257 3.0819 1.6004 2.2421 3.0819 2.2421 3.0819

0.6446 2.3257 3.1413 1.6004 2.4912 3.1413 2.4912 3.1413
0.5 -0.6448 2.3369 0.7370 1.3324 1.7757 2.3369 1.7757 2.3369

0 2.3369 3.0881 1.3324 2.0469 3.0881 2.0469 3.0881
0.6448 2.3369 3.1506 1.3324 2.2164 3.1506 2.2164 3.1506

3.0 0.1 -0.6453 2.3466 0.7435 1.0012 0.6870 2.3466 1.0012 2.3466
0 2.3466 3.1376 1.0012 1.3339 3.1376 1.3339 3.1376

0.6453 2.3466 3.1963 1.0012 1.7337 3.1963 1.7337 3.1963
0.5 -0.6454 2.3517 0.7435 0.8459 0.7174 2.3517 0.8459 2.3517

0 2.3517 3.1413 0.8459 1.3084 3.1413 1.3084 3.1413
0.6454 2.3517 3.2016 0.8459 1.6422 3.2016 1.6422 3.2016

0.5 1.5 0.1 -0.6310 2.1269 0.6904 2.9083 3.0511 2.1269 3.0511 3.0511
0 2.1269 2.6399 2.9083 3.3393 2.6399 3.3393 3.3393

0.6310 2.1269 2.7091 2.9083 3.5321 2.7091 3.5321 3.5321
0.5 -0.6321 2.1676 0.6939 2.4321 2.7711 2.1676 2.7711 2.7711

0 2.1676 2.6436 2.4321 2.9153 2.6436 2.9153 2.9153
0.6321 2.1676 2.7228 2.4321 3.0181 2.7228 3.0181 3.0181

3.0 0.1 -0.6350 2.2154 0.7424 2.3427 2.2116 2.2154 2.3427 2.3427
0 2.2154 2.9128 2.3427 2.6096 2.9128 2.6096 2.9128

0.6350 2.2154 2.9621 2.3427 2.8159 2.9621 2.8159 2.9621
0.5 -0.6356 2.2389 0.7422 2.1179 2.2124 2.2389 2.2124 2.2389

0 2.2389 2.9279 2.1179 2.4676 2.9279 2.4676 2.9279
0.6356 2.2389 2.9854 2.1179 2.6121 2.9854 2.6121 2.9854
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Observing ϕ′′(0), γ′(0) in Table 1.3 we notice that they are smaller than in the
Newtonian case and that xs (given by (1.55)) has the sign of b if β − α > 0 and the
sign of − b if β − α ≤ 0. If b is positive (negative) xs increases (decreases) as β − α
increases. As far as |xs| is concerned, if β − α increases from a negative value to
zero, |xs| decreases and so xs approaches the origin, otherwise, as β − α increases
from zero to a positive value, |xs| increases and so xs departs from the origin. The
same results were also found for Newtonian fluids.

From Table 1.3 we see that xp and xs lie on the same side of the origin, and
ms

mi
is constant once c1, c2, c3 are fixed. The values of these points do not change

significantly due to the presence of microrotation, while the ratio of the slopes is
smaller than in the Newtonian case.

Figure 1.20 shows the streamlines and the points

ξp =

√

a

ν
xp, ξs =

√

a

ν
xs

for
b

a
= 1 and β − α = −α, 0, α, respectively.

1.3 Three-dimensional stagnation-point flow

The steady three-dimensional stagnation-point flow of a Newtonian fluid has been
studied by Homman ([35]), Howarth ([36]), Davey and Schoffield ([13], [48]). The
governing partial differential equations are transformed into a system of nonlinear
ODEs, which depends on a parameter that is a measure of three-dimensionality.

Guram and Anwar Kamal ([26]) studied the steady three-dimensional stagnation-
point flow of a micropolar fluid, where, however, the Authors didn’t take into con-
sideration the occurrence of the reverse flow, the reverse microrotation, the thickness
of the boundary layer and the influence of some parameters on the motion. Hence
the results presented here for the micropolar fluid extend the literature.

In order to study the three-dimensional stagnation-point flow for a Newtonian
or a micropolar fluid, it is convenient to start with the same flow for an inviscid one.

1.3.1 Inviscid fluids

Consider the steady three-dimensional flow of a homogeneous incompressible inviscid
fluid near a stagnation point filling the half-space S, given by (1.1) (see Figure 1.21).

As it is well known in the three-dimensional stagnation-point flow the velocity
field is given by

v1 = ax1, v2 = −a(1 + c)x2, v3 = acx3, (x1, x3) ∈ R
2, x2 ∈ R

+, (1.57)
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Figure 1.20: Plots showing the streamlines and the points ξp, ξs for
b
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= 1, c1 =

0.5, c2 = 3.0, c3 = 0.5 and β − α = −α, 0, α, respectively.
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Figure 1.21: Three-dimensional stagnation-point flow description.

where a, c are constants. As in the previous types of stagnation-point flow, the
constant a is positive. The parameter c is a measure of the three-dimensionality of
the motion because when c = 0 we obtain the plane stagnation-point flow.

We suppose c > −1, because we impose the condition v2 < 0, so that the fluid
moves towards the wall x2 = 0.

Remark 1.3.1. If c = 1, the velocity is axial symmetric with respect to x2 axis:

v1 = ax1, v2 = −2ax2, v3 = ax3.

The equations governing such a flow in the absence of external mechanical body
forces are (1.2) together with the no-penetration condition (1.3).

Under the previous assumptions, it holds:

Theorem 1.3.2. Let a homogeneous, incompressible inviscid fluid occupy the half-
space S. The steady three-dimensional stagnation-point flow of such a fluid is given
by

v = ax1e1 − a(1 + c)x2e2 + acx3e3,

p = −1
2
ρa2[x21 + (1 + c)2x22 + c2x23] + p0, (x1, x3) ∈ R

2, x2 ∈ R
+. (1.58)

Remark 1.3.3. In order to study the three-dimensional stagnation-point flow for
other models of fluid, we suppose the fluid impinging on the flat plane x2 = C and

v1 = ax1, v2 = −a(1 + c)(x2 − C), v3 = acx3, (x1, x3) ∈ R
2, x2 ≥ C, (1.59)

with C some constant.
In this way, the stagnation point is not the origin but the point (0, C, 0) and the

pressure in Theorem 1.3.2 must be modified by replacing x2 with x2 − C.
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1.3.2 Newtonian Fluids

Let us now consider the steady three-dimensional stagnation-point flow of a homo-
geneous, incompressible Newtonian fluid towards a flat surface coinciding with the
plane x2 = 0.

Howarth ([36]) expressed the velocity components of the flow in the form

v1 = ax1f
′(x2), v2 = −a[f(x2) + cg(x2)], v3 = acx3g

′(x2), (x1, x3) ∈ R
2, x2 ∈ R

+,
(1.60)

where f, g are sufficiently regular unknown functions (f, g ∈ C3(R+)).
In the absence of external mechanical body forces, the equations for such a fluid

are (1.6) and (1.2)2.
As far as the boundary condition for v is concerned, we prescribe the no-slip

condition (1.7), which is certainly satisfied if

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0. (1.61)

We assume that far from the wall, the flow approaches the flow of an inviscid
fluid, whose velocity is given by (1.59), so that we ask

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1. (1.62)

The constant C in (1.59) is related to the behaviour of f and g at infinity.
Actually, if

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B, (1.63)

with A,B some constants, then

lim
x2→+∞

[f(x2) + cg(x2)− (1 + c)x2] = −(1 + c)C, (1.64)

where

C =
A+ cB

1 + c
.

As we will see, the constants A,B,C are not assigned a priori, but their values
can be found as part of the solution of the problem.

Theorem 1.3.4. Let a homogeneous, incompressible Newtonian fluid occupy the
half-space S. The steady three-dimensional stagnation-point flow of such a fluid has
the form

v = ax1f
′(x2)e1 − [af(x2) + bg(x2)]e2 + bx3g

′(x2)e3,

p = −ρa
2

2
[x21 + (f(x2) + cg(x2))

2 + c2x23]− ρaν[f ′(x2) + cg′(x2)] + p0,

(x1, x3) ∈ R
2, x2 ∈ R

+, (1.65)
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where (f, g) satisfies

ν

a
f ′′′ + (f + cg)f ′′ − f ′

2
+ 1 = 0,

ν

a
g′′′ + (f + cg)g′′ − cg′

2
+ c = 0, (1.66)

with the boundary conditions (1.61) and (1.62).

If we use transformation (1.35), then we can rewrite problems (1.66), (1.61),
(1.62) in dimensionless form

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c = 0,

ϕ(0) = 0, ϕ′(0) = 0,

γ(0) = 0, γ′(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1. (1.67)

We also put

α =

√

a

ν
A, β =

√

a

ν
B, hd =

α + cβ

1 + c
. (1.68)

The constant hd is the three-dimensional displacement thickness ([13]) and it repre-
sents the height of the plane towards which the inviscid fluid moves.

Remark 1.3.5. In [13] under the hypothesis that γ is analytical, it is proved that
the problem (1.67) does not admit solution for c < −1, as it is reasonable from the
physical point of view. As far as existence of solution is concerned, we refer to [29],
[30].

Remark 1.3.6. In [36] it was underlined that regular solution to problem (1.67) are
invariant under the following transformation

ϕ

(

η,
1

c

)

=
√
c γ

(

η√
c
, c

)

, γ

(

η,
1

c

)

=
√
c ϕ

(

η√
c
, c

)

, c > 0

so that we could confine our analysis to c ∈ (−1, 1), c 6= 0.
Finally, c = 1 furnishes the axisymmetric flow.

Remark 1.3.7. It is important to give the explicit form of the pressure field because,
as it is well known, when a fluid moves past a body, if one of the components of
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the pressure gradient along a body surface has the same sign as the corresponding
component of the velocity, then the reverse flow appears.

The numerical results ([13], [14], [7]) reveal that there exists a negative value cr
of c such that if c ≥ cr, then γ′, γ′′ > 0 ∀η > 0, and if c < cr then near the wall

γ′, γ′′ < 0, so that the reverse flow appears (i.e. v3 has the same sign as
∂p

∂x3
).

The reverse flow is also related to a sign change of the scalar component of the
skin friction (τ0) in the direction of e3 (see (1.70)).

Remark 1.3.8. As it is underlined in [38], at a very small distance η from the
surface of an obstacle, the velocity of a Newtonian fluid is approximately

v ∼=
√

ν

a

τ0
µ
η, (1.69)

where τ0 is the skin friction vector, which in our situation is given by

τ0 = ρa
√
νa[x1ϕ

′′(0)e1 + cx3γ
′′(0)e3]. (1.70)

The normal component of the velocity at a higher order of approximation is

v2 ∼= −
1

2

ν

a
∇ ·
(

τ0
µ

)

η2 := −1
2
∆sη

2. (1.71)

We see from (1.69) that close to the obstacle the direction of streamlines becomes
parallel to its surface, except where τ0 = 0. This condition that both tangential
components of skin friction vanish simultaneously, is satisfied in general only at
isolated points of the surface, which are called ‘points of separation’if ∆s < 0 (so
that the normal velocity (1.71) is positive) and ‘points of attachment’if ∆s > 0.

In our analysis, the only isolated point such that τ0 = 0 is the origin, i.e. the
stagnation-point, and

∆s =
√
νa[ϕ′′(0) + cγ′′(0)].

Streamlines very near the surface lie closely along the skin friction line, as (1.69)
indicates.

There is just one skin friction line and one vortex line through each point of
the surface, except a point of attachment or separation. These last are ‘singular
points’of the differential equations of both systems of curves. Such singular points
are classified into two main types, depending on the sign of:

Js =
∂τ01
∂x1

∂τ03
∂x3

− ∂τ01
∂x3

∂τ03
∂x1

. (1.72)
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A singular point where Js < 0 is a ‘saddle point’, and where Js > 0 there is a
‘nodal point’.

In our case, we have

Js = ρ2νa3[cϕ′′(0)γ′′(0)].

From these considerations it is clear that we need to know the signs of c, ϕ′′(0), γ′′(0)
in order to classify the stagnation-point.

As it is underlined in [14] and as we will see, from the numerical results one has
that the stagnation-point is a nodal point of attachment if c > 0 or c < cr = −0.4294,
while it is a saddle point of attachment if cr ≤ c < 0.

We point out that in [14] the Author corrected the classification of the stagnation-
point contained in [13]. However in the literature, most of the papers refer to the
uncorrected classification in [13].

Finally, there is a limiting direction of our flow at the boundary, which is also
the direction of the resultant skin friction, and this direction is inclined to the main
stream at an angle ǫ:

ǫ = arctan

(

c
x3
x1

γ′′(0)

ϕ′′(0)

)

− arctan

(

c
x3
x1

)

. (1.73)

Remark 1.3.9. In the sequel, we will see that the solution (ϕ, γ) of the problem
considered in Theorem 1.3.4 satisfies the conditions (1.67)7,8; therefore we define:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99).

Hence if η > ηϕ (η > ηγ), then ϕ
∼= η − α (γ ∼= η − β), so that the influence of the

viscosity appears only in a layer lining the boundary whose thickness is

δ = max(ηϕ, ηγ).

This thickness is proportional to

√

ν

a
.

We have solved problem (1.67) numerically for different values of c taken accord-
ing to [36] and [13].

Figure 1.22 shows the graphics of ϕ, ϕ′, ϕ′′ for c = 0.25.
The numerical integration furnishes the value of α, ϕ′′(0), γ′′(0), hd, β, ηϕ, ηγ, δ

when c changes, as it is shown in Table 1.5.
Our results are consistent with the previous studies ([13], [36]). In particular,

when c = 1 we obtain the axisymmetric flow: α = β = hd and ϕ
′′(0) = γ′′(0).

As far as the behaviour of γ, γ′, γ′′ is concerned, if c ≥ cr then the behaviour of
γ, γ′, γ′′ is shown in Figure 1.232, otherwise it is given in Figure 1.231 (reverse flow
appears near the boundary).
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Figure 1.22: Profiles of ϕ, ϕ′, ϕ′′ for c = 0.25.

Table 1.5: Descriptive quantities of motion for some values of c.

c ϕ′′(0) γ′′(0) hd α β ηϕ ηγ δ

-0.75 1.2465 -0.4690 -5.0704 0.6378 2.5405 2.3772 4.5298 4.5298
-0.25 1.2251 0.2681 0.4211 0.6593 1.3741 2.4684 3.6223 3.6223
0.25 1.2476 0.8051 0.6699 0.6294 0.8317 2.2624 2.6363 2.6363
1.00 1.3119 1.3119 0.5689 0.5689 0.5689 1.9444 1.9444 1.9444
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Figure 1.23: The first picture shows the profiles of γ, γ′, γ′′ in the reverse flow (c =
−0.75). The second picture shows the profile of γ, γ′, γ′′ in the absence of the reverse
flow (c = 0.25).
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Table 1.6: Values of hd, ϕ
′′(0)+ cγ′′(0) and cϕ′′(0)γ′′(0) in dependence on the values

of c.

c hd ϕ′′(0) γ′′(0) ϕ′′(0) + cγ′′(0) cϕ′′(0)γ′′(0)

-0.90 -20.9401 1.2612 -0.6761 1.8697 0.7674
-0.85 -12.1568 1.2563 -0.6133 1.7777 0.6550
-0.80 -7.8544 1.2517 -0.5489 1.6908 0.5496
-0.75 -5.3300 1.2473 -0.4822 1.6090 0.4511
-0.60 -1.7254 1.2359 -0.2666 1.3959 0.1977
-0.50 -0.6513 1.2302 -0.1115 1.2859 0.0686
-0.45 -0.3012 1.2281 -0.0325 1.2427 0.0180

cr =-0.4294 -0.1829 1.2273 0 1.2273 0
-0.40 -0.0363 1.2265 0.0460 1.2081 -0.0226

ch =-0.3919 0 1.2263 0.0586 1.2033 -0.0281
-0.30 0.3113 1.2250 0.1970 1.1659 -0.0724
-0.25 0.4207 1.2251 0.2680 1.1581 -0.0821
-0.10 0.5997 1.2284 0.4594 1.1825 -0.0564
0.10 0.6678 1.2379 0.6707 1.3050 0.0830
0.25 0.6699 1.2476 0.8051 1.4489 0.2511
0.50 0.6430 1.2669 0.9981 1.7659 0.6322
0.75 0.6058 1.2886 1.1643 2.1619 1.1253
1.00 0.5689 1.3119 1.3119 2.6239 1.7212

We are also able to compute cr = −0.4294 (see Table 1.6).
Table 1.5 shows that when c increases, the value of γ′′(0) increases, while the

values of β, ηγ decrease. As far as ϕ
′′(0), ηϕ and α are concerned, we have that ϕ

′′(0)
and ηϕ increase if c > 0, otherwise decrease, and α decreases if c > 0, otherwise
increases.

Hence the thickness of the boundary layer decreases when c increases. Further
since ηϕ < ηγ , δ = ηγ so that the boundary layer is thicker than that in the
orthogonal stagnation-point flow. If c > 0, then δ is smaller than in the oblique
flow.

Table 1.5 elucidates the behaviour of hd and of the origin in dependence on
c. Actually, from this Table it appears that hd can be negative (in particular, if
c < −0.3919 =: ch, then hd < 0) and, since ch > cr, it is always negative when the
reverse flow appears ([13]).

As far as the classification of the stagnation-point is concerned, then it is always
a point of attachment. If c > 0 or where there is the reverse flow, the origin is a
nodal point, while when c < 0 and the reverse flow does not appear, it is a saddle
point (see Figure 1.24).
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Figure 1.24: Classification of the stagnation-point in dependence on c.

1.3.3 Micropolar Fluids

We now consider the steady three-dimensional stagnation-point flow of a homoge-
neous, incompressible micropolar fluid towards a flat surface coinciding with the
plane x2 = 0, the flow being confined to the half-space S.

In the absence of external mechanical body forces and body couples, the equa-
tions for such a fluid are (1.16) and we prescribe boundary conditions (1.17).

From [26], we have that v, w are given by

v1 = ax1f
′(x2), v2 = −a[f(x2) + cg(x2)], v3 = acx3g

′(x2),

w1 = −cx3F (x2), w2 = 0, w3 = x1G(x2), (x1, x3) ∈ R
2, x2 ∈ R

+, (1.74)

where f, g, F,G are sufficiently regular unknown functions (f, g ∈ C3(R+), F, G ∈
C2(R+)).

To satisfy conditions (1.17), we ask

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0,

F (0) = 0, G(0) = 0. (1.75)

Since we assume that at infinity the flow approaches the flow of an inviscid fluid,
whose velocity is given by (1.60), we require also the following conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = 0. (1.76)

Conditions (1.76)3,4 mean that at infinity, w =
1

2
∇× v = 0, i.e. the micropolar

fluid behaves like an inviscid fluid whose velocity v is given by (1.59).

The constant C is related to the asymptotic behaviour of f and g at infinity as
for the Newtonian case. So relations (1.63) and (1.64) continue to hold.

The results found in the literature ([26]) can be summarized in the following:

Theorem 1.3.10. Let a homogeneous, incompressible micropolar fluid occupy the
half-space S. The steady three-dimensional stagnation-point flow of such a fluid has
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the form

v =ax1f
′(x2)e1 − a[f(x2) + cg(x2)]e2 + acx3g

′(x2)e3,

w =− cx3F (x2)e1 + x1G(x2)e2,

p =− ρ
a2

2
[x21 + (f(x2) + cg(x2))

2 + c2x23]− ρa(ν + νr)[f
′(x2) + cg′(x2)]

− 2νrρ

∫ x2

0

[cF (s) +G(s)]ds+ p0, (x1, x3) ∈ R
2, x2 ∈ R

+, (1.77)

where (f, g, F,G) satisfies system

ν + νr
a

f ′′′ + (f + cg)f ′′ − f ′
2
+ 1 +

2νr
a2
G′ = 0,

ν + νr
a

g′′′ + (f + cg)g′′ − cg′
2
+ c +

2νr
a2
F ′ = 0,

λF ′′ + Ia[F ′(f + cg)− cFg′]− 2νr(2F + ag′′) = 0,

λG′′ + Ia[G′(f + cg)−Gf ′]− 2νr(2G+ af ′′) = 0, (1.78)

provided F,G ∈ L1([0,+∞)) and boundary conditions (1.75) and (1.76).

Remark 1.3.11. From (1.77) we see that the pressure takes again its maximum
along the wall x2 = 0 in the stagnation-point.

Remark 1.3.12. If c = 1, f = g, F = G, the axial symmetric case is obtained.

In order to reduce the number of the material parameters, it is convenient to
rewrite the boundary value problem of Theorem 1.3.10 in dimensionless form. To
this end we use transformation (1.49), so that system (1.78) can be written as

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 + Γ′ = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c+ Φ′ = 0,

Φ′′ + c3Φ
′(ϕ+ cγ)− Φ(c3cγ

′ + c2)− c1γ
′′ = 0,

Γ′′ + c3Γ
′(ϕ+ cγ)− Γ(c3ϕ

′ + c2)− c1ϕ
′′ = 0, (1.79)

where c1, c2, c3 are the material parameters given by (1.25).
In this way, we have

α =

√

a

ν + νr
A, β =

√

a

ν + νr
B, hd =

α + cβ

1 + c
. (1.80)
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The boundary conditions (1.75) and (1.76) in dimensionless form become:

ϕ(0) = 0, ϕ′(0) = 0,

γ(0) = 0, γ′(0) = 0,

Φ(0) = 0, Γ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1,

lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = 0. (1.81)

Remark 1.3.13. Equations (1.79) are of course the same found by Guram and
Anwar Kamal in [26].

Remark 1.3.14. It is easy to verify that regular solutions of problem (1.79), (1.81)
are invariant under the following transformation

ϕ

(

η,
1

c
,
c1
c
,
c2
c
, c3

)

=
√
c γ

(

η√
c
, c, c1, c2, c3

)

,

γ

(

η,
1

c
,
c1
c
,
c2
c
, c3

)

=
√
c ϕ

(

η√
c
, c, c1, c2, c3

)

,

Φ

(

η,
1

c
,
c1
c
,
c2
c
, c3

)

=
1√
c
Γ

(

η√
c
, c, c1, c2, c3

)

,

Γ

(

η,
1

c
,
c1
c
,
c2
c
, c3

)

=
1√
c
Φ

(

η√
c
, c, c1, c2, c3

)

, c > 0

so that we could confine the attention to c ∈ (−1, 1), c 6= 0.

Remark 1.3.15. As for the Newtonian model, it is important to give the explicit
form of the pressure field because, if one of the components of the pressure gradient
parallel to the wall has the same sign as the corresponding component of the velocity
or of the microrotation curl field, then the reverse flow or the reverse microrotation
appears.

This effect is well known for the velocity field of a Newtonian fluid ([13], [14],
[7]), while the reverse microrotation has never been observed in the literature ([8]).

The numerical results show that there exists a negative value cr of c such that if
c ≥ cr, then γ′, γ′′ > 0 ∀η > 0, and if c < cr then near the wall γ′, γ′′ < 0, so that

the flow reverses (i.e. v3 has the same sign as
∂p

∂x3
).

We have found numerically that there exists a negative value crw of c such that
if c ≥ crw, then Φ′(0) < 0, Φ(η) < 0 ∀η > 0, and if c < crw then near the wall
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Φ,Φ′ > 0 so that the reverse microrotation appears (i.e. (∇ × w)3 =
a2

2νr
cx3Φ

′(η)

has the same sign as
∂p

∂x3
and w1 has opposite sign that of x3).

The reverse flow and the reverse microrotation are also related to a sign change
of the scalar component of the skin friction (τ0) in the direction of e3 and of the
scalar component of the skin couple friction (σ0) in the direction of e1:

τ0 = ρa3/2(ν + νr)
1/2[x1(ϕ

′′(0) + Γ(0))e1 + cx3(γ
′′(0) + Φ(0))e3]

= ρa3/2(ν + νr)
1/2[x1ϕ

′′(0)e1 + cx3γ
′′(0)e3], (1.82)

σ0 = ρλ
a2

2νr
[−cx3Φ′(0)e1 + x1Γ

′(0)e3]. (1.83)

Remark 1.3.16. As for the Newtonian model, following Remark 1.3.8, we see from
(1.82) that the stagnation-point is the only isolated point such that τ0 = 0. The
classification of the origin can be done modifying slightly Remark 1.3.8. Actually, in
this case we have:

v ∼=
√

ν + νr
a

τ0
µ
η, (1.84)

v2 ∼= −
1

2

ν + νr
a

∇ ·
(

τ0
µ

)

η2 := −1
2
∆sη

2, (1.85)

∆s =
√

(ν + νr)a[ϕ
′′(0) + cγ′′(0)], (1.86)

Js = ρ2(ν + νr)a
3[cϕ′′(0)γ′′(0)]. (1.87)

We recall that if ∆s < 0, then the origin is called ‘point of separation’, otherwise it
is a ‘point of attachment’.

Where Js < 0, there is a ‘saddle point’, and where Js > 0 there is a ‘nodal point’.
Hence if we know the signs of c, ϕ′′(0), γ′′(0), then we are able to classify the

stagnation-point.
For the micropolar fluid as well, the velocity vanishes at the boundary, but there

is a limiting direction of flow there, which is inclined to the main flow direction at
an angle ǫ given formally by (1.73).

Remark 1.3.17. In the sequel, we will show numerically that the solution (ϕ, γ,Φ,Γ)
of the problem considered in Theorem 1.3.10 satisfies the conditions (1.84)7,8,9,10;
therefore we define:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99);

• ηΦ (ηΓ) the value of η such that Φ(ηΦ) = −0.01 (Γ(ηΓ) = −0.01).
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Figure 1.25: ϕ, ϕ′, ϕ′′ profiles.

Hence if η > ηϕ (η > ηγ), then ϕ
∼= η−α (γ ∼= η− β), and if η > ηΦ (η > ηΓ), then

Φ ∼= 0 (Γ ∼= 0).
From the numerical integration we will also see that the influence of the viscosity

on the velocity and on the microrotation appears only in a layer lining the boundary
whose thickness is δv = max(ηϕ, ηγ) for the velocity and δw = max(ηΦ, ηΓ) for the
microrotation.

The thickness δ of the boundary layer for the flow is defined as

δ := max(δv, δw)

and it is proportional to

√

ν + νr
a

.

We now deal with the numerical solution of problem (1.79), (1.81).
The values of the parameters c, c1, c2, c3 are chosen according to [13], [36], [26]:

actually, we take the same values of c of Chapter 1.3.2 and of c1, c2, c3 of Chapter
1.1.3 and 1.2.3.

Figure 1.25 shows the behaviour of ϕ, ϕ′, ϕ′′ when the parameters are fixed.
As one can see,

lim
η→+∞

ϕ′′(η) = 0, lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

[ϕ(η)− η] = −α.

As far as the behaviour of γ, γ′, γ′′ is concerned, if c < cr then it is shown in
Figure 1.261, otherwise it is given in Figure 1.262.

As we have already said, we have found a new interesting result: the function
Φ also presents a zone of reverse microrotation for some negative values of c. If
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Figure 1.26: The first picture shows the profiles of γ, γ′, γ′′ in the reverse flow (c =
−0.75). The second picture shows the profiles of γ, γ′, γ′′ in the absence of the
reverse flow (c = 0.25).

c < crw (Φ′(0) > 0) then the behaviour of Φ,Φ′ is shown in Figure 1.271, otherwise
it is given in Figure 1.272.

We underline that the thickness of the reverse microrotation zone is very small.

Figure 1.28 shows the profiles of Γ,Γ′.

The numerical integration furnishes the value of ϕ′′(0), γ′′(0), Φ′(0), Γ′(0), hd,
α, β, ηϕ, ηγ, ηΦ, ηΓ, δv, δw and δ when c, c1, c2, c3 change: we provide them in
Table 1.7 and in Table 1.8.

Our results extend and complete the previous studies ([26]), because the Authors
didn’t take into consideration the occurrence of the reverse flow and of the reverse
microrotation, the thickness of the boundary layer, the parameters α, β, hd and the
influence of c1, c2, c3 on the solution.

In particular, when c = 1 we obtain the axisymmetric flow: α = β = hd,
ϕ′′(0) = γ′′(0) and Φ′(0) = Γ′(0).

From Table 1.7 it appears that if we fix two parameters among c1, c2, c3, then
the influence of c1 on the descriptive quantities of motion is more evident.

Figures from 1.29 to 1.31 elucidate the dependence of the functions ϕ′, γ′, Φ,
Γ, on the parameters c1, c2, c3. We can see that the functions which appear most
influenced by c1, c2, c3 are Φ and Γ, in other words the microrotation. More precisely,
the profiles of Φ and Γ rise as c2 or c3 increases and c1 decreases; c1 is the parameter
that most influences the microrotation. The other two functions, ϕ′ and γ′, do not
show considerable variations as c1, c2, c3 assume different values.

From Table 1.8 it appears that when we set c and the reverse flow and the reverse
microrotation don’t occur, if we fix two parameters among c1, c2, c3, then the values
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Table 1.7: Descriptive quantities of motion for some values of c, c1, c2, c3.

c c1 c2 c3 ϕ′′(0) γ′′(0) Φ′(0) Γ′(0) hd α β

-0.75 0.1 1.5 0.1 1.2357 -0.4704 -0.0005 -0.0536 -4.9584 0.6343 2.4986
0.5 1.2371 -0.4709 -0.0015 -0.0514 -4.9640 0.6347 2.5009

3.0 0.1 1.2389 -0.4692 0.0050 -0.0448 -5.0094 0.6352 2.5167
0.5 1.2395 -0.4695 0.0046 -0.0438 -5.0111 0.6353 2.5175

0.5 1.5 0.1 1.1916 -0.4715 -0.0123 -0.2680 -4.3976 0.6209 2.2937
0.5 1.1984 -0.4753 -0.0163 -0.2573 -4.4520 0.6225 2.3140

3.0 0.1 1.2082 -0.4694 0.0222 -0.2242 -4.7357 0.6248 2.4116
0.5 1.2112 -0.4708 0.0202 -0.2194 -4.7497 0.6256 2.4173

-0.25 0.1 1.5 0.1 1.2144 0.2605 -0.0289 -0.0529 0.4224 0.6558 1.3558
0.5 1.2156 0.2611 -0.0290 -0.0508 0.4226 0.6560 1.3563

3.0 0.1 1.2176 0.2636 -0.0205 -0.0441 0.4214 0.6566 1.3625
0.5 1.2181 0.2638 -0.0207 -0.0432 0.4215 0.6568 1.3627

0.5 1.5 0.1 1.1705 0.2296 -0.1479 -0.2643 0.4289 0.6414 1.2788
0.5 1.1770 0.2323 -0.1490 -0.2541 0.4294 0.6427 1.2825

3.0 0.1 1.1870 0.2454 -0.1042 -0.2205 0.4228 0.6458 1.3148
0.5 1.1897 0.2462 -0.1051 -0.2160 0.4232 0.6464 1.3160

0.25 0.1 1.5 0.1 1.2369 0.7946 -0.0454 -0.0537 0.6662 0.6263 0.8257
0.5 1.2383 0.7958 -0.0443 -0.0514 0.6664 0.6265 0.8260

3.0 0.1 1.2400 0.7982 -0.0362 -0.0449 0.6671 0.6270 0.8274
0.5 1.2406 0.7986 -0.0359 -0.0439 0.6672 0.6271 0.8275

0.5 1.5 0.1 1.1931 0.7515 -0.2276 -0.2687 0.6514 0.6139 0.8013
0.5 1.2003 0.7576 -0.2227 -0.2575 0.6524 0.6149 0.8027

3.0 0.1 1.2092 0.7698 -0.1817 -0.2247 0.6559 0.6174 0.8099
0.5 1.2124 0.7722 -0.1801 -0.2198 0.6564 0.6179 0.8104

1.00 0.1 1.5 0.1 1.3013 1.3013 -0.0558 -0.0558 0.5665 0.5665 0.5665
0.5 1.3030 1.3030 -0.0531 -0.0531 0.5667 0.5667 0.5667

3.0 0.1 1.3043 1.3043 -0.0470 -0.0470 0.5670 0.5670 0.5670
0.5 1.3051 1.3051 -0.0458 -0.0458 0.5671 0.5671 0.5671

0.5 1.5 0.1 1.2583 1.2583 -0.2793 -0.2793 0.5568 0.5568 0.5568
0.5 1.2669 1.2669 -0.2657 -0.2657 0.5576 0.5576 0.5576

3.0 0.1 1.2734 1.2734 -0.2354 -0.2354 0.5594 0.5594 0.5594
0.5 1.2774 1.2774 -0.2292 -0.2292 0.5598 0.5598 0.5598
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Table 1.8: Descriptive quantities of the boundary layer for some values of
c, c1, c2, c3.

c c1 c2 c3 ηϕ ηγ ηΦ ηΓ δv δw δ

-0.75 0.1 1.5 0.1 2.3204 4.4516 3.6586 1.5789 4.4516 3.6586 4.4516
0.5 2.3332 4.4701 3.4224 1.3102 4.4701 3.4224 4.4701

3.0 0.1 2.3424 4.4915 2.8943 0.9930 4.4915 2.8943 4.4915
0.5 2.3486 4.4976 2.7868 0.8370 4.4976 2.7868 4.4976

0.5 1.5 0.1 2.1157 3.9136 4.5392 2.9134 3.9136 4.5392 4.5392
0.5 2.1616 4.0678 4.3181 2.4464 4.0678 4.3181 4.3181

3.0 0.1 2.2046 4.2871 4.2340 2.3241 4.2871 4.2340 4.2871
0.5 2.2319 4.3326 4.0645 2.1007 4.3326 4.0645 4.3326

-0.25 0.1 1.5 0.1 2.4106 3.5133 2.6648 1.6156 3.5133 2.6648 3.5133
0.5 2.4222 3.5366 2.4337 1.3547 3.5366 2.4337 3.5366

3.0 0.1 2.4334 3.5658 1.7784 0.9979 3.5658 1.7784 3.5658
0.5 2.4387 3.5745 1.6902 0.8452 3.5745 1.6902 3.5745

0.5 1.5 0.1 2.1959 3.0656 3.8678 2.9608 3.0656 3.8678 3.8678
0.5 2.2389 3.1574 3.4688 2.5088 3.1574 3.4688 3.4688

3.0 0.1 2.2932 3.3251 3.3429 2.3762 3.3251 3.3429 3.3429
0.5 2.3177 3.3681 3.1414 2.1642 3.3681 3.1414 3.3681

0.25 0.1 1.5 0.1 2.2136 2.5693 1.9307 1.5711 2.5693 1.9307 2.5693
0.5 2.2241 2.5848 1.6679 1.2934 2.5848 1.6679 2.5848

3.0 0.1 2.2319 2.5978 1.2652 1.0015 2.5978 1.2652 2.5978
0.5 2.2371 2.6044 1.1405 0.8419 2.6044 1.1405 2.6044

0.5 1.5 0.1 2.0329 2.3194 3.1593 2.8349 2.3194 3.1593 3.1593
0.5 2.0717 2.3749 2.6586 2.3296 2.3749 2.6586 2.6586

3.0 0.1 2.1111 2.4429 2.6063 2.2902 2.4429 2.6063 2.6063
0.5 2.1339 2.4727 2.3687 2.0482 2.4727 2.3687 2.4727

1.00 0.1 1.5 0.1 1.9071 1.9071 1.4569 1.4569 1.9071 1.4569 1.9071
0.5 1.9166 1.9166 1.1527 1.1527 1.9166 1.1527 1.9166

3.0 0.1 1.9201 1.9201 0.9782 0.9782 1.9201 0.9782 1.9201
0.5 1.9251 1.9251 0.8015 0.8015 1.9251 0.8015 1.9251

0.5 1.5 0.1 1.7701 1.7701 2.6108 2.6108 1.7701 2.6108 2.6108
0.5 1.8056 1.8056 2.0339 2.0339 1.8056 2.0339 2.0339

3.0 0.1 1.8246 1.8246 2.1206 2.1206 1.8246 2.1206 2.1206
0.5 1.8464 1.8464 1.8292 1.8292 1.8464 1.8292 1.8464
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Table 1.9: Values of cr, crw and ch for c1, c2, c3.

c1 c2 c3 cr crw ch

0.10 1.50 0.10 -0.4268 -0.7606 -0.3953
0.50 -0.4267 -0.7813 -0.3953

3.00 0.10 -0.4279 -0.6428 -0.3941
0.50 -0.4278 -0.6500 -0.3941

0.50 1.50 0.10 -0.4158 -0.8034 -0.4082
0.50 -0.4152 -0.8226 -0.4077

3.00 0.10 -0.4217 -0.6542 -0.4002
0.50 -0.4214 -0.6614 -0.4002

of α, β, |hd|, ϕ′′(0), γ′′(0), Φ′(0), Γ′(0)

• increase as c2 or c3 increases;

• decrease as c1 increases.

When the reverse flow and the reverse microrotation appear, the only difference
is that γ′′(0) and Φ′(0) decrease if c3 increases.

As far as the comparison of the two models of fluids is concerned, we see from
Tables 1.5 and 1.7-1.8 that the micropolar fluid reduces the values of ϕ′′(0), |γ′′(0)|,
Φ′(0), Γ′(0), α, β, ηϕ, ηγ. Therefore the thickness of the boundary layer of the
velocity is smaller than that of the Newtonian fluid.

Table 1.9 shows the values of cr and of crw for the reverse flow and the reverse
microrotation, respectively, when c1, c2, c3 change. We can easily see that the range
of c for which the reverse microrotation appears is included in the range of c for
which the reverse flow occurs.

In this Table we also list the values of ch, which is the value of c starting from
which hd is positive (i.e. if c < ch, then hd < 0 and if c ≥ ch, then hd ≥ 0). Since
ch is always bigger than cr and crw, we have that hd is always negative when the
reverse flow and the reverse microrotation appear, similar to the Newtonian case.

Finally, as far as the classification of the stagnation-point is concerned, from
Tables 1.10, 1.11 and 1.7 it appears that it is always a point of attachment. If c > 0
or where there is the reverse flow, the origin is a nodal point, while when c < 0
and the reverse flow does not appear, it is a saddle point (as it happened in the
Newtonian case, see Figure 1.24).
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Figure 1.29: ϕ′, γ′,Φ,Γ profiles for c2 = 3, c3 = 0.5 when c1 = 0.1 and c1 = 0.5.
In the first four pictures c = −0.25 and there are not reverse flow and reverse
microrotation. The last two pictures show the behaviour of γ′ and Φ with respect
to c1 when the reverse flow and the reverse microrotation occur (c = −0.75).
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Figure 1.30: ϕ′, γ′,Φ,Γ profiles for c1 = 0.5, c3 = 0.5 when c2 = 1.5 and c2 = 3.
In the first four pictures c = −0.25 and there are not reverse flow and reverse
microrotation. The last two pictures show the behaviour of γ′ and Φ with respect
to c2 when the reverse flow and the reverse microrotation occur (c = −0.75).
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Figure 1.31: ϕ′, γ′,Φ,Γ profiles for c1 = 0.5, c2 = 3 when c3 = 0.1 and c3 = 0.5.
In the first four pictures c = −0.25 and there are not reverse flow and reverse
microrotation. The last two pictures show the behaviour of γ′ and Φ with respect
to c3 when the reverse flow and the reverse microrotation occur (c = −0.75).
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Table 1.10: Values of ϕ′′(0) + cγ′′(0) and cϕ′′(0)γ′′(0) in dependence on the values
of c, c1, c2, and c3.

c c1 c2 c3 ϕ′′(0) γ′′(0) ϕ′′(0) + cγ′′(0) cϕ′′(0)γ′′(0)

-0.6428 0.10 1.50 0.10 1.2279 -0.3291 1.4394 0.2597
0.50 1.2293 -0.3309 1.4420 0.2615

3.00 0.10 1.2312 -0.3299 1.4433 0.2611
0.50 1.2318 -0.3305 1.4443 0.2617

0.50 1.50 0.10 1.1827 -0.3174 1.3867 0.2413
0.50 1.1899 -0.3295 1.4018 0.2521

3.00 0.10 1.2002 -0.3269 1.4103 0.2522
0.50 1.2032 -0.3300 1.4153 0.2553

-0.45 0.10 1.50 0.10 1.2172 -0.0360 1.2334 0.0197
0.50 1.2185 -0.0363 1.2348 0.0199

3.00 0.10 1.2205 -0.0345 1.2360 0.0190
0.50 1.2210 -0.0346 1.2366 0.0190

0.50 1.50 0.10 1.1731 -0.0495 1.1954 0.0261
0.50 1.1796 -0.0514 1.2027 0.0273

3.00 0.10 1.1897 -0.0427 1.2089 0.0228
0.50 1.1925 -0.0433 1.2120 0.0233

-0.4279 0.10 1.50 0.10 1.2165 -0.0017 1.2172 0.0009
0.50 1.2177 -0.0019 1.2185 0.0010

3.00 0.10 1.2197 0 1.2197 0
0.50 1.2202 -0.0001 1.2203 0.0000

0.50 1.50 0.10 1.1724 -0.0175 1.1799 0.0088
0.50 1.1788 -0.0187 1.1868 0.0094

3.00 0.10 1.1890 -0.0094 1.1930 0.0048
0.50 1.1918 -0.0098 1.1960 0.0050

-0.40 0.10 1.50 0.10 1.2157 0.0414 1.1991 -0.0201
0.50 1.2169 0.0413 1.2004 -0.0201

3.00 0.10 1.2189 0.0433 1.2016 -0.0211
0.50 1.2194 0.0432 1.2021 -0.0211

0.50 1.50 0.10 1.1716 0.0228 1.1625 -0.0107
0.50 1.1781 0.0223 1.1691 -0.0105

3.00 0.10 1.1882 0.0324 1.1752 -0.0154
0.50 1.1910 0.0321 1.1781 -0.0153
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Table 1.11: Continuum of Table 1.10.

c c1 c2 c3 ϕ′′(0) γ′′(0) ϕ′′(0) + cγ′′(0) cϕ′′(0)γ′′(0)

-0.3941 0.10 1.50 0.10 1.2155 0.0504 1.1956 -0.0242
0.50 1.2168 0.0503 1.1969 -0.0241

3.00 0.10 1.2187 0.0524 1.1981 -0.0252
0.50 1.2193 0.0524 1.1986 -0.0252

0.50 1.50 0.10 1.1715 0.0312 1.1592 -0.0144
0.50 1.1779 0.0309 1.1657 -0.0144

3.00 0.10 1.1881 0.0412 1.1718 -0.0193
0.50 1.1908 0.0410 1.1747 -0.0192

-0.10 0.10 1.50 0.10 1.2177 0.4503 1.1726 -0.0548
0.50 1.2189 0.4510 1.1738 -0.0550

3.00 0.10 1.2209 0.4538 1.1755 -0.0554
0.50 1.2214 0.4540 1.1760 -0.0555

0.50 1.50 0.10 1.1738 0.4129 1.1326 -0.0485
0.50 1.1805 0.4168 1.1388 -0.0492

3.00 0.10 1.1902 0.4309 1.1471 -0.0513
0.50 1.1930 0.4321 1.1498 -0.0516



Chapter 2

MHD orthogonal stagnation-point

flow

In this chapter we wish to investigate the influence of an external uniform electro-
magnetic field (E0,H0) on the steady plane orthogonal stagnation-point flow of a
Newtonian or a micropolar fluid. Part of the results here presented are original.

Even if in Chapter 1.1 we have already defined the orthogonal stagnation-point
flow for these two classes of fluids, it is now suitable to recall this motion and to
introduce the equations which govern the motion of electrically conducting fluids
and the usual boundary conditions for the electromagnetic field. To these equations
and to these boundary conditions we will refer in the next chapters. Our purpose is
to find exact solutions of these PDEs through similarity transformations.

As in the absence of the external electromagnetic field, the equations which
govern the motion will be reduced to nonlinear ordinary differential boundary value
problems which will be solved by the bvp4c MATLAB routine.

In order to reach our goal, the convenient starting-point of our analysis is the
study of the steady plane MHD orthogonal stagnation-point flow of an inviscid fluid
in three situations which are significant from a physical point of view.

2.1 Inviscid fluids

Consider the steady plane MHD flow of a homogeneous, incompressible, electrically
conducting inviscid fluid near a stagnation point occupying the region S given by

S = {x ∈ R
3 : (x1, x3) ∈ R

2, x2 > 0}. (2.1)

The boundary of S having the equation x2 = 0 is a rigid fixed non-electrically
conducting wall.
The equations governing such a flow in the absence of external mechanical body

59
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forces and free electric charges are:

ρv · ∇v = −∇p + µe(∇×H)×H,

∇ · v = 0,

∇×H = σe(E+ µev ×H),

∇×E = 0, ∇ · E = 0, ∇ ·H = 0, in S , (2.2)

where v is the velocity field, p is the pressure, E and H are the electric and mag-
netic fields, respectively, ρ is the mass density (constant > 0), µe is the magnetic
permeability, σe is the electrical conductivity (µe, σe = constants > 0). We note
that equation (2.2)1 differs from (1.2)1 for the term due to the Lorentz forces.

We assume that the region

S− = {x ∈ R
3 : (x1, x3) ∈ R

2, x2 < 0} (2.3)

is vacuum (free space) and that µe is equal to the magnetic permeability of free
space. The condition on µe is not particularly restrictive, because it is satisfied by
many liquid metals.

To equations (2.2) we append the no-penetration condition:

v2 = 0 at x2 = 0. (2.4)

As it is usual in electromagnetism, we will make the following transmission con-
ditions:

• the tangential components of H and E are continuous across

the plane x2 = 0; (2.5)

• the normal components of B = µeH and D = εeE are continuous

across the plane x2 = 0; (2.6)

where B is the magnetic induction vector, D the electric displacement field, εe
the dielectric permittivity.

We recall that the orthogonal plane stagnation-point flow of such a fluid is de-
scribed by a velocity field of the form

v1 = ax1, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (2.7)

with a positive constant.
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Figure 2.1: Description flow in CASE I.

As known, the streamlines of such a flow are hyperbolas whose asymptotes have
the equations:

x1 = 0 and x2 = 0.

These two straight-lines are degenerate streamlines too.
Our aim is to study how such a flow is influenced by an external uniform electro-

magnetic field (E0,H0). To this purpose, we consider three cases which are relevant
from a physical point of view.

2.1.1 CASE I

E0 = E0e3, H0 = 0, E0 = constant.

Let the induced electromagnetic field (Ei,Hi ≡ H) be in the form

Ei = Ei
1e1 + Ei

2e2 + Ei
3e3,

H = h(x2)e1,

where h = h(x2) ∈ C1(R+), Ei
j = Ei

j(x1, x2, x3) ∈ C2(R3) for j = 1, 2, 3 are unknown
functions.

Remark 2.1.1. The solution of the problem relative to the electromagnetic field in
S− is E = E0 = E0e3 and H = H0 = 0.

By the previous Remark, the boundary conditions (2.5) require that

Ei
1 = 0, Ei

3 = 0 at x2 = 0,

h(0) = 0. (2.8)

From (2.2)4 follows that

E ≡ Ei + E0 = −∇ψ,
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where ψ is the electrostatic scalar potential.
Moreover, (2.2)3 provides ψ = ψ(x3) and

dψ

dx3
(x3) = aµeh(x2)x2 +

h′(x2)

σe
.

From the previous equation we deduce that both members are equal to the same
constant. Boundary condition (2.8)2 furnishes

h′ + aσeµehx2 = −σeE0, x2 > 0,

ψ = −E0x3 + ψ0, x3 ∈ R. (2.9)

The integration of differential problem (2.9)1, (2.8)3 gives

h(x2) = −σeE0e
−

ax2
2

2ηe

∫ x2

0

e
at2

2ηe dt, x2 ∈ R
+, (2.10)

with ηe =
1

σeµe
= electrical resistivity.

As far as the pressure field is concerned, from (2.2)1 we get

p = −1
2
ρa2(x21 + x22)−

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where h is given by (2.10) and p0 is the pressure at the stagnation point (see Remark
1.1.3).

We observe that the presence of E0 modifies the pressure field, which is smaller
than the pressure in the purely hydrodynamical flow.

Our results can be summarized in the following:

Theorem 2.1.2. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the region S . The steady plane MHD orthogonal stagnation-point flow of
such a fluid has the following form when an external uniform electric field E0 = E0e3
is impressed :

v = ax1e1 − ax2e2, H = h(x2)e1, E = E0e3,

p = −1
2
ρa2(x21 + x22)−

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where

h(x2) = −σeE0e
−

ax2
2

2ηe

∫ x2

0

e
at2

2ηe dt.
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Remark 2.1.3. We note that the function in (2.10)

e−x
2

∫ x

0

et
2

dt =: daw(x), x ∈ R
+

is known as Dawson’s integral and has the properties:

• x << 1⇒ daw(x) ∼ x,

• x >> 1⇒ daw(x) ∼ 1

2x
.

In order to plot the function h, it is suitable to introduce dimensionless parame-
ters and variables.
To this end, we denote by V a characteristic velocity and put

L =
V

a
, η =

x2
L
, Ψ(η) =

h(Lη)

σeLE0

.

So (2.9)1 can be written as

Ψ′(η) +RmηΨ(η) = −1

where

Rm =
LV

ηe

is the magnetic Reynolds number.
Therefore

Ψ(η) = −e−Rm
2

η2
∫ η

0

e
Rm
2

t2dt.

Figures 2.2 show the graphs of the function Ψ for some values of Rm.
We see that there is a layer lining the boundary beyond which Ψ vanishes. Its thick-

ness increases if Rm decreases. At η =
1√
Rm

the function Ψ assumes a minimum

whose value decreases as Rm decreases.

2.1.2 CASE II

E0 = 0, H0 = H0e1, H0 = constant.

Remark 2.1.4. Obviously, E = E0 = 0 and H = H0 = H0e1 in S−.
We take the induced electromagnetic field (Ei ≡ E,Hi) in the following form

E = E1e1 + E2e2 + E3e3,

H = [h(x2) +H0]e1,
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Figure 2.2: CASE I: plots showing the graphic of Ψ for Rm = 10−3, 10−2, 10−1, 1.
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Figure 2.3: Description flow in CASE II.
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where Ej = Ej(x1, x2, x3) ∈ C2(R3) for j = 1, 2, 3, h ∈ C1(R+) unknown funcions.
We append the boundary conditions (2.8).

By proceeding as in CASE I, we deduce ψ = ψ(x3) and

dψ

dx3
(x3) = aµe[h(x2) +H0]x2 +

h′(x2)

σe
.

From this relation, we get

h′ +
a

ηe
hx2 = −

a

ηe
x2H0, x2 > 0,

h(0) = 0 (2.11)

and ψ = ψ0 from which E = 0.
The solution of (2.11) is

h(x2) = H0

(

e−
ax22
2ηe − 1

)

, x2 ∈ R
+, (2.12)

so that

H = H0e
−

ax2
2

2ηe e1.

By virtue of (2.2)1 we deduce that the pressure field is given by

p(x1, x2) = −
1

2
ρa2(x21 + x22)−

µe

2
H2
0e
−

ax22
ηe + p∗0, x1 ∈ R, x2 ∈ R

+.

We observe that the value of the pressure at the stagnation point is p∗0 − µe
H2
0

2
.

Finally, also in this case the presence ofH0 modifies the pressure, which is smaller
than the pressure in the purely hydrodynamical flow.

Therefore we have obtained the following:

Theorem 2.1.5. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the region S . The steady plane MHD orthogonal stagnation-point flow
of such a fluid has the following form when an external uniform magnetic field
H0 = H0e1 is impressed:

v = ax1e1 − ax2e2, H = H0e
−

ax2
2

2ηe e1, E = 0,

p = −1
2
ρa2(x21 + x22)−

µe

2
H2
0e
−

ax2
2

ηe + p∗0, x1 ∈ R, x2 ∈ R
+.
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Figure 2.4: CASE II: plot showing Ψ for Rm = 1.
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Figure 2.5: Description flow in CASE III.

In dimensionless form h becomes

Ψ(η) = e−
Rm
2

η2 − 1, η ∈ R
+,

where

Ψ(η) =
h(Lη)

H0
.

Figure 2.4 shows that Ψ has an inflection point at η =
1√
Rm

.

2.1.3 CASE III

E0 = 0, H0 = H0(cosϑe1 + sinϑe2),

with ϑ fixed in (0, π) and H0 constant.
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Suppose the induced electromagnetic field (Ei ≡ E,Hi) to be in the form

E = E1e1 + E2e2 + E3e3,

Hi = h1(x1, x2)e1 + h2(x1, x2)e2,

with h1, h2 ∈ C1(R × R
+), Ej = Ej(x1, x2, x3) ∈ C2(R3) for j = 1, 2, 3 unknown

functions.
Taking into account (2.2)3, (2.7) we obtain:

σeE =

[

∂h2
∂x1

− ∂h1
∂x2

− σeµe(v1h2 − v2h1 +H0v1 sin ϑ−H0v2 cos ϑ)

]

e3. (2.13)

Hence ψ = ψ(x3) and we conclude that E = 0, as we have in CASE II.
Therefore from (2.2)3

∇×H = σeµev ×H

and

(∇×H)×H = σeµe(v×H)×H,

from which it follows

∂h2
∂x1

(x1, x2)−
∂h1
∂x2

(x1, x2) =

σeµe[ax1(h2(x1, x2) +H0 sinϑ) + ax2(h1(x1, x2) +H0 cosϑ)]. (2.14)

To this equation we must add (2.2)6 :

∂h1
∂x1

+
∂h2
∂x2

= 0. (2.15)

So (h1, h2) satisfies the PDEs system (2.14), (2.12) with suitable boundary condi-
tions.
It is very difficult to find an explicit solution to this differential problem; so we
proceed as it is usual in the literature by neglecting the induced magnetic field
(h1, h2). This approximation is motivated by physical arguments for MHD flow at
small magnetic Reynolds number, e.g. in the flow of liquid metals. Then

(∇×H)×H ≃σeµe(v ×H0)×H0 =

σeµeH
2
0 [a sinϑx1 + (b sinϑ+ a cosϑ)x2](− sin ϑe1 + cosϑe2).



68 2. MHD orthogonal stagnation-point flow

On substituting this approximation into (2.2)1 we get:

∂p

∂x1
= −ρa2x1 − aB2

0σe sin ϑ(sinϑx1 + cosϑx2),

∂p

∂x2
= −ρa2x2 + aB2

0σe cosϑ(sin ϑx1 + cosϑx2),

∂p

∂x3
= 0⇒ p = p(x1, x2), (2.16)

with B0 = µeH0.
It is possible to find a function p = p(x1, x2) satisfying equations (2.16) if, and

only if,

∂2p

∂x1∂x2
=

∂2p

∂x2∂x1
. (2.17)

Taking into account (2.16), the previous condition furnishes

sin ϑ cosϑ = 0. (2.18)

From (2.18), we get

cos ϑ = 0⇒ ϑ =
π

2
. (2.19)

So in this case the MHD orthogonal stagnation-point flow is possible if, and only if,
H0 is parallel to the streamline x1 = 0.

Under the condition (2.19), the pressure field has the form

p = −1
2
ρa2(x21 + x22)− σeB

2
0

a

2
x21 + p0, x1 ∈ R, x2 ∈ R

+. (2.20)

We have thus proved the following:

Theorem 2.1.6. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the region S . If we impress an external magnetic field

H0 = H0(cosϑe1 + sinϑe2), 0 < ϑ < π,

and we neglect the induced magnetic field, then the steady MHD orthogonal plane
stagnation-point flow of such a fluid is possible if, and only if,

ϑ =
π

2
, i.e. H0 = H0e2.

Moreover,

v = ax1e1 − ax2e2,

p = −1
2
ρa2(x21 + x22)− σeB

2
0

a

2
x21 + p0, x1 ∈ R, x2 ∈ R

+.
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Remark 2.1.7. In order to study the orthogonal stagnation-point flow for viscous
fluids, it is convenient to recall Remark 1.1.4. More precisely, we suppose the inviscid
fluid orthogonally impinging on the flat plane x2 = A and

v1 = ax1, v2 = −a(x2 −A), v3 = 0 x1 ∈ R, x2 ≥ A, (2.21)

with A = constant.
In such a way the stagnation point is (0, A) and the streamlines are hyperbolas

whose asymptotes are x1 = 0 and x2 = A.
Under these assumptions Theorems 2.1.2, 2.1.5, 2.1.6 continue to hold by replacing
x2 with x2 − A.

2.2 Newtonian fluids

We now study the steady plane MHD flow of a homogeneous, incompressible, elec-
trically conducting Newtonian fluid near a stagnation point occupying the region S
given by (2.1).

The MHD equations governing such a flow in the absence of external mechanical
body forces and free electric charges are the equations

v · ∇v = −1
ρ
∇p+ ν△v +

µe

ρ
(∇×H)×H,

∇ · v = 0,

∇×H = σe(E+ µev×H),

∇×E = 0, ∇ · E = 0, ∇ ·H = 0, in S , (2.22)

where ν is the kinematic viscosity.
As far as boundary conditions are concerned, we only modify the condition for

v, assuming the no-slip boundary condition

v|x2=0 = 0. (2.23)

We assume the velocity components to be of the same form as in the non-
magnetic case (see Chapter 1.1.2)

v1 = ax1f
′(x2), v2 = −af(x2), v3 = 0, x1 ∈ R, x2 ∈ R

+, (2.24)

with f sufficiently regular unknown function (f ∈ C3(R+)) to be determined so that

f(0) = 0, f ′(0) = 0. (2.25)

lim
x2→+∞

f ′(x2) = 1. (2.26)
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Condition (2.25) is the no-slip boundary condition, while (2.26) means that we
require that at infinity the flow of a Newtonian fluid approaches the flow of an
inviscid fluid given by (2.21) ([19]).

Hence in the sequel, when we will refer to an inviscid fluid, all results obtained
in Chapter 2.1 have to be modified replacing x2 with x2 − A, respectively.
In particular, the asymptotic behaviour of f at infinity is related to the constant A
in the following way:

lim
x2→+∞

[f(x2)− x2] = −A. (2.27)

As for the case of an inert fluid (Chapter 1.1.2), A is determined as part of the
solution of the problem ([47]).

In order to study the influence of an external uniform electromagnetic field, we
consider the three cases analyzed for the inviscid fluid.

2.2.1 CASE I-N: E0 = E0e3.

By proceeding as for an inviscid fluid, from (2.22)3, (2.22)4 and boundary conditions
for electromagnetic field (2.5), we obtain

h′ +
a

ηe
fh = −ηeE0, x2 > 0, h(0) = 0, (2.28)

ψ(x3) = −E0x3 + ψ0, x3 ∈ R.

If we regard f as a known function, then the integration of the differential pro-
blem (2.28) gives

h(x2) = −σeE0e
−

a
ηe

∫ x2
0

f(t)dt

∫ x2

0

e
a
ηe

∫ s

0
f(t)dtds, x2 ∈ R

+. (2.29)

As it is easy to verify, the induced magnetic fields given by (2.29) and (2.10) have

the same asymptotic behaviour at infinity

(

∼ − ηeE0σe
a(x2 −A)

)

.

We now proceed in order to determine p, f . Substituting (2.24) into (2.22) we
obtain:

p = p(x1, x2),

ax1(νf
′′′ + aff ′′ − af ′

2
) =

1

ρ

∂p

∂x1
,

νaf ′′ + a2f ′f +
µe

ρ
h′h = −1

ρ

∂p

∂x2
. (2.30)
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The integration of (2.30)3 furnishes

p(x1, x2) = −
1

2
ρa2f 2(x2)− ρaνf ′(x2)−

µe

2
h2(x2) + P (x1),

where P (x1) is determined supposing that, far from the wall, the pressure p has the
same behaviour as for an inviscid electroconducting fluid whose velocity is given by
(2.21).
Therefore, since the induced magnetic fields given by (2.29) and (2.10) have the
same asymptotic behaviour, we get, by virtue of (2.26), (2.27)

P (x1) = −ρ
a2

2
x21 + ρaν + p∗0.

Finally,

p(x1, x2) = −ρ
a2

2
[x21 + f 2(x2)]− ρaνf ′(x2)−

µe

2
h2(x2) + p0, (2.31)

with p0 = p∗0 + ρaν.
Equation (2.30)2 together with (2.31) furnishes

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1 = 0, (2.32)

with

f(0) = 0, f ′(0) = 0, lim
x2→+∞

f ′(x2) = 1. (2.33)

The function f satisfies the same differential problem that governs the orthogonal
stagnation-point flow in the absence of an electromagnetic field (see Chapter 1.1.2).
Hence, the external uniform electromagnetic field doesn’t influence the flow.

Summarizing, we have:

Theorem 2.2.1. Let a homogeneous, incompressible, electrically conducting Newto-
nian fluid occupy the region S . The steady MHD orthogonal plane stagnation-point
flow of such a fluid has the following form when an external uniform electric field
E0 = E0e3 is impressed:

v = ax1f
′(x2)e1 − af(x2)e2, H = h(x2)e1, E = E0e3,

p = −ρa
2

2
[x21 + f 2(x2)]− ρaνf ′(x2)−

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where f satisfies the problem (2.32), (2.33) and h(x2) is given by (2.29).
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If we use the dimensionless variables given by (1.13) and if we put

Ψ(η) =

√

a

ν

h
(
√

ν
a
η
)

ηeE0

,

then we can write problem (2.32), (2.33), (2.28) in dimensionless form

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 = 0,

Ψ′ +RmϕΨ = −1,
ϕ(0) = 0, ϕ′(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, (2.34)

where we have

α =

√

a

ν
A, Rm =

ν

ηe
= magnetic Reynolds number.

We have chosen V =
√
νa as the characteristic velocity of the magnetic Reynolds

number. This particular magnetic Reynolds number is also known in the literature
as the magnetic Prandtl number.

Notice the one-way coupling, that the function ϕ influences the function Ψ but
not viceversa.
The function ϕ satisfies the Hiemenz equation ([47], [19]), which has already been
solved numerically in Chapter 1.1.2 (its behaviour is displayed in Figure 1.3).

In dimensionless form the induced magnetic field is given by:

Ψ(η) = −e−Rm

∫ η

0
ϕ(s)ds

∫ η

0

eRm

∫ t

0
ϕ(s)dsdt, η ∈ R

+.

Figure 2.61 shows the trend of the induced magnetic field Ψ with Rm = 1, that
is similar to the behaviour of Ψ in CASE I (inviscid fluid). Figure 2.62 provides the
profile of the induced magnetic field when Rm = 10−6: for η ∈ [0, 5] the graphic
is approximately linear because in this interval, for very small values of Rm, the
equation (2.34)2 reduces to Ψ

′ ∼= −1.

2.2.2 CASE II-N: H0 = H0e1.

As for an inviscid fluid and as in CASE I-N, from (2.22)3, (2.22)4 and (2.5), we get

h′ +
a

ηe
fh = − a

ηe
fH0, x2 > 0, h(0) = 0, (2.35)

ψ(x3) = ψ0 ⇒ E = 0.
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Figure 2.6: CASE I-N: plots showing Ψ with Rm = 1, 10−6.

The integration of (2.35) leads to

h(x2) = H0

[

e−
a
ηe

∫ x2
0

f(t)dt − 1
]

, x2 ∈ R
+, (2.36)

so that
H = H0e

−
a
ηe

∫ x2
0

f(s)ds
e1.

The pressure field then becomes

p(x1, x2) = −ρ
a2

2
[x21 + f 2(x2)]− ρaνf ′(x2)−

µe

2
[h(x2) +H0]

2 + p∗0, (2.37)

p∗0 = p0 + ρaν,

and f satisfies problem (2.32), (2.33).
Hence in this case also the external uniform electromagnetic field does not influence
the flow.

So we have got the following:

Theorem 2.2.2. Let a homogeneous, incompressible, electrically conducting Newto-
nian fluid occupy the region S . The steady MHD orthogonal plane stagnation-point
flow of such a fluid has the following form when an external uniform magnetic field
H0 = H0e1 is impressed:

v = ax1f
′(x2)e1 − af(x2)e2, H = [h(x2) +H0]e1, E = 0,

p = −ρa
2

2
[x21 + f 2(x2)]− ρaνf ′(x2)−

µe

2
[h(x2) +H0]

2 + p∗0,

x1 ∈ R, x2 ∈ R
+,
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Figure 2.7: CASE II-N: plot showing Ψ for Rm = 1

where h(x2) is given by (2.36) and f satisfies the problem (2.32), (2.33).

In dimensionless form, h(x2) is transformed into

Ψ(η) = e−Rm

∫ η

0
ϕ(t)dt − 1, η ∈ R

+, (2.38)

where

Ψ(η) =
h(

√

ν
a
η)

H0

.

Of course the ordinary differential problem governing ϕ is the same as in (2.34); we
have only to compute Ψ(η) given by (2.38).
Figure 2.7 shows that Ψ has a similar behaviour to the induced magnetic field in
CASE II.

2.2.3 CASE III-N: H0 = H0e2.

Taking into account the results obtained for an inviscid fluid, we assume

H0 = H0e2, E0 = 0.

By means of the same arguments of CASE III, we deduce

E = 0⇒∇×H = σeµe(v ×H)

and we neglect the induced magnetic field, replacing (2.22)1 with the equation:

v · ∇v = −1
ρ
∇p+ ν△v +

µe

ρ
(v×H0)×H0. (2.39)
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In order to determine p, f we substitute (2.24) into (2.39) to arrive at

p = p(x1, x2),

ax1

(

νf ′′′ + aff ′′ − af ′
2 − σeB

2
0

ρ
f ′
)

=
1

ρ

∂p

∂x1
,

νaf ′′ + a2f ′f = −1
ρ

∂p

∂x2
. (2.40)

The integration of (2.40)3 gives

p(x1, x2) =−
1

2
ρa2f 2(x2)− ρaνf ′(x2) + P (x1),

where P (x1) has to be found as in CASE I-N, II-N.
Precisely, after some calculations, we obtain

P (x1) = −ρ
a2

2

(

1 +
σeB

2
0

ρa

)

x21 + p∗0.

So the pressure field is:

p(x1, x2) =− ρ
a2

2
[x21 + f 2(x2)]− ρaνf ′(x2)−

a

2
σeB

2
0x

2
1 + p0,

x1 ∈ R, x2 ∈ R
+. (2.41)

Then (2.40)2 furnishes

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1 +M2(1− f ′) = 0 (2.42)

where

M2 =
σeB

2
0

ρa
= Hartmann number.

To equation (2.42) we append boundary conditions (2.33).
We remark that, unlike the previous cases, the external electromagnetic field

modifies the flow and if M2 = 0, then equation (2.42) reduces to (2.32).

Theorem 2.2.3. Let a homogeneous, incompressible, electrically conducting Newto-
nian fluid occupy the region S . If we impress an external magnetic field H0 = H0e2
and we neglect the induced magnetic field, then the steady MHD orthogonal plane
stagnation-point flow of such a fluid has the form

v = ax1f
′(x2)e1 − af(x2)e2, E = 0,

p = −ρa
2

2
[x21 + f 2(x2)]− ρaνf ′(x2)−

a

2
σeB

2
0x

2
1 + p0, x1 ∈ R, x2 ∈ R

+,

where f satisfies problem (2.42), (2.33).
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Table 2.1: CASE III-N: descriptive quantities of the motion for several values of
M2.

M2 ϕ′′(0) α ηϕ
1 1.5853 0.5410 2.1059
2 1.8735 0.4748 1.9127
4 2.3467 0.3936 1.6482
5 2.5507 0.3661 1.5517
10 3.3917 0.2831 1.2394

System (2.42), (2.33) in dimensionless form becomes

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 +M2(1− ϕ′) = 0,

ϕ(0) = 0, ϕ′(0) = 0,

lim
η→+∞

ϕ′(η) = 1. (2.43)

Remark 2.2.4. The solution of the differential boundary value problem (2.43) exists
and it is unique as proved by Hoernel in [34].

Remark 2.2.5. As in the absence of the external magnetic field (Remark 1.1.6), we
will see that

lim
η→+∞

ϕ′′(η) = 0, lim
η→+∞

ϕ′(η) = 1.

Therefore we define:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99.

Hence if η > ηϕ, then ϕ
∼= η − α, with α =

√

a

ν
A.

We have solved numerically problem (2.43) using the bvp4c MATLAB routine.
The values of α and ϕ′′(0) depend on M2, as we can see from Table 2.1. More

precisely, α decreases and ϕ′′(0) increases as M2 is increased from 0, as well as we
can aspect physically.

In Figure 2.8 we can see the profiles ϕ, ϕ′, ϕ′′ forM2 = 1, while Figure 2.9 shows
the behaviour of ϕ′ for different M2.

We have plotted the profiles of ϕ, ϕ′, ϕ′′ only for M2 = 1 because they have an
analogous behaviour for M2 6= 1 (similar to the trend in the absence of the external
magnetic field).
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Figure 2.8: CASE III-N: plots showing ϕ, ϕ′, ϕ′′ for M2 = 1.
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Figure 2.9: CASE III-N: plots showing ϕ′ for different M2.

Table 2.1 underlines that the thickness of the boundary layer depends on M2

and it decreases when M2 increases (as is easy to see in Figure 2.9). This effect is
standard in magnetohydrodynamics and it means that more H is strong more the
region where the viscosity appears is small.

Finally, we display the streamlines of the flow in Figure 2.10.

2.3 Micropolar fluids

Let us consider the steady two-dimensional MHD orthogonal stagnation-point flow
of a homogeneous, incompressible, electrically conducting micropolar fluid towards
a flat surface coinciding with the plane x2 = 0; the flow being confined to the region
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Figure 2.10: CASE III-N: figures show the streamlines for M2 = 1 and M2 = 5,
respectively.

S .
In the absence of free electric charges and external mechanical body forces and body
couples, the MHD equations governing such a fluid are

v · ∇v = −1
ρ
∇p+ (ν + νr)△v + 2νr(∇×w) +

µe

ρ
(∇×H)×H,

∇ · v = 0,

Iv · ∇w = λ△w + λ0∇(∇ ·w)− 4νrw + 2νr(∇× v),

∇×H = σe(E+ µev ×H),

∇× E = 0, ∇ ·E = 0, ∇ ·H = 0, in S . (2.44)

We underline that the microrotation is influenced by the external electromagnetic
field through the first previous equation.

We prescribe to the velocity and to the microrotation

v|x2=0 = 0, w|x2=0 = 0 (strict adherence condition), (2.45)

and we ask that the electromagnetic field satisfies conditions (2.5) and (2.6).
As in Chapter 1.1.3, we search v, w in the following form

v1 = ax1f
′(x2), v2 = −af(x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F (x2), x1 ∈ R, x2 ∈ R
+, (2.46)
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where f, F are sufficiently regular unknown functions (f ∈ C3(R+), F ∈ C2(R+)).
The conditions (2.45) supply

f(0) = 0, f ′(0) = 0, F (0) = 0. (2.47)

If we assume that at infinity, the flow of a micropolar fluid approaches the flow of
an inviscid fluid given by (2.21), then to (2.46) we must also append the following
conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

F (x2) = 0. (2.48)

Further, the asymptotic behaviour of f at infinity is related to the constant A, in
the same way as in the Newtonian case:

lim
x2→+∞

[f(x2)− x2] = −A. (2.49)

We now take into consideration the three previous physical situations in order to
understand the behaviour of the motion when a uniform external electromagnetic
field is impressed.

2.3.1 CASE I-M: E0 = E0e3.

In a similar manner to CASEs I and I-N, from (2.44)3, (2.44)4 and boundary condi-
tions for electromagnetic field, we obtain E = E0e3 and the induced magnetic field
h(x2) satisfies

h′ +
a

ηe
fh = −ηeE0, x2 > 0, h(0) = 0. (2.50)

If we regard f as a known function, then we have

h(x2) = −σeE0e
−

a
ηe

∫ x2
0

f(t)dt

∫ x2

0

e
a
ηe

∫ s

0
f(t)dtds, x2 ∈ R

+. (2.51)

As is easy to verify, the induced magnetic fields given by (2.51) and (2.10) have the

same asymptotic behaviour at infinity

(

∼ − ηeE0σe
a(x2 − A)

)

.

To determine p, f, F we substitute (2.51) into (2.44)1,3. After some calculations,
we arrive at

p = p(x1, x2),

ax1

[

(ν + νr)f
′′′ + aff ′′ − af ′

2
+
2νr
a
F ′

]

= −1
ρ

∂p

∂x1

(ν + νr)af
′′ + a2f ′f + 2νrF +

µe

ρ
h′h = −1

ρ

∂p

∂x2
,

x1[αF
′′ + Ia(F ′f − Ff ′)− 2νr(2F + af ′′)] = 0. (2.52)
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Then, by integrating (2.52)3, we find

p(x1, x2) =−
1

2
ρa2f 2(x2)− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− µe

2
h2(x2) + P (x1),

where the function P (x1) is determined supposing that, far from the wall, the pres-
sure p has the same behaviour as for an inviscid electroconducting fluid, whose
velocity is given by (2.21).
Therefore, under the assumption F ∈ L1([0,+∞)), by virtue of (2.48), (2.49), (2.51)
and (2.10), we get

P (x1) = −ρ
a2

2
x21 + p∗0 + ρa(ν + νr).

After all, the pressure field is

p(x1, x2) =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− µe

2
h2(x2) + p0, (2.53)

with p0 = p∗0 + ρa(ν + νr)− ρ
b2

2
(B − A)2.

In consideration of (2.52)2,4 and (2.53), we obtain the ordinary differential equa-
tions

ν + νr
a

f ′′′ + ff ′′ − f ′
2
+ 1 +

2νr
a2
F ′ = 0,

λF ′′ + aI(fF ′ − f ′F )− 2νr(2F + af ′′) = 0, (2.54)

subject to the boundary conditions (2.47), (2.48).

We stress that the system (2.54) governs the orthogonal stagnation-point flow
of an inert electromagnetic micropolar fluid (see Chapter 1.1.3). In the literature,
such a flow has been studied in [27].

Theorem 2.3.1. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the region S . The steady MHD orthogonal plane stagnation-point
flow of such a fluid has the following form when an external uniform electric field
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E0 = E0e3 is impressed:

v =ax1f
′(x2)e1 − af(x2)e2, w = x1F (x2)e3,

H =h(x2)e1, E = E0e3,

p =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds− µe

2
h2(x2) + p0,

x1 ∈ R, x2 ∈ R
+,

where (f, F ) satisfies the problem (2.54), (2.47), and (2.48), provided
F ∈ L1([0,+∞)), and h(x2) is given by (2.51).

We now write (2.54) and (2.50), together with the boundary conditions (2.47),
(2.48), in dimensionless form. To this end we use the dimensionless variables (1.23)
and we put

Ψ(η) =
1

σeE0

√

a

ν + νr
h

(

√

ν + νr
a

η

)

.

System (2.54) and equation (2.50) can be written as

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 + Φ′ = 0,

Φ′′ + c3(ϕΦ
′ − ϕ′Φ)− c2Φ− c1ϕ

′′ = 0,

Ψ′ +RmϕΨ = −1, (2.55)

where c1, c2, c3 are given by (1.25) and

α =

√

a

ν + νr
A, Rm =

ν + νr
ηe

= magnetic Reynolds number.

The boundary conditions in dimensionless form become:

ϕ(0) = 0, ϕ′(0) = 0, Φ(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0. (2.56)

The last equation in (2.55), if we regard ϕ as a known function, can be formally
integrated to give

Ψ(η) = −e−Rm

∫ η

0
ϕ(s)ds

∫ η

0

eRm

∫ t

0
ϕ(s)dsdt, η ∈ R

+.
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Figure 2.11: CASE I-M: plots showing Ψ with Rm = 1, 10−6.

The remaining equations have to be integrated numerically. More precisely, we
have already determined and plotted ϕ, ϕ′, ϕ′′, Φ, Φ′ in Chapter 1.1.3.

Figure 2.111 provides the behaviour of the induced magnetic field Ψ with Rm = 1.
It is similar to the behaviour of Ψ in CASE I (inviscid fluid) and in CASE I-N
(Newtonian fluid). The graph displayed in Figure 2.112 shows that when Rm = 10−6

the trend of Ψ is approximately linear. This happens because in η ∈ [0, 5], for very
small values of Rm, equation (2.55)3 reduces to Ψ

′ ∼= −1 (as in CASE I-N).

2.3.2 CASE II-M: H0 = H0e1.

By proceeding as one would with an inviscid or a Newtonian fluid, we get

h′ +
a

ηe
fh = − a

ηe
fH0, x2 > 0, h(0) = 0. (2.57)

We can formally integrate (2.57) to find

h(x2) = H0

[

e−
a
ηe

∫ x2
0

f(t)dt − 1
]

, x2 ∈ R
+, (2.58)

which implies

H = H0e
−

a
ηe

∫ x2
0

f(s)ds
e1.

Under the previous assumptions, it is easy to compute the pressure field and get

p(x1, x2) =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− µe

2
[h(x2) +H0]

2 + p∗0, (2.59)
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where (f, F ) satisfies system (2.54), together with boundary conditions (2.47) and
(2.48).

In this case as well, the uniform external electromagnetic field only influences
the pressure.

Thus, we obtain the following:

Theorem 2.3.2. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the region S . The steady MHD orthogonal plane stagnation-point
flow of such a fluid has the following form when a uniform external magnetic field
H0 = H0e1 is impressed:

v =ax1f
′(x2)e1 − af(x2)e2, w = x1F (x2)e3,

H =[h(x2) +H0]e1, E = E0e3,

p =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− µe

2
[h(x2) +H0]

2 + p∗0, x1 ∈ R, x2 ∈ R
+,

where (f, F ) satisfies the problem (2.54), (2.47), and (2.48), provided
F ∈ L1([0,+∞)), and h(x2) is given by (2.58).

The function h(x2) can be written in dimensionless form as

Ψ(η) = e−Rm

∫ η

0
ϕ(t)dt − 1, η ∈ R

+, (2.60)

where

Ψ(η) =
1

H0

h

(

√

ν + νr
a

η

)

.

In this case the ordinary differential problem governing ϕ, Φ is the same as in (1.24),
so that the behaviour of the flow is displayed in Figure 1.5.

Figure 2.12 shows that Ψ has a similar behaviour to Ψ in CASE II and CASE
II-N, as we can see.

2.3.3 CASE III-M: H0 = H0e2.

In this case, we impress
H0 = H0e2, E0 = 0.

Similar to CASEs III and III-N, we deduce

E = 0⇒ ∇×H = σeµe(v ×H)
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Figure 2.12: CASE II-M: plot showing Ψ for Rm = 1

and we neglect the induced magnetic field, replacing (2.44)1 with

v · ∇v = −1
ρ
∇p+ (ν + νr)△v + 2νr(∇×w) +

µe

ρ
(v ×H0)×H0. (2.61)

This approximation is motivated by physical arguments for MHD flow at small
magnetic Reynolds numbers.

We substitute (2.46) into (2.61) to determine p, f, F . This yields

p = p(x1, x2),

ax1

[

(ν + νr)f
′′′ + aff ′′ − af ′

2
+
2νr
a
F ′ − σeB

2
0

ρ
f ′
]

=
1

ρ

∂p

∂x1
,

(ν + νr)af
′′ + a2f ′f + 2νrF = −1

ρ

∂p

∂x2
. (2.62)

The integration of (2.62)3 gives

p(x1, x2) =−
1

2
ρa2f 2(x2)− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds+ P (x1),

where P (x1) has to be found as in CASEs I-M, II-M.

After some calculations, we find

P (x1) = −ρ
a2

2

(

1 +
σeB

2
0

ρa

)

x21 + p∗0,
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so that the pressure field is:

p(x1, x2) =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− σeB
2
0

2
ax21 + p0, x1 ∈ R, x2 ∈ R

+. (2.63)

Then, (2.62)2 supplies

ν + νr
a

f ′′′ + ff ′′ − f ′
2
+ 1 +

2νr
a2
F ′ +M2(1− f ′) = 0, (2.64)

where M2 =
σeB

2
0

ρa
is the Hartmann number.

Of course (f, F ) also satisfies equation (2.54)2. We append boundary conditions
(2.47) and (2.48) to the system in (2.64) and (2.54)2.
Unlike the previous cases, the external electromagnetic field modifies the flow. If
M2 = 0, then the system (2.64), (2.54)2 reduces to the system (2.54).

Remark 2.3.3. If νr = 0, then (2.64) reduces to the equation governing the MHD
orthogonal stagnation-point flow of a Newtonian fluid (CASE III-N (2.42)).

We can now state:

Theorem 2.3.4. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the region S . If we impress the external magnetic field H0 = H0e2
and if we neglect the induced magnetic field, then the steady MHD orthogonal plane
stagnation-point flow of such a fluid has the form

v =ax1f
′(x2)e1 − af(x2)e2, w = x1F (x2)e3, E = 0,

p =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− σeB
2
0

2
ax21 + p0, x1 ∈ R, x2 ∈ R

+,

where (f, F ) satisfies problem (2.64), (2.54)2, (2.47), and (2.48), provided F ∈
L1([0,+∞)).

In dimensionless form, we arrive at the following ordinary differential boundary
value problem:

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 + Φ′ +M2(1− ϕ′) = 0,

Φ′′ + c3(ϕΦ
′ − ϕ′Φ)− c2Φ− c1ϕ

′′ = 0,

ϕ(0) = 0, ϕ′(0) = 0, Φ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0. (2.65)
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Figure 2.13: CASE III-M: ϕ′,Φ profiles for M2 = 1, c2 = 3, c3 = 0.5 when c1 = 0.1
and c1 = 0.5.

Remark 2.3.5. In the sequel, we will see that the solution (ϕ,Φ) of problem (2.65)
satisfies the conditions (2.65)6,7. For this reason, as in Remark 1.1.9, we denote by:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99;

• ηΦ the value of η such that Φ(ηΦ) = −0.01;

so that if η > ηϕ then ϕ ∼= η − α, and if η > ηΦ, then Φ ∼= 0.
From the numerical integration we will find that the influence of the viscosity on

the velocity and on the microrotation only appears in a layer lining the boundary
whose thickness is ηϕ for the velocity and ηΦ for the microrotation. The thickness δ
of the boundary layer for the flow is defined as

δ = max(ηϕ, ηΦ).

We now show the numerical solution of problem (2.65).
In Tables 2.2 and 2.3 we list the numerical results of the descriptive quantities of
the motion for the same values of c1, c2, c3 of the case of an inert micropolar fluid,
choosing M2 = 1, 2, 4, 5, 10, as for the Newtonian case.

If we fix M2, then the considerations of the case in the absence of the external
magnetic field (Chapter 1.1.3) continue to hold (as easily seen in Figures from 2.13
to 2.15).

As far as the dependence on M2 is concerned, we can see that α and Φ′(0) de-
crease and ϕ′′(0) increases as M2 is increased from 0, as we would expect physically.

In Figure 2.161, we have plotted the profiles ϕ, ϕ′, ϕ′′ for M2 = 1 and c1 =
0.5, c2 = 3.0, c3 = 0.5, while Figure 2.171 shows the behaviour of ϕ

′ for different
M2 and the same values of c1, c2, c3.
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Figure 2.14: CASE III-M: ϕ′,Φ profiles forM2 = 1, c1 = 0.5, c3 = 0.5 when c2 = 1.5
and c2 = 3.
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Figure 2.15: CASE III-M: ϕ′,Φ profiles for M2 = 1, c1 = 0.5, c2 = 3 when c3 = 0.1
and c3 = 0.5.
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Table 2.2: CASE III-M: descriptive quantities of the motion for several values of
M2.

M2 c1 c2 c3 α ϕ′′(0) Φ′(0) ηϕ ηΦ δ

1 0.1 1.5 0.1 1.5751 -0.0583 0.5386 2.0626 1.4064 2.0626
0.5 1.5762 -0.0560 0.5388 2.0699 1.1642 2.0699

3.0 0.1 1.5778 -0.0497 0.5392 2.0779 0.8690 2.0779
0.5 1.5783 -0.0487 0.5392 2.0817 0.7245 2.0817

0.5 1.5 0.1 1.5335 -0.2913 0.5290 1.9039 2.7106 2.7106
0.5 1.5392 -0.2802 0.5298 1.9301 2.2492 2.2492

3.0 0.1 1.5475 -0.2487 0.5317 1.9677 2.1526 2.1526
0.5 1.5501 -0.2434 0.5321 1.9846 1.9384 1.9846

2 0.1 1.5 0.1 1.8637 -0.0617 0.4730 1.8771 1.2744 1.8771
0.5 1.8647 -0.0594 0.4731 1.8821 1.0505 1.8821

3.0 0.1 1.8661 -0.0534 0.4734 1.8886 0.7769 1.8886
0.5 1.8666 -0.0523 0.4735 1.8916 0.6340 1.8916

0.5 1.5 0.1 1.8239 -0.3085 0.4656 1.7464 2.5743 2.5743
0.5 1.8290 -0.2971 0.4663 1.7639 2.1257 2.1257

3.0 0.1 1.8363 -0.2670 0.4676 1.7942 2.0249 2.0249
0.5 1.8387 -0.2614 0.4679 1.8066 1.8192 1.8192

4 0.1 1.5 0.1 2.3375 -0.0663 0.3924 1.6226 1.0935 1.6226
0.5 2.3383 -0.0640 0.3924 1.6249 0.8950 1.6249

3.0 0.1 2.3395 -0.0584 0.3926 1.6296 0.6417 1.6296
0.5 2.3400 -0.0572 0.3927 1.6312 0.4573 1.6312

0.5 1.5 0.1 2.3005 -0.3315 0.3874 1.5286 2.3876 2.3876
0.5 2.3048 -0.3199 0.3878 1.5367 1.9599 1.9599

3.0 0.1 2.3108 -0.2922 0.3886 1.5574 1.8549 1.8549
0.5 2.3129 -0.2862 0.3889 1.5644 1.6617 1.6617
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Table 2.3: CASE III-M: continuum of Table 2.2.

M2 c1 c2 c3 α ϕ′′(0) Φ′(0) ηϕ ηΦ δ

5 0.1 1.5 0.1 2.5418 -0.0680 0.3650 1.5294 1.0259 1.5294
0.5 2.5426 -0.0656 0.3651 1.5311 0.8364 1.5311

3.0 0.1 2.5437 -0.0603 0.3652 1.5351 0.5849 1.5351
0.5 2.5441 -0.0591 0.3653 1.5364 0.4383 1.5364

0.5 1.5 0.1 2.5059 -0.3398 0.3608 1.4479 2.3184 2.3184
0.5 2.5099 -0.3283 0.3612 1.4534 1.8992 1.8992

3.0 0.1 2.5155 -0.3014 0.3618 1.4709 1.7934 1.7934
0.5 2.5175 -0.2954 0.3620 1.4764 1.6051 1.6051

10 0.1 1.5 0.1 3.3838 -0.0734 0.2825 1.2269 0.7892 1.2269
0.5 3.3844 -0.0712 0.2826 1.2270 0.6262 1.2270

3.0 0.1 3.3852 -0.0665 0.2826 1.2289 0.3948 1.2289
0.5 3.3855 -0.0652 0.2826 1.2294 0.3775 1.2294

0.5 1.5 0.1 3.3522 -0.3671 0.2802 1.1807 2.0837 2.0837
0.5 3.3552 -0.3559 0.2804 1.1809 1.6979 1.6979

3.0 0.1 3.3593 -0.3324 0.2807 1.1894 1.5897 1.5897
0.5 3.3609 -0.3262 0.2808 1.1910 1.4189 1.4189

In Figure 2.162, we can see the profiles Φ,Φ′ for M2 = 1 and c1 = 0.5, c2 =
3.0, c3 = 0.5, while Figure 2.172 shows the behaviour of Φ for different M2 and the
same values of c1, c2, c3.

We have only plotted the profiles of ϕ, ϕ′, ϕ′′, Φ, Φ′ for M2 = 1 and c1 =
0.5, c2 = 3.0, c3 = 0.5, because they have an analogous behaviour for M2 6= 1 and
differents c1, c2, c3.

From Tables 2.2-2.3, it appears also that the thickness of the boundary layer
depends on M2 and it decreases as M2 increases (as easily seen in Figures 2.17).
This effect is standard in magnetohydrodynamics. Moreover, the thickness of the
boundary layer of the velocity is smaller than that of the corresponding case of the
Newtonian fluid (CASE III-N).

Finally, we display the streamlines for c1 = 0.5, c2 = 3.0, c3 = 0.5 andM2 = 1, 5
in Figure 2.18.
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Figure 2.16: CASE III-M: plots showing ϕ, ϕ′, ϕ′′ and Φ,Φ′ (respectively) for c1 =
0.5, c2 = 3.0, c3 = 0.5 and M2 = 1.
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Chapter 3

MHD oblique stagnation-point

flow

This chapter is devoted to understand how the steady oblique stagnation-point flow
of a Newtonian or a micropolar fluid is influenced by an external uniform electro-
magnetic field (E0,H0).

To this end we will recall the definition of oblique stagnation-point flow given in
Chapter 1.2 and we will consider three situations which are relevant from a physical
point of view.

The results obtained have been published in [5] and [6].

3.1 Inviscid fluids

We shall first consider the steady plane MHD flow of a homogeneous, incompressible,
electrically conducting inviscid fluid near a stagnation point occupying the region S
given by (2.1).

The boundary of S having the equation x2 = 0 is a rigid fixed non-electrically
conducting wall and we assume that the region S− given by (2.3) is vacuum. We
take µe equal to the magnetic permeability of free space.

The MHD equations governing such a flow in the absence of external mechanical
body forces and free electric charges are (2.2).
We require the no-penetration condition (2.4) and the transmission relations (2.6),
(2.5) to the velocity and to the electromagnetic field, respectively.

The oblique flow in the immediate neighbourhood of the stagnation point (0, 0)
is characterized by a velocity field of the form

v1 = ax1 + bx2, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (3.1)

93
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Figure 3.1: Description flow in CASE I.

with a, b constants (a > 0), see Chapter 1.2.1.
As underlined in Chapter 1, the streamlines of such a flow are hyperbolas whose

asymptotes are degenerate streamlines of equations:

x2 = 0 and x2 = −
2a

b
x1. (3.2)

We are interested in finding the behaviour of such a flow when an external
uniform electromagnetic field (E0,H0) is applied. We now analyze three physically
relevant cases to achieve our purpose.

3.1.1 CASE I

First of all, we impress

E0 = E0e3, H0 = 0, E0 = constant.

Remark 3.1.1. The solution of the problem relative to the electromagnetic field in
S− is E = E0 = 0 and H = H0 = H0e1.

We take the induced electromagnetic field (Ei,Hi ≡ H) as follows

Ei = Ei
1e1 + Ei

2e2 + Ei
3e3,

H = h(x2)e1,

where h ∈ C1(R+), Ei
j ∈ C2(R3) for j = 1, 2, 3 unknown functions.

From the boundary conditions (2.5) and the Remark (3.1.1) we get

Ei
1 = 0, Ei

3 = 0 at x2 = 0,

h(0) = 0. (3.3)
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Equation (2.2)4 implies

E ≡ Ei + E0 = −∇ψ.
Thanks to (2.2)3 we find that the electrostatic scalar potential ψ depends only

on x3 and satisfies

dψ

dx3
(x3) = aµeh(x2)x2 +

h′(x2)

σe
.

The previous equation is possible if both its members are equal to the same
constant.
This constant is determined by the boundary condition (3.3)2:

h′ + aσeµehx2 = −σeE0, x2 > 0,

ψ = −E0x3 + ψ0, x3 ∈ R. (3.4)

The differential problem (3.4)1, (3.3)3 can be integrated to get

h(x2) = −σeE0e
−

ax2
2

2ηe

∫ x2

0

e
at2

2ηe dt, x2 ∈ R
+, (3.5)

with ηe =
1

σeµe
= electrical resistivity.

From (2.2)1 we get the form of the pressure field:

p = −1
2
ρa2(x21 + x22)−

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where h is given by (3.5).
The presence of E0 modifies the pressure field, which is smaller than the pressure

in Theorem 1.2.1, but it doesn’t influence the velocity.

We are now able to formulate:

Theorem 3.1.2. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the region S . The steady plane MHD oblique stagnation-point flow of
such a fluid has the following form when an external uniform electric field E0 = E0e3
is impressed:

v = (ax1 + bx2)e1 − ax2e2, H = h(x2)e1, E = E0e3,

p = −1
2
ρa2(x21 + x22)−

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where

h(x2) = −σeE0e
−

ax2
2

2ηe

∫ x2

0

e
at2

2ηe dt.
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Figure 3.2: Description flow in CASE II.

We underline that h is the same as in the MHD orthogonal stagnation-point flow
CASE I, so its behaviour is shown in Figures 2.2 in dimensionless form. Evidently,
Remark 2.1.3 holds.

3.1.2 CASE II

Let the external uniform magnetic field be

E0 = 0, H0 = H0e1, H0 = constant.

Remark 3.1.3. (E,H) = (0, H0e1) is the solution of the problem in S−.

The induced electromagnetic field (Ei ≡ E,Hi) can be searched in the following
form

E = E1e1 + E2e2 + E3e3,

H = [h(x2) +H0]e1,

where h ∈ C1(R+) and E1, E2, E3 ∈ C2(R3) unknown functions.
Repeating the arguments of CASE I, we have ψ = ψ(x3) and

dψ

dx3
(x3) = aµe[h(x2) +H0]x2 +

h′(x2)

σe
.

The previous equality and the boundary conditions furnish

h′ +
a

ηe
hx2 = −

a

ηe
x2H0, x2 > 0,

h(0) = 0, (3.6)
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and ψ = ψ0, from which

E = 0.

The solution of problem (3.6) is

h(x2) = H0

(

e−
ax2

2
2ηe − 1

)

, x2 ∈ R
+, (3.7)

which implies

H = H0e
−

ax2
2

2ηe e1.

From (2.2) we can now compute the pressure field

p(x1, x2) = −
1

2
ρa2(x21 + x22)−

µe

2
H2
0e
−

ax2
2

ηe + p∗0, x1 ∈ R, x2 ∈ R
+.

The pressure at the stagnation point is p∗0 − µe
H2
0

2
, so that the presence of

H0 modifies the pressure, which is smaller than the pressure in the purely hydro-
dynamical flow.

Theorem 3.1.4 summarizes our results.

Theorem 3.1.4. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the region S . The steady plane MHD oblique stagnation-point flow
of such a fluid has the following form when an external uniform magnetic field
H0 = H0e1 is impressed:

v = (ax1 + bx2)e1 − ax2e2, H = H0e
−

ax2
2

2ηe e1, E = 0,

p = −1
2
ρa2(x21 + x22)−

µe

2
H2
0e
−

ax2
2

ηe + p∗0, x1 ∈ R, x2 ∈ R
+.

We have that h depends only on f and so it is the same as in CASE II of the
MHD orthogonal stagnation-point flow (Chapter 2.1.2). Its trend in dimensionless
form is shown in Figure 2.4.

3.1.3 CASE III

E0 = 0, H0 = H0(cosϑe1 + sin ϑe2),

where ϑ is fixed in (0, π) and H0 is constant. We want to understand which orienta-
tion of the external electromagnetic field allows the oblique plane stagnation-point
flow.
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Figure 3.3: Description flow in CASE III.

Let the induced electromagnetic field (Ei ≡ E,Hi) to be in the form

E = E1e1 + E2e2 + E3e3,

Hi = h1(x1, x2)e1 + h2(x1, x2)e2,

where h1, h2, E1, E2, E3 are sufficiently regular unknown functions (h1, h2 ∈
C1(R× R

+), E1, E2, E3 ∈ C2(R3)).

Combining (2.2)3, (3.1) we have

σeE =

[

∂h2
∂x1

− ∂h1
∂x2

− σeµe(v1h2 − v2h1 +H0v1 sin ϑ−H0v2 cosϑ)

]

e3, (3.8)

from which follows ψ = ψ(x3) and we conclude that E = 0, as we have in CASE II.

Therefore from (2.2)3 we find

∂h2
∂x1

(x1, x2)−
∂h1
∂x2

(x1, x2) =

σeµe[(ax1 + bx2)(h2(x1, x2) +H0 sin ϑ) + ax2(h1(x1, x2) +H0 cosϑ)]. (3.9)

The functions h1 and h2 have also to satisfy (2.2)6:

∂h1
∂x1

+
∂h2
∂x2

= 0. (3.10)

Without loss of generality, we now assume that the magnetic Reynolds number is
small (e.g. in the flow of liquid metals) so that we can neglect the induced magnetic
field (h1, h2).

Hence

(∇×H)×H ≃σeµe(v ×H0)×H0 =

σeµeH
2
0 [a sinϑx1 + (b sinϑ+ a cosϑ)x2](− sin ϑe1 + cosϑe2).
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If we substitute this approximation into (2.2)1, then we find that the pressure
field satisfies

∂p

∂x1
= −ρa2x1 −B2

0σe sinϑ[a sin ϑx1 + (b sinϑ+ a cosϑ)x2],

∂p

∂x2
= −ρa2x2 +B2

0σe cos ϑ[a sinϑx1 + (b sinϑ+ a cosϑ)x2],

∂p

∂x3
= 0⇒ p = p(x1, x2), (3.11)

with B0 = µeH0.
Equations (3.11) are compatible if, and only if,

∂2p

∂x1∂x2
=

∂2p

∂x2∂x1
.

The previous condition and (3.11) give

sinϑ(2a cosϑ+ b sinϑ) = 0, (3.12)

from which we get

tanϑ = −2a
b
. (3.13)

Hence the MHD oblique stagnation-point flow is possible if, and only if, H0 is

parallel to the dividing streamline x2 = −
2a

b
x1.

In particular, we note that if H0 is normal to the plane x2 = 0 (i.e. ϑ = π/2),
then there is no pressure that satisfies equations (3.11) and therefore the oblique
stagnation-point flow given by (3.1) does not exist.

When (3.13) holds, the pressure field is

p = −1
2
ρa2(x21 + x22)−

σeB
2
0

4a2 + b2
a

2
(2ax1 + bx2)

2 + p0, x1 ∈ R, x2 ∈ R
+. (3.14)

Our results can be summarized in the following:

Theorem 3.1.5. Let a homogeneous, incompressible, electrically conducting in-
viscid fluid occupy the region S . If we impress an external magnetic field H0 =
H0(cosϑe1 + sinϑe2), 0 < ϑ < π, and we neglect the induced magnetic field, then
the steady MHD oblique plane stagnation-point flow of such a fluid is possible if, and
only if,

ϑ = arctan

(

−2a
b

)

, i.e. H0 =
H0√

4a2 + b2
(−be1 + 2ae2).
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Moreover,

v = (ax1 + bx2)e1 − ax2e2, E = 0,

p = −1
2
ρa2(x21 + x22)−

σeB
2
0

4a2 + b2
a

2
(2ax1 + bx2)

2 + p0, x1 ∈ R, x2 ∈ R
+.

Remark 3.1.6. To take into account the motion of a Newtonian or a micropolar
fluid, it is convenient to suppose that the inviscid fluid obliquely impinges on the flat
plane x2 = A and

v1 = ax1 + b(x2 − B), v2 = −a(x2 −A), v3 = 0, x1 ∈ R, x2 ≥ A, (3.15)

with A,B = constants.
In this situation, the stagnation point is not (0, 0) but the point

(

b

a
(B −A), A

)

,

while the streamlines are hyperbolas whose asymptotes are

x2 = −
2a

b
x1 + 2B −A and x2 = A.

The results contained in Theorems 3.1.2, 3.1.4, 3.1.5 can be easily extended by

replace x1, x2 with x1 −
b

a
(B −A), x2 −A, respectively.

3.2 Newtonian fluids

We now consider the steady oblique plane MHD flow of a homogeneous, incompres-
sible, electrically conducting Newtonian fluid near a stagnation point occupying the
region S given by (2.1).

The MHD equations governing such a flow in the absence of external mechanical
body forces and free electric charges are the equations (2.22) and the usual boundary
conditions are (2.23), (2.5), (2.6).

The velocity in the oblique plane stagnation-point flow depends on the similarity
transformation (f, g) as follows

v1 = ax1f
′(x2) + bg(x2), v2 = −af(x2), v3 = 0, x1 ∈ R, x2 ∈ R

+. (3.16)

As we sad in Chapter 1.2.3, f, g are sufficiently regular unknown functions (f ∈
C3(R+), g ∈ C2(R+)).
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The condition (2.23) supplies

f(0) = 0, f ′(0) = 0, g(0) = 0. (3.17)

At infinity we require that the flow approaches the flow of an inviscid fluid given
by (3.15), so that

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1. (3.18)

In the sequel, when we will refer to an inviscid fluid, all results obtained in Chapter

3.1 have to be modified replacing x1, x2 with x1 −
b

a
(B −A), x2 −A, respectively.

It is worth recalling that the asymptotic behaviour of f , g at infinity is related
to A,B:

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B. (3.19)

As we have in Chapter 1, A is determined as part of the solution of the orthogonal
flow, while B is a free parameter.

After these preliminaries, we can now analyze the three physical situations stud-
ied in the previous section.

3.2.1 CASE I-N: E0 = E0e3.

Similarly to CASE I, from (2.22)3, (2.22)4 and boundary conditions for the electro-
magnetic field, we get

h′ +
a

ηe
fh = −ηeE0, x2 > 0, h(0) = 0, (3.20)

ψ(x3) = −E0x3 + ψ0, x3 ∈ R.

The solution of the previous differential problem can be formally espressed by

h(x2) = −σeE0e
−

a
ηe

∫ x2
0

f(t)dt

∫ x2

0

e
a
ηe

∫ s

0
f(t)dtds, x2 ∈ R

+, (3.21)

if we regard f as a known function.

We note that the induced magnetic fields given by (3.21) and (3.5) have the same

asymptotic behaviour at infinity

(

∼ − ηeE0σe
a(x2 − A)

)

.
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In order to determine p, f, g, we substitute (3.16) into (2.22)1 so that

p = p(x1, x2),

ax1(νf
′′′ + aff ′′ − af ′

2
) + b[νg′′ + a(fg′ − f ′g)] =

1

ρ

∂p

∂x1
,

νaf ′′ + a2f ′f +
µe

ρ
h′h = −1

ρ

∂p

∂x2
. (3.22)

Then, by integrating (3.22)3, we find

p(x1, x2) = −
1

2
ρa2f 2(x2)− ρaνf ′(x2)−

µe

2
h2(x2) + P (x1),

where P (x1) is determined supposing that, far from the wall, the flow approaches
the flow of an inviscid electroconducting fluid, whose velocity is given by (3.15).

By virtue of (3.18), (3.19), (3.21), (3.5), we obtain

P (x1) = −ρ
a2

2
[x1 −

b

a
(B − A)]2 + ρaν + p∗0,

from which we find

p(x1, x2) =− ρ
a2

2
[x21 − 2

b

a
(B −A)x1 + f 2(x2)]− ρaνf ′(x2)

− µe

2
h2(x2) + p0, (3.23)

where p0 = p∗0 + ρaν − ρ
b2

2
(B −A)2.

On substituting the pressure given by (3.23) into (3.22)2, we find that (f, g)
satisfies the same differential problem which governs the oblique stagnation-point
flow in the absence of an electromagnetic field (see Chapter 1.2.2):

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1 = 0,

ν

a
g′′ + fg′ − f ′g = B − A, (3.24)

with

f(0) = 0, f ′(0) = 0, g(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1. (3.25)

It is clear, therefore, that the external uniform electromagnetic field influences
the flow only through the pressure.
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We recall that, as we can see from (3.23), ∇p has a constant component in
the x1 direction proportional to B − A, which does not appear in the orthogonal
stagnation-point flow. This component determines the displacement of the uniform
shear flow parallel to the wall x2 = 0, as it happened in the absence of the external
magnetic field.

We have thus proved:

Theorem 3.2.1. Let a homogeneous, incompressible, electrically conducting New-
tonian fluid occupy the region S . The steady MHD oblique plane stagnation-point
flow of such a fluid has the following form when an external uniform electric field
E0 = E0e3 is impressed:

v = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = h(x2)e1, E = E0e3,

p = −ρa
2

2
[x21 − 2

b

a
(B − A)x1 + f 2(x2)]− ρaνf ′(x2)−

µe

2
h2(x2) + p0,

x1 ∈ R, x2 ∈ R
+,

where (f, g) satisfies the problem (3.24), (3.25) and h(x2) is given by (3.21).

Since the presence of the external electric field doesn’t influence f and g, (3.24)-
(3.25) is system (1.36), which governs the oblique stagnation-point flow of a ho-
mogeneous, incompressible, inert Newtonian fluid. Its solution has already been
computed numerically in Chapter 1.2.2. Of course Remark 1.2.4 still holds.

As far as the induced magnetic field is concerned, we note that h depends only
on the function f and this function verifies equation (3.24)1, which governs the
orthogonal stagnation-point flow of a homogeneous, incompressible, inert Newtonian
fluid. So the behaviour of h in dimensionless form is shown in Figure 2.6.

3.2.2 CASE II-N: H0 = H0e1.

The same arguments of CASE II, equations (2.22)3 and (2.22)4, relations (2.5) allow
us to conclude

h′ +
a

ηe
fh = − a

ηe
fH0, x2 > 0, h(0) = 0, (3.26)

ψ(x3) = ψ0 ⇒ E = 0.

If we regard f as a known function, then from (3.26) we can formally compute

h(x2) = H0

[

e−
a
ηe

∫ x2
0

f(t)dt − 1
]

, x2 ∈ R
+, (3.27)
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so that
H = H0e

−
a
ηe

∫ x2
0

f(s)ds
e1.

In this case, the pressure field becomes

p(x1, x2) = −ρ
a2

2
[x21 − 2

b

a
(B −A)x1 + f 2(x2)]− ρaνf ′(x2)−

µe

2
[h(x2) +H0]

2 + p∗0,

(3.28)

p∗0 = p0 + ρaν − ρ
b2

2
(B − A)2,

and (f, g) satisfies problem (3.24), (3.25).
Therefore, in this case also, the external uniform electromagnetic field modifies

only the pressure.

Theorem 3.2.2. Let a homogeneous, incompressible, electrically conducting New-
tonian fluid occupy the region S . The steady MHD oblique plane stagnation-point
flow of such a fluid has the following form when an external uniform magnetic field
H0 = H0e1 is impressed:

v1 = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = [h(x2) +H0]e1, E = 0,

p = −ρa
2

2
[x21 − 2

b

a
(B −A)x1 + f 2(x2)]− ρaνf ′(x2)−

µe

2
[h(x2) +H0]

2 + p∗0,

x1 ∈ R, x2 ∈ R
+,

where h(x2) is given by (3.27) and (f, g) satisfies problem (3.24), (3.25).

As in the previous case, the ordinary differential problem governing f, g is the
same as in Chapter 1.2.2 and h is the same as in Chapter 3.2.2. In Figure 2.7 we
can see the profile of h in dimensionless form.

3.2.3 CASE III-N: H0 =
H0√

4a2 + b2
(−be1 + 2ae2).

As a result of Theorem 3.1.5, we impress

H0 =
H0√

4a2 + b2
(−be1 + 2ae2), E0 = 0,

and we neglect the induced magnetic field, replacing (1.16) with

v · ∇v = −1
ρ
∇p+ ν△v +

µe

ρ
(v×H0)×H0. (3.29)



3.2 Newtonian fluids 105

By proceeding as in CASE III, we deduce

E = 0.

We now substitute (3.16) into (3.29), so that we get p = p(x1, x2) and

ax1

(

νf ′′′ + aff ′′ − af ′
2 − 4a2

σe
ρ

B2
0

4a2 + b2
f ′
)

+b
[

νg′′ + a(fg′ − f ′g)− 2a2
σe
ρ

B2
0

4a2 + b2
(2g − f)

]

=
1

ρ

∂p

∂x1
,

νaf ′′ + a2f ′f +
σe
ρ

B2
0

4a2 + b2
[2a2bx1f

′ + ab2(2g − f)] = −1
ρ

∂p

∂x2
. (3.30)

From equation (3.30)3, we find

p(x1, x2) =−
1

2
ρa2f 2(x2)− ρaνf ′(x2)

− σe
B2
0

4a2 + b2

[

2a2bx1f(x2) + ab2
∫ x2

0

(2g(s)− f(s))ds
]

+ P (x1),

where P (x1) has to be found as in CASE I-N, II-N.
After some calculations, we get

P (x1) = −ρ
a2

2

(

1 +
4a

ρ

σeB
2
0

4a2 + b2

)[

x1 −
b

a
(B − A)

]2

+ p∗0.

Hence the pressure field is:

p(x1, x2) =− ρ
a2

2
[x21 − 2

b

a
(B −A)x1 + f 2(x2)]− ρaνf ′(x2)

− σeB
2
0

4a2 + b2

[

2a2bx1f(x2) + ab2
∫ x2

0

(2g(s)− f(s))ds

− 2a3
(2b

a
(B − A)x1 − x21

)]

+ p0, x1 ∈ R, x2 ∈ R
+, (3.31)

which together with (3.30)2 supplies

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1 +M2(1− f ′) = 0,

ν

a
g′′ + fg′ − gf ′ +M2(f − g) = (1 +M2)(B −A), (3.32)
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where

M2 = 4a
σeB

2
0

ρ(4a2 + b2)
= Hartmann number.

We append boundary conditions (3.18), (3.19) to the system (3.32).

Unlike the previous cases, the external electromagnetic field now modifies both
the velocity and the pressure. Nevertheless, if M2 = 0, then the system (3.32)
reduces to the system (3.24).

Summarizing, we have:

Theorem 3.2.3. Let a homogeneous, incompressible, electrically conducting Newto-
nian fluid occupy the region S . If we impress an external magnetic field

H0 =
H0√

4a2 + b2
(−be1 + 2ae2)

and if we neglect the induced magnetic field, then the steady MHD oblique plane
stagnation-point flow of such a fluid has the form

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, E = 0,

p =− ρ
a2

2
[x21 − 2

b

a
(B − A)x1 + f 2(x2)]− ρaνf ′(x2)

− σeB
2
0

4a2 + b2

[

2a2bx1f(x2) + ab2
∫ x2

0

(2g(s)− f(s))ds

− 2a3
(2b

a
(B −A)x1 − x21

)]

+ p0, x1 ∈ R, x2 ∈ R
+,

where (f, g) satisfies problem (3.32), (3.18), (3.19).

In dimensionless form system (3.32), (3.18), (3.19) can be written as

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 +M2(1− ϕ′) = 0,

γ′′ + ϕγ′ − ϕ′γ +M2(ϕ− γ) = (1 +M2)(β − α),

ϕ(0) = 0, ϕ′(0) = 0, γ(0) = 0,

lim
x2→+∞

ϕ′(x2) = 1, lim
x2→+∞

γ′(x2) = 1, (3.33)

where we recall that

α =

√

a

ν
A, β =

√

a

ν
B.

We see that the function ϕ influences the function γ, but not viceversa.
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Remark 3.2.4. The solution of the differential problem (3.33)1,3,4,6 exists and it is
unique as proved by Hoernel in [34].

As far as γ is concerned, if we regard ϕ as a known function, then it satisfies a
linear second order non-homogeneous differential equation.

After some calculations, we obtain that γ is formally expressed by

γ(η) =(α− β)ϕ′(η) + Cϕ′′(η)Ξ(η)

+M2ϕ′′(η)

[
∫ η

0

Ξ(s)ϕ(s)ϕ′′(s)e
∫ s

0
ϕ(t)dtds− Ξ(η)

∫ η

0

ϕ(s)ϕ′′(s)e
∫ s

0
ϕ(t)dtds

]

,

(3.34)

where C, Ξ(η) are given again by (1.39). We note that if M2 = 0, then (3.34)
reduces to (1.38).

Remark 3.2.5. The points x1 = xp of maximum pressure and x1 = xs of zero
tangential stress on x2 = 0 are formally the same as in the absence of external
electromagnetic field (see (1.41), Chapter 1.2.2, Remark 1.2.4). However, these
points depend on M2.

The slope of the dividing streamline at the wall is now given by:

− 3a[ϕ′′(0)]2

(1 +M2)b[(β − α)ϕ′′(0) + γ′(0)]
. (3.35)

Remark 3.2.6. The numerical integration will reveal that the solution (ϕ, γ) of the
problem here considered satisfies the conditions (3.33)6,7; therefore following Remark
1.2.5 we denote by:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99),

so that if η > ηϕ (η > ηγ), then ϕ
∼= η − α (γ ∼= η − β).

Hence the influence of the viscosity on the velocity appears only in a layer lining
the boundary whose thickness is δ = max(ηϕ, ηγ).

The ordinary differential equations (3.32) subject to the boundary conditions
(3.18) and (3.19) was solved numerically together for different values of M2 and
β − α choosen according to the previous chapters.

The values of α and ϕ′′(0) depend on M2, as we can see from Table 3.1, which
is of course the same of Table 2.1 in Chapter 3.2.3.

More precisely, α decreases and ϕ′′(0) increases as M2 increases.
Table 3.2 shows numerical results of some parameters significant from a physical

point of view for M2 = 1, 2, 4, 5, 10 and β − α = −5− α, −α, 0, α, 5− α.
As far as the dependence of γ′(0) on M2 is concerned, from Table 3.2 we can see

that its value increases when M2 increases if β − α < 0, otherwise it decreases.
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Table 3.1: CASE III-N: dependence of α and ϕ′′(0) on M2.

M2 α ϕ′′(0)

1 0.5410 1.5853
2 0.4748 1.8735
4 0.3936 2.3467
5 0.3661 2.5507
10 0.2831 3.3917

Table 3.2: CASE III-N: descriptive quantities of the motion for some values of M2

and β − α.

M2 β − α β γ′(0) C γ′(0)
ϕ′′(0)

xp

xs

ms

mi
ηϕ ηγ δ

1 -5.5410 -5 9.3506 0.8978 5.8982 0.9394 3.3285 2.1059 2.8353 2.8353
-0.5410 0 1.4240 0.8978 0.8982 0.6023 3.3285 2.1059 0.5912 2.1059

0 0.5410 0.5663 0.8978 0.3572 0 3.3285 2.1059 2.8059 2.8059
0.5410 1.0820 -0.2914 0.8978 -0.1838 2.9437 3.3285 2.1059 2.8741 2.8741
4.4590 5 -6.5027 0.8978 -4.1018 1.0871 3.3285 2.1059 3.1276 3.1276

2 -5.4748 -5 10.8049 1.0261 5.7672 0.9493 3.2045 1.9127 2.6559 2.6559
-0.4748 0 1.4373 1.0261 0.7672 0.6189 3.2045 1.9127 0.5024 1.9127

0 0.4748 0.5477 1.0261 0.2923 0 3.2045 1.9127 2.5331 2.5331
0.4748 0.9497 -0.3419 1.0261 -0.1825 2.6018 3.2045 1.9127 2.6046 2.6046
4.5252 5 -7.9303 1.0261 -4.2328 1.0691 3.2045 1.9127 2.8904 2.8904

4 -5.3936 -5 13.1874 1.2448 5.6196 0.9598 3.1145 1.6482 2.3854 2.3854
-0.3936 0 1.4541 1.2448 0.6196 0.6352 3.1145 1.6482 0.4017 1.6482

0 0.3936 0.5304 1.2448 0.2260 0 3.1145 1.6482 2.1622 2.1622
0.3936 0.7872 -0.3932 1.2448 -0.1675 2.3491 3.1145 1.6482 2.2347 2.2347
4.6064 5 -10.2792 1.2448 -4.3804 1.0516 3.1145 1.6482 2.5561 2.5561

5 -5.3661 -5 14.2129 1.3410 5.5722 0.9630 3.0935 1.5517 2.2801 2.2801
-0.3661 0 1.4596 1.3410 0.5722 0.6398 3.0935 1.5517 0.3697 1.5517

0 0.3661 0.5258 1.3410 0.2061 0 3.0935 1.5517 2.0284 2.0284
0.3661 0.7322 -0.4080 1.3410 -0.1600 2.2886 3.0935 1.5517 2.1001 2.1001
4.6339 5 -11.2938 1.3410 -4.4278 1.0466 3.0935 1.5517 2.4311 2.4311

10 -5.2831 -5 18.4331 1.7452 5.4348 0.9721 3.0486 1.2394 1.9159 1.9159
-0.2831 0 1.4748 1.7452 0.4348 0.6511 3.0486 1.2394 0.2783 1.2394

0 0.2831 0.5146 1.7452 0.1517 0 3.0486 1.2394 1.6024 1.6024
0.2831 0.5662 -0.4457 1.7452 -0.1314 2.1546 3.0486 1.2394 1.6676 1.6676
4.7169 5 -15.4836 1.7452 -4.5652 1.0332 3.0486 1.2394 2.0127 2.0127
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Figure 3.4: CASE III-N: plots showing ϕ, ϕ′, ϕ′′ for M2 = 1.
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Figure 3.5: CASE III-N: plots showing ϕ′ for different M2.



110 3. MHD oblique stagnation-point flow

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12

η

γ

M2 =1.

β − α =-5.541

β − α =-0.541

β − α =0

β − α =0.541

β − α =4.459

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−6

−4

−2

0

2

4

6

8

10

η

γ′

M2 =1.

β − α =-5.541

β − α =-0.541

β − α =0

β − α =0.541

β − α =4.459

Figure 3.6: CASE III-N: plots showing γ, γ′ with M2 = 1 and, from above, β−α =
−5− α,−α, 0, α, 5− α, respectively.

In Figure 3.4 we display ϕ, ϕ′, ϕ′′ for M2 = 1, while ϕ′ is plotted against η for
various values of M2 in Figure 3.5.

Figures 3.61, 3.62 show the profiles of γ(η), γ′(η), forM2 = 1 and for some values
of β − α, i.e. β − α = −5− α, −α, 0, α, 5− α.

Figures 3.4 and 3.6 provide the behaviour of the velocity when M2 = 1. Other
values of M2 slightly modify the trend of v.

In Figures 3.7, 3.8, 3.9 we show the trend of γ′ for different M2 when β − α is
fixed.

Table 3.2 reveals that the constant C in (1.39) has approximately always the
same value if we fix M2 and it increases as M2 increases.

In Table 3.2 we note that ηγ is greater than the corresponding value of ηϕ; so

the influence of the viscosity appears only in the region η < ηγ , i.e. x2 <

√

ν

a
ηγ, as

it happened for an inert Newtonian fluid (see Chapter 1.2.2).

Further we underline that the thickness of this layer depends onM2 and decreases
when M2 increases (as is easy to see in Figures 3.5, 3.7, 3.8, 3.9). Hence, as in the
orthogonal case, the magnetic field tends to accelerate the fluid motion due to the
Lorentz forces, which reduce the growth of the boundary layer.

Finally, we notice that the points xp, xs, given by (1.41), lie on the same side of
the origin. Their location depends onM2 and β−α, as one can see in Table 3.2. The
Figure 3.10 shows the streamlines and the points ξp, ξs for

b

a
= 1, β−α = −α, 0, α,

and M2 = 1, 5. We see that
xp
xs

tends to 1 as M2 increases.
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Figure 3.7: CASE III-N: plots showing γ′ for different M2. In the first picture
β − α = −5− α, in the second β − α = −α .
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Figure 3.9: CASE III-N: plots showing γ′ for different M2 with β − α = 5− α.

3.3 Micropolar fluids

Consider the steady two-dimensional MHD oblique stagnation-point flow of a ho-
mogeneous, incompressible, electrically conducting micropolar fluid towards a flat
surface coinciding with the plane x2 = 0.

In the absence of external mechanical body forces and body couples and free
electric charges, the MHD equations which govern the motion in S for such a fluid
are (2.44), subject to the boundary conditions (2.45), (2.5), (2.6).

We seek v, w as

v1 = ax1f
′(x2) + bg(x2), v2 = −af(x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F (x2) +G(x2), x1 ∈ R, x2 ∈ R
+, (3.36)

where f ∈ C3(R+), g, F, G ∈ C2(R+) are unknown functions ro be determined so
that

f(0) = 0, f ′(0) = 0, g(0) = 0,

F (0) = 0, G(0) = 0. (3.37)

The previous conditions arise from (2.45).
The similarity transformation (f, g, F,G) also has to satisfy

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = −
b

2
. (3.38)
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Figure 3.10: CASE III-N: figures 3.101,3,5 show the streamlines and the points ξp, ξs

for
b

a
= 1,M2 = 1 and β−α = −α, 0, α, respectively. Figures 3.102,4,6 forM2 = 5.
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We recall that in all the following cases, when we will refer to inviscid fluid, all results

have to be modified by replacing x1, x2 with x1 −
b

a
(B −A), x2 −A, respectively.

In particular, the asymptotic behaviour of f and g at infinity is related to the
constants A,B, in the same way of the Newtonian fluids:

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B. (3.39)

In order to study the influence of a uniform external electromagnetic field, we
consider the three cases analyzed in the previous section.

3.3.1 CASE I-M: E = E0e3.

By proceeding as in CASE I and I-N, from (2.44)3, (2.45)4 and boundary conditions
for electromagnetic field, we obtain E = E0e3. Further, the induced magnetic field
h(x2) satisfies

h′ +
a

ηe
fh = −ηeE0, x2 > 0, h(0) = 0, (3.40)

which can be integrate if we regard f as a known function to get

h(x2) = −σeE0e
−

a
ηe

∫ x2
0

f(t)dt

∫ x2

0

e
a
ηe

∫ s

0
f(t)dtds, x2 ∈ R

+. (3.41)

The induced magnetic fields given by (3.41) and (3.5) have the same asymptotic
behaviour at infinity

− ηeE0σe
a(x2 − A)

.

In order to determine p, f, g, F,G we substitute (3.36) into (2.44)1,3 and, after
some calculations, we arrive at p = p(x1, x2) and

ax1

[

(ν + νr)f
′′′ + aff ′′ − af ′

2
+
2νr
a
F ′

]

+b
[

(ν + νr)g
′′ + a(fg′ − f ′g) +

2νr
b
G′

]

=
1

ρ

∂p

∂x1
,

(ν + νr)af
′′ + a2f ′f + 2νrF +

µe

ρ
h′h = −1

ρ

∂p

∂x2
,

x1[αF
′′ + Ia(F ′f − Ff ′)− 2νr(2F + af ′′)]

+λG′′ + I(aG′f − bFg)− 2νr(2G+ bg′) = 0. (3.42)
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Then, by integrating (3.42)3, we find

p =− 1

2
ρa2f 2(x2)− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− µe

2
h2(x2) + P (x1),

where the function P (x1) is determined supposing that, far from the wall, the pres-
sure p has the same behaviour as for an inviscid electroconducting fluid, whose ve-
locity is given by (3.15). Since the induced electromagnetic fields given by (3.41) and
(3.5) have the same asymptotic behaviour, under the assumption F ∈ L1([0,+∞)),
by virtue of (3.38), (3.39), we get

P (x1) = −ρ
a2

2

[

x1 −
b

a
(B − A)

]2

+ p∗0 + ρa(ν + νr).

Thus the pressure field assumes the form

p(x1, x2) =− ρ
a2

2
[x21 − 2

b

a
(B − A)x1 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− µe

2
h2(x2) + p0, (3.43)

with p0 = p∗0 + ρa(ν + νr)− ρ
b2

2
(B − A)2.

Taking into account (3.43), we have the nonlinear ordinary differential equations

ν + νr
a

f ′′′ + ff ′′ − f ′
2
+ 1 +

2νr
a2
F ′ = 0,

ν + νr
a

g′′ + fg′ − gf ′ +
2νr
ab
G′ = B −A,

λF ′′ + aI(fF ′ − f ′F )− 2νr(2F + af ′′) = 0,

λG′′ + I(afG′ − bgF )− 2νr(2G+ bg′) = 0, (3.44)

subject to the boundary conditions (3.37), (3.38).
We remark that system (3.44), (3.37), (3.38) governs the oblique stagnation-point

flow of an inert electromagnetic micropolar fluid, see Chapter 1.2.3.

Remark 3.3.1. If νr = 0, then (3.44)1 and (3.44)2 are the equations governing the
oblique stagnation-point flow of a Newtonian fluid (Chapter 1.2.2).

We observe that (3.44)1 and (3.44)3 have the same form as the equations found
by Guram and Smith ([27]) for the orthogonal stagnation-point flow of a micropolar
fluid (Chapter 1.2.3).
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Theorem 3.3.2. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the region S . The steady MHD oblique plane stagnation-point
flow of such a fluid has the following form when an external uniform electric field
E0 = E0e3 is impressed:

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = h(x2)e1, E = E0e3,

w =[x1F (x2) +G(x2)]e3,

p =− ρ
a2

2
[x21 − 2

b

a
(B − A)x1 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− µe

2
h2(x2) + p0,

x1 ∈ R, x2 ∈ R
+,

where (f, g, F,G) satisfies the problem (3.44), (3.37), and (3.38), provided F ∈
L1([0,+∞)), and h(x2) is given by (3.41).

By Remark 3.3.1 and by the fact that h is the same as in CASE I-M orthogonal
(see Chapter 2.3.1), we have already solved the problem. In particular, the behaviour
of h is given in Figure 2.11. Of course, Remark 1.2.8 continues to hold.

3.3.2 CASE II-M: H0 = H0e1.

As in CASE II and II-N, from (2.44)3, (2.44)4 and (2.5), we get

h′ +
a

ηe
fh = − a

ηe
fH0, x2 > 0, h(0) = 0. (3.45)

The integration of (3.45) leads to

h(x2) = H0

[

e−
a
ηe

∫ x2
0

f(t)dt − 1
]

, x2 ∈ R
+, (3.46)

so that
H = H0e

−
a
ηe

∫ x2
0

f(s)ds
e1.

The pressure field can be now easily computed

p(x1, x2) =− ρ
a2

2
[x21 − 2

b

a
(B −A)x1 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− µe

2
[h(x2) +H0]

2 + p∗0, (3.47)
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where (f, g, F,G) satisfies system (3.44), together with boundary conditions (3.37)
and (3.38).
Therefore, in this case as well, the uniform external electromagnetic field does not
influence the velocities.

We can summarize our results in the following:

Theorem 3.3.3. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the region S . The steady MHD oblique plane stagnation-point
flow of such a fluid has the following form when a uniform external magnetic field
H0 = H0e1 is impressed:

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = [h(x2) +H0]e1, E = E0e3,

w =[x1F (x2) +G(x2)]e3,

p =− ρ
a2

2
[x21 − 2

b

a
(B − A)x1 + f 2(x2)]− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− µe

2
[h(x2) +H0]

2 + p∗0, x1 ∈ R, x2 ∈ R
+,

where (f, g, F,G) satisfies the problem (3.44), (3.37), and (3.38), provided F ∈
L1([0,+∞)), and h(x2) is given by (3.46).

In dimensionless form, h(x2) becomes

Ψ(η) = e−Rm

∫ η

0
ϕ(t)dt − 1, η ∈ R

+, (3.48)

and it is the same as in CASE II-M orthogonal (see Chapter 2.3.2, Figure 2.12).

Of course, Remark 1.2.8 holds even in this case.

3.3.3 CASE III-M: H0 =
H0√

4a2 + b2
(−be1 + 2ae2).

Taking into account Theorem 3.1.5, we impress

H0 =
H0√

4a2 + b2
(−be1 + 2ae2), E0 = 0,

and we deduce
E = 0⇒∇×H = σeµe(v×H).

We proceed by neglecting the induced magnetic field so that we can replace
(2.44)1 with

v · ∇v = −1
ρ
∇p + (ν + νr)△v + 2νr(∇×w) +

µe

ρ
(v ×H0)×H0. (3.49)
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On substituting (3.36) into (3.49), we have p = p(x1, x2) and

ax1

[

(ν + νr)f
′′′ + aff ′′ − af ′

2
+
2νr
a
F ′ − 4a2

σe
ρ

B2
0

4a2 + b2
f ′
]

+b
[

(ν + νr)g
′′ + a(fg′ − f ′g) +

2νr
b
G′ − 2a2

σe
ρ

B2
0

4a2 + b2
(2g − f)

]

=
1

ρ

∂p

∂x1
,

(ν + νr)af
′′ + a2f ′f + 2νrF +

σe
ρ

B2
0

4a2 + b2
[2a2bx1f

′ + ab2(2g − f)] = −1
ρ

∂p

∂x2
.

(3.50)

The integration of (3.50)3 yields

p(x1, x2) =−
1

2
ρa2f 2(x2)− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− σe
B2
0

4a2 + b2

[

2a2bx1f(x2) + ab2
∫ x2

0

(2g(s)− f(s))ds
]

+ P (x1),

where P (x1) has to be found as in the previous cases, so that we get

P (x1) = −ρ
a2

2

(

1 +
4a

ρ

σeB
2
0

4a2 + b2

)[

x1 −
b

a
(B −A)

]2

+ p∗0.

The pressure field is then given by

p(x1, x2) =− ρ
a2

2
[x21 − 2

b

a
(B −A)x1 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− σeB
2
0

4a2 + b2

[

2a2bx1f(x2) +

∫ x2

0

(2g(s)− f(s))ds

− 2a3
(2b

a
(B − A)x1 − x21

)]

+ p0, x1 ∈ R, x2 ∈ R
+. (3.51)

From (3.50)2 we get

ν + νr
a

f ′′′ + ff ′′ − f ′
2
+ 1 +

2νr
a2
F ′ +M2(1− f ′) = 0,

ν + νr
a

g′′ + fg′ − gf ′ +
2νr
ab
G′ +M2(f − g) = (1 +M2)(B − A), (3.52)

where M2 is the Hartmann number.

The solution (f, g, F,G) also satisfies the equations (3.44)3,4. We append bound-
ary conditions (3.37) and (3.38) to the system in (3.52) and (3.44)3,4.

We remark that the external electromagnetic field now modifies the velocities
and that if M2 = 0, then the system (3.52) and (3.44)3,4 reduces to the system
(3.44).
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Remark 3.3.4. If νr = 0, then (3.52)1 are the equations governing oblique stagnation-
point flow CASE III-N of a Newtonian fluid (Chapter 3.2.3).

Theorem 3.3.5. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the region S . If we impress the external magnetic field

H0 =
H0√

4a2 + b2
(−be1 + 2ae2)

and if we neglect the induced magnetic field, then the steady MHD oblique plane
stagnation-point flow of such a fluid has the form

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2,

w =[x1F (x2) +G(x2)]e3, E = 0,

p =− ρ
a2

2
[x21 − 2

b

a
(B − A)x1 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− σeB
2
0

4a2 + b2

[

2a2bx1f(x2) +

∫ x2

0

(2g(s)− f(s))ds

− 2a3
(2b

a
(B −A)x1 − x21

)]

+ p0, x1 ∈ R, x2 ∈ R
+,

where (f, g, F,G) satisfies problem (3.52), (3.44)3,4, (3.37), and (3.38), provided
F ∈ L1([0,+∞)).

In dimensionless form, we can rewrite the previous ordinary differential boundary
value problem as

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 + Φ′ +M2(1− ϕ′) = 0,

γ′′ + ϕγ′ − ϕ′γ + Γ′ +M2(ϕ− γ) = (1 +M2)(β − α),

Φ′′ + c3(ϕΦ
′ − ϕ′Φ)− c2Φ− c1ϕ

′′ = 0,

Γ′′ + c3(ϕΓ
′ − Φγ)− c2Γ− c1γ

′ = 0,

ϕ(0) = 0, ϕ′(0) = 0, γ(0) = 0,

Φ(0) = 0, Γ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1

lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = −c1
c2
, (3.53)

where α, β, c1, c2, c3 are given by (1.51).
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Remark 3.3.6. The points x1 = xp of maximum pressure and x1 = xs of zero
tangential stress on x2 = 0 are formally the same as in CASE I-M and II-M (Remark
1.2.8), but these points now depend on M2.

The slope of the dividing streamline at the wall is now given by:

ms = −
3a[ϕ′′(0)]2

b[[(β − α)(1 +M2)− Γ′(0)]ϕ′′(0) + [1 +M2 + Φ′(0)]γ′(0)]
.

Remark 3.3.7. As in the case in the absence of the external electromagnetic field
(Remark 1.2.9), we will show that the solution (ϕ, γ,Φ,Γ) of the problem here con-
sidered satisfies the conditions at infinity. From this reason, we define:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99);

• ηΦ (ηΓ) the value of η such that Φ(ηΦ) = −0.01
(

Γ(ηΓ) = +0.01− c1
c2

)

,

so that if η > ηϕ (η > ηγ), then ϕ ∼= η − α (γ ∼= η − β), and if η > ηΦ (η > ηΓ),

then Φ ∼= 0

(

Γ ∼= −c1
c2

)

.

We define as

δv = max(ηϕ, ηγ), (3.54)

δw = max(ηΦ, ηΓ) (3.55)

the thickness of the layer lining the boundary where the effect of the viscosity occurs
on the velocity and on the microrotation, respectively.

The thickness δ of the boundary layer for the flow is defined as

δ := max(δv, δw).

We have integrated numerically problem (3.53) for some values of β − α, c1,
c2, c3, M

2, chosen according to the previous chapters (see Tables 3.3 and 3.4).
These Tables elucidate the dependence of the relevant quantities of the flow on the
material parameters and on the magnetic field.

From Tables 3.3 and 3.4 it appears that if we fix two parameters among c1, c2, c3,
then the values of α, ϕ′′(0), γ′(0), Φ′(0), Γ′(0) have the same behaviour as in the
case in the absence of external magnetic field (Chapter 1.2.3).

We have displayed some representative graphs to elucidate the trends of the
functions describing the velocity and the microrotation.

In particular, Figures 3.11, 3.12, and 3.13 show ϕ, ϕ′, ϕ′′, Φ, Φ′, γ, γ′, Γ, Γ′

for c1 = 0.5, c2 = 3.0, c3 = 0.5 and M2 = 1.
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Table 3.3: CASE III-M: descriptive quantities of motion for some values of c1, c2, c3,
M2, and β − α.

M2 c1 c2 c3 β − α α β ϕ′′(0) γ′(0) Φ′(0) Γ′(0) xp

xs

ms

mi

1 0.1 1.5 0.1 -0.5386 0.5386 0 1.5751 1.3886 -0.0583 -0.0876 0.6110 3.2715
0 0.5386 0.5389 1.5751 0.5402 -0.0583 -0.0562 0 3.2715

0.5386 0.5386 1.0776 1.5751 -0.3082 -0.0583 -0.0249 2.7529 3.2715
0.5 -0.5388 0.5388 0 1.5762 1.3887 -0.0560 -0.0879 0.6116 3.2702

0 0.5388 0.5388 1.5762 0.5394 -0.0560 -0.0577 0 3.2702
0.5388 0.5388 1.0776 1.5762 -0.3098 -0.0560 -0.0275 2.7411 3.2702

3.0 0.1 -0.5392 0.5392 0 1.5778 1.4024 -0.0497 -0.0642 0.6066 3.2902
0 0.5392 0.5392 1.5778 0.5517 -0.0497 -0.0374 0 3.2902

0.5392 0.5392 1.0784 1.5778 -0.2990 -0.0497 -0.0106 2.8452 3.2902
0.5 -0.5392 0.5392 0 1.5783 1.4027 -0.0487 -0.0638 0.6068 3.2902

0 0.5392 0.5392 1.5783 0.5516 -0.0487 -0.0376 0 3.2902
0.5392 0.5392 1.0785 1.5783 -0.2995 -0.0487 -0.0114 2.8417 3.2902

0.5 1.5 0.1 -0.5290 0.5290 0.0009 1.5335 1.2465 -0.2913 -0.4247 0.6508 3.0438
0 0.5290 0.5301 1.5335 0.4353 -0.2913 -0.2706 0 3.0439

0.5290 0.5290 1.0594 1.5335 -0.3758 -0.2913 -0.1165 2.1583 3.0439
0.5 -0.5298 0.5298 0 1.5392 1.2469 -0.2802 -0.4267 0.6541 3.0372

0 0.5298 0.5300 1.5392 0.4313 -0.2802 -0.2783 0 3.0372
0.5298 0.5298 1.0599 1.5392 -0.3843 -0.2802 -0.1299 2.1223 3.0372

3.0 0.1 -0.5317 0.5317 0 1.5475 1.3160 -0.2487 -0.3140 0.6252 3.1370
0 0.5317 0.5319 1.5475 0.4932 -0.2487 -0.1818 0 3.1370

0.5317 0.5317 1.0636 1.5475 -0.3296 -0.2487 -0.0496 2.4960 3.1370
0.5 -0.5321 0.5321 0 1.5501 1.3175 -0.2434 -0.3124 0.6261 3.1373

0 0.5321 0.5322 1.5501 0.4926 -0.2434 -0.1829 0 3.1373
0.5321 0.5321 1.0643 1.5501 -0.3322 -0.2434 -0.0534 2.4827 3.1373

2 0.1 1.5 0.1 -0.4730 0.4730 0 1.8637 1.4057 -0.0617 -0.0867 0.6271 3.1626
0 0.4730 0.4732 1.8637 0.5242 -0.0617 -0.0576 0 3.1626

0.4730 0.4730 0.9462 1.8637 -0.3574 -0.0617 -0.0284 2.4667 3.1626
0.5 -0.4731 0.4731 0 1.8647 1.4056 -0.0594 -0.0874 0.6277 3.1617

0 0.4731 0.4732 1.8647 0.5234 -0.0594 -0.0593 0 3.1617
0.4731 0.4731 0.9463 1.8647 -0.3589 -0.0594 -0.0312 2.4585 3.1617

3.0 0.1 -0.4734 0.4734 0 1.8661 1.4177 -0.0534 -0.0633 0.6231 3.1749
0 0.4734 0.4734 1.8661 0.5343 -0.0534 -0.0380 0 3.1749

0.4734 0.4734 0.9468 1.8661 -0.3491 -0.0534 -0.0127 2.5304 3.1749
0.5 -0.4735 0.4735 0 1.8666 1.4179 -0.0523 -0.0631 0.6233 3.1750

0 0.4735 0.4735 1.8666 0.5342 -0.0523 -0.0383 0 3.1750
0.4735 0.4735 0.9469 1.8666 -0.3496 -0.0523 -0.0136 2.5280 3.1750

0.5 1.5 0.1 -0.4656 0.4656 0 1.8239 1.2789 -0.3085 -0.4229 0.6640 2.9950
0 0.4656 0.4662 1.8239 0.4298 -0.3085 -0.2793 0 2.9950

0.4656 0.4656 0.9319 1.8239 -0.4194 -0.3085 -0.1356 2.0248 2.9950
0.5 -0.4663 0.4663 0 1.8290 1.2786 -0.2971 -0.4268 0.6670 2.9904

0 0.4663 0.4663 1.8290 0.4258 -0.2971 -0.2882 0 2.9904
0.4663 0.4663 0.9326 1.8290 -0.4271 -0.2971 -0.1497 1.9970 2.9904

3.0 0.1 -0.4676 0.4676 0 1.8363 1.3393 -0.2670 -0.3106 0.6411 3.0568
0 0.4676 0.4677 1.8363 0.4806 -0.2670 -0.1858 0 3.0568

0.4676 0.4676 0.9353 1.8363 -0.3780 -0.2670 -0.0609 2.2715 3.0568
0.5 -0.4679 0.4679 0 1.8387 1.3404 -0.2614 -0.3097 0.6419 3.0568

0 0.4679 0.4680 1.8387 0.4800 -0.2614 -0.1874 0 3.0568
0.4679 0.4679 0.9359 1.8387 -0.3804 -0.2614 -0.0650 2.2619 3.0568
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Table 3.4: CASE III-M: continuum of Table 3.3.

M2 c1 c2 c3 β − α α β ϕ′′(0) γ′(0) Φ′(0) Γ′(0) xp

xs

ms

mi

5 0.1 1.5 0.1 -0.3650 0.3650 0 2.5418 1.4343 -0.0680 -0.0854 0.6469 3.0686
0 0.3650 0.3651 2.5418 0.5064 -0.0680 -0.0606 0 3.0686

0.3650 0.3650 0.7302 2.5418 -0.4215 -0.0680 -0.0358 2.2015 3.0686
0.5 -0.3651 0.3651 0 2.5426 1.4340 -0.0656 -0.0868 0.6474 3.0681

0 0.3651 0.3651 2.5426 0.5056 -0.0656 -0.0629 0 3.0681
0.3651 0.3651 0.7302 2.5426 -0.4227 -0.0656 -0.0389 2.1962 3.0681

3.0 0.1 -0.3652 0.3652 0 2.5437 1.4434 -0.0603 -0.0619 0.6436 3.0747
0 0.3652 0.3653 2.5437 0.5144 -0.0603 -0.0398 0 3.0747

0.3652 0.3652 0.7305 2.5437 -0.4147 -0.0603 -0.0178 2.2404 3.0747
0.5 -0.3653 0.3653 0 2.5441 1.4435 -0.0591 -0.0619 0.6438 3.0746

0 0.3653 0.3653 2.5441 0.5142 -0.0591 -0.0403 0 3.0746
0.3653 0.3653 0.7306 2.5441 -0.4151 -0.0591 -0.0188 2.2388 3.0746

0.5 1.5 0.1 -0.3608 0.3608 0 2.5059 1.3330 -0.3398 -0.4201 0.6783 2.9691
0 0.3608 0.3611 2.5059 0.4288 -0.3398 -0.2975 0 2.9691

0.3608 0.3608 0.7219 2.5059 -0.4753 -0.3398 -0.1748 1.9021 2.9691
0.5 -0.3612 0.3612 0 2.5099 1.3315 -0.3283 -0.4274 0.6808 2.9664

0 0.3612 0.3612 2.5099 0.4250 -0.3283 -0.3089 0 2.9664
0.3612 0.3612 0.7224 2.5099 -0.4816 -0.3283 -0.1903 1.8824 2.9664

3.0 0.1 -0.3618 0.3618 0 2.5155 1.3790 -0.3014 -0.3052 0.6601 2.9991
0 0.3618 0.3619 2.5155 0.4688 -0.3014 -0.1961 0 2.9991

0.3618 0.3618 0.7237 2.5155 -0.4414 -0.3014 -0.0871 2.0619 2.9991
0.5 -0.3620 0.3620 0 2.5175 1.3795 -0.2954 -0.3056 0.6607 2.9988

0 0.3620 0.3620 2.5175 0.4680 -0.2954 -0.1987 0 2.9988
0.3620 0.3620 0.7241 2.5175 -0.4434 -0.2954 -0.0918 2.0555 2.9988

10 0.1 1.5 0.1 -0.2825 0.2825 0 3.3838 1.4545 -0.0734 -0.0845 0.6573 3.0330
0 0.2825 0.2826 3.3838 0.4985 -0.0734 -0.0638 0 3.0330

0.2825 0.2825 0.5651 3.3838 -0.4575 -0.0734 -0.0430 2.0896 3.0330
0.5 -0.2826 0.2826 0 3.3844 1.4541 -0.0712 -0.0866 0.6577 3.0327

0 0.2826 0.2826 3.3844 0.4978 -0.0712 -0.0665 0 3.0327
0.2826 0.2826 0.5651 3.3844 -0.4585 -0.0712 -0.0464 2.0857 3.0327

3.0 0.1 -0.2826 0.2826 0 3.3852 1.4616 -0.0665 -0.0608 0.6546 3.0361
0 0.2826 0.2826 3.3852 0.5048 -0.0665 -0.0420 0 3.0361

0.2826 0.2826 0.5653 3.3852 -0.4519 -0.0665 -0.0232 2.1171 3.0361
0.5 -0.2826 0.2826 0 3.3855 1.4616 -0.0652 -0.0611 0.6547 3.0360

0 0.2826 0.2826 3.3855 0.5047 -0.0652 -0.0426 0 3.0360
0.2826 0.2826 0.5653 3.3855 -0.4522 -0.0652 -0.0242 2.1160 3.0360

0.5 1.5 0.1 -0.2802 0.2802 0 3.3522 1.3735 -0.3671 -0.4180 0.6838 2.9706
0 0.2802 0.2803 3.3522 0.4343 -0.3671 -0.3151 0 2.9706

0.2802 0.2802 0.5605 3.3522 -0.5050 -0.3671 -0.2123 1.8600 2.9706
0.5 -0.2804 0.2804 0 3.3552 1.3714 -0.3559 -0.4285 0.6860 2.9690

0 0.2804 0.2804 3.3552 0.4307 -0.3559 -0.3287 0 2.9690
0.2804 0.2804 0.5608 3.3552 -0.5100 -0.3559 -0.2290 1.8444 2.9690

3.0 0.1 -0.2807 0.2807 0 3.3593 1.4089 -0.3324 -0.3010 0.6693 2.9861
0 0.2807 0.2807 3.3593 0.4660 -0.3324 -0.2077 0 2.9861

0.2807 0.2807 0.5614 3.3593 -0.4769 -0.3324 -0.1144 1.9770 2.9861
0.5 -0.2808 0.2808 0 3.3609 1.4089 -0.3262 -0.3027 0.6698 2.9857

0 0.2808 0.2808 3.3609 0.4652 -0.3262 -0.2112 0 2.9857
0.2808 0.2808 0.5616 3.3609 -0.4786 -0.3262 -0.1196 1.9720 2.9857
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Figure 3.11: CASE III-M: plots showing ϕ, ϕ′, ϕ′′ and Φ,Φ′ (respectively) for c1 =
0.5, c2 = 3.0, c3 = 0.5 and M2 = 1.
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Figure 3.12: CASE III-M: plots showing γ, γ′ with M2 = 1, c1 = 0.5, c2 = 3.0,
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Figure 3.13: CASE III-M: plots showing Γ,Γ′ with M2 = 1, c1 = 0.5, c2 = 3.0,
c3 = 0.5 and, from above, β − α = −α, 0, α, respectively.

The other choices of these parameters modify the trends of these functions very
slightly.

Of course, the behaviour of ϕ, Φ doesn’t depend on β − α, unlike γ,Γ.
If we compare the velocity profile with the solution for Newtonian fluid (previous

sections), we note that the trend is very similar, as was found in [27] and in Chapter
2 for the MHD orthogonal stagnation-point flow.

Figures 3.14, 3.15, and 3.16 show the effects of the parameters c1, c2, c3 vary-
ing one at time on the functions ϕ′, γ, Φ, Γ. The functions which appear most
influenced by these parameters are Φ, and Γ. Further if M2 is fixed, then the
considerations in Chapter 1.2.3 still hold.

As far as the dependence on M2 is concerned, we can see that α and Φ′(0)
decrease and ϕ′′(0) increases as M2 increases, as it is customary in magnetohydro-
dynamics.

As far as the dependence of γ′(0) and Γ′(0) onM2 are concerned, from Tables 3.3
and 3.4 we can see that their values increase as M2 increases if β−α < 0, otherwise
they decrease.

Figure 3.17 shows the behaviour of ϕ′ for different M2 and c1 = 0.5, c2 = 3.0,
c3 = 0.5.

In Figures 3.18 we provide the trend of γ′ for different M2 when c1 = 0.5, c2 =
3.0, c3 = 0.5 and β − α is fixed.

Figure 3.19 shows the profile of Φ for c1 = 0.5, c2 = 3.0, c3 = 0.5 and different
M2.
In Figures 3.20 we provide the behaviour of Γ for different M2 when c1 = 0.5, c2 =
3.0, c3 = 0.5 and β − α is fixed.

We have only plotted the profiles of ϕ, ϕ′, ϕ′′, γ, γ′, Φ, Φ′, Γ, Γ′ for M2 = 1
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Figure 3.16: CASE III-M: plots showing the behaviour of ϕ′, γ, Φ and Γ for c2 =
3.0, c3 = 0.5 fixed, and for different values of c1.
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Figure 3.17: CASE III-M: plots showing ϕ′ with c1 = 0.5, c2 = 3.0, c3 = 0.5 and
for different M2.
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Figure 3.18: CASE III-M: plots showing γ′ with c1 = 0.5, c2 = 3.0, c3 = 0.5 and
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Figure 3.19: CASE III-M: plots showing Φ with c1 = 0.5, c2 = 3.0, c3 = 0.5 and for
different M2.
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Figure 3.20: CASE III-M: plots showing Γ with c1 = 0.5, c2 = 3.0, c3 = 0.5 and for
different M2.



130 3. MHD oblique stagnation-point flow

and c1 = 0.5, c2 = 3.0, c3 = 0.5, because they have an analogous behaviour for
M2 6= 1 and different c1, c2, c3.

As far as the boundary layer is concerned, in Tables 3.5 and 3.6, we list the
values of ηϕ, ηγ , ηΦ, ηΓ, δv, δw and δ in dependence of M2, c1, c2, c3 and β − α.

We see that ηγ is always greater than ηϕ, so that the influence of the viscosity
on the velocity appears only in a layer of thickness ηγ lining the boundary, as in the
Newtonian case, see Chapter 3.2.3.
Moreover, ηΓ is almost greater than the corresponding value of ηΦ; so the influence
of the viscosity on the microrotation appears usually only in the region η < ηΓ, as
in Chapter 1.2.3. The influence of the viscosity on the microrotation appears only
in a layer of thickness larger than in the orthogonal case.

The thickness δ of the boundary layer depends on M2 and it decreases as M2

increases (as easily seen in Figures 3.17, 3.18, 3.19 and 3.20). This effect is normal
in magnetohydrodynamics.

Finally, we notice that the points xp, xs, given by (1.54) and by (1.55), lie on
the same side of the origin. Their location depends on M2, c1, c2, c3 and β − α,
as seen in Table 3.3. The Figure 3.21 shows these points in dimensionless form (i.e.

ξp, ξs) and the streamlines of the flow for
b

a
= 1, c1 = 0.5, c2 = 3.0, c3 = 0.5,

β − α = −α, 0, α, and M2 = 1, 5.
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Table 3.5: CASE III-M: descriptive quantities of the boundary layer for some values
of c1, c2, c3, M

2, and β − α.

M2 c1 c2 c3 β − α ηϕ ηγ ηΦ ηΓ δv δw δ

1 0.1 1.5 0.1 -0.5386 2.0627 0.5810 1.4064 1.7360 2.0627 1.7360 2.0627
0 2.0627 2.7028 1.4064 2.0321 2.7028 2.0321 2.7028

0.5386 2.0627 2.7711 1.4064 2.2384 2.7711 2.2384 2.7711
0.5 -0.5388 2.0700 0.5814 1.1642 1.6481 2.0700 1.6481 2.0700

0 2.0700 2.7064 1.1642 1.8489 2.7064 1.8489 2.7064
0.5388 2.0700 2.7771 1.1642 1.9900 2.7771 1.9900 2.7771

3.0 0.1 -0.5392 2.0779 0.5889 0.8692 0.7235 2.0779 0.8692 2.0779
0 2.0779 2.7556 0.8692 1.1686 2.7556 1.1686 2.7556

0.5392 2.0779 2.8222 0.8692 1.4800 2.8222 1.4800 2.8222
0.5 -0.5392 2.0818 0.5889 0.7244 0.7421 2.0818 0.7421 2.0818

0 2.0818 2.7585 0.7244 1.1410 2.7585 1.1410 2.7585
0.5392 2.0818 2.8265 0.7244 1.4044 2.8265 1.4044 2.8265

0.5 1.5 0.1 -0.5290 1.9039 0.5181 2.7106 2.9182 1.9039 2.9182 2.9182
0 1.9039 2.3103 2.7106 3.1489 2.3103 3.1489 3.1489

0.5290 1.9039 2.3947 2.7106 3.3157 2.3947 3.3157 3.3157
0.5 -0.5298 1.9300 0.5203 2.2492 2.6084 1.9300 2.6084 2.6084

0 1.9300 2.3044 2.2492 2.7263 2.3044 2.7263 2.7263
0.5298 1.9300 2.3959 2.2492 2.8157 2.3959 2.8157 2.8157

3.0 0.1 -0.5317 1.9678 0.5760 2.1525 1.9923 1.9678 2.1525 2.1525
0 1.9678 2.5481 2.1525 2.3343 2.5481 2.3343 2.5481

0.5317 1.9678 2.6102 2.1525 2.5300 2.6102 2.5300 2.6102
0.5 -0.5321 1.9846 0.5769 1.9384 1.9777 1.9846 1.9777 1.9846

0 1.9846 2.5587 1.9384 2.2074 2.5587 2.2074 2.5587
0.5321 1.9846 2.6264 1.9384 2.3459 2.6264 2.3459 2.6264

2 0.1 1.5 0.1 -0.4730 1.8770 0.4915 1.2744 1.6862 1.8770 1.6862 1.8770
0 1.8770 2.4382 1.2744 1.9178 2.4382 1.9178 2.4382

0.4730 1.8770 2.5110 1.2744 2.0918 2.5110 2.0918 2.5110
0.5 -0.4731 1.8820 0.4918 1.0505 1.5808 1.8820 1.5808 1.8820

0 1.8820 2.4393 1.0505 1.7391 2.4393 1.7391 2.4393
0.4731 1.8820 2.5140 1.0505 1.8582 2.5140 1.8582 2.5140

3.0 0.1 -0.4734 1.8886 0.4989 0.7769 0.7377 1.8886 0.7769 1.8886
0 1.8886 2.4861 0.7769 1.0808 2.4861 1.0808 2.4861

0.4734 1.8886 2.5566 0.7769 1.3360 2.5566 1.3360 2.5566
0.5 -0.4735 1.8915 0.4990 0.6341 0.7475 1.8915 0.7475 1.8915

0 1.8915 2.4882 0.6341 1.0521 2.4882 1.0521 2.4882
0.4735 1.8915 2.5597 0.6341 1.2693 2.5597 1.2693 2.5597

0.5 1.5 0.1 -0.4656 1.7465 0.4299 2.5743 2.8562 1.7465 2.8562 2.8562
0 1.7465 2.0911 2.5743 3.0453 2.0911 3.0453 3.0453

0.4656 1.7465 2.1813 2.5743 3.1900 2.1813 3.1900 3.1900
0.5 -0.4663 1.7638 0.4313 2.1257 2.5205 1.7638 2.5205 2.5205

0 1.7638 2.0793 2.1257 2.6184 2.0793 2.6184 2.6184
0.4663 1.7638 2.1746 2.1257 2.6958 2.1746 2.6958 2.6958

3.0 0.1 -0.4676 1.7941 0.4809 2.0249 1.8890 1.7941 2.0249 2.0249
0 1.7941 2.2948 2.0249 2.1762 2.2948 2.1762 2.2948

0.4676 1.7941 2.3642 2.0249 2.3554 2.3642 2.3554 2.3642
0.5 -0.4679 1.8066 0.4820 1.8191 1.8574 1.8066 1.8574 1.8574

0 1.8066 2.3020 1.8191 2.0550 2.3020 2.0550 2.3020
0.4679 1.8066 2.3750 1.8191 2.1826 2.3750 2.1826 2.3750
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Table 3.6: CASE III-M: continuum of 3.5.

M2 c1 c2 c3 β − α ηϕ ηγ ηΦ ηΓ δv δw δ

5 0.1 1.5 0.1 -0.3650 1.5294 0.3604 1.0258 1.6142 1.5294 1.6142 1.6142
0 1.5294 1.9550 1.0258 1.7548 1.9550 1.7548 1.9550

0.3650 1.5294 2.0297 1.0258 1.8721 2.0297 1.8721 2.0297
0.5 -0.3651 1.5312 0.3604 0.8363 1.4823 1.5312 1.4823 1.5312

0 1.5312 1.9524 0.8363 1.5789 1.9524 1.5789 1.9524
0.3651 1.5312 2.0277 0.8363 1.6591 2.0277 1.6591 2.0277

3.0 0.1 -0.3652 1.5351 0.3656 0.5850 0.7450 1.5351 0.7450 1.5351
0 1.5351 1.9895 0.5850 0.9525 1.9895 0.9525 1.9895

0.3652 1.5351 2.0615 0.5850 1.1202 2.0615 1.1202 2.0615
0.5 -0.3653 1.5364 0.3658 0.4383 0.7403 1.5364 0.7403 1.5364

0 1.5364 1.9902 0.4383 0.9222 1.9902 0.9222 1.9902
0.3653 1.5364 2.0625 0.4383 1.0660 2.0625 1.0660 2.0625

0.5 1.5 0.1 -0.3608 1.4479 0.3140 2.3183 2.7823 1.4479 2.7823 2.7823
0 1.4479 1.7025 2.3183 2.9032 1.7025 2.9032 2.9032

0.3608 1.4479 1.7920 2.3183 3.0045 1.7920 3.0045 3.0045
0.5 -0.3612 1.4534 0.3136 1.8993 2.3980 1.4534 2.3980 2.3980

0 1.4534 1.6857 1.8993 2.4611 1.6857 2.4611 2.4611
0.3612 1.4534 1.7772 1.8993 2.5151 1.7772 2.5151 2.5151

3.0 0.1 -0.3618 1.4709 0.3465 1.7933 1.7566 1.4709 1.7933 1.7933
0 1.4709 1.8368 1.7933 1.9451 1.8368 1.9451 1.9451

0.3618 1.4709 1.9122 1.7933 2.0820 1.9122 2.0820 2.0820
0.5 -0.3620 1.4765 0.3471 1.6050 1.6942 1.4765 1.6942 1.6942

0 1.4765 1.8379 1.6050 1.8276 1.8379 1.8276 1.8379
0.3620 1.4765 1.9147 1.6050 1.9256 1.9147 1.9256 1.9256

10 0.1 1.5 0.1 -0.2825 1.2269 0.2715 0.7891 1.5668 1.2269 1.5668 1.5668
0 1.2269 1.5513 0.7891 1.6520 1.5513 1.6520 1.6520

0.2825 1.2269 1.6191 0.7891 1.7280 1.6191 1.7280 1.7280
0.5 -0.2826 1.2270 0.2713 0.6263 1.4155 1.2270 1.4155 1.4155

0 1.2270 1.5477 0.6263 1.4738 1.5477 1.4738 1.5477
0.2826 1.2270 1.6156 0.6263 1.5255 1.6156 1.5255 1.6156

3.0 0.1 -0.2826 1.2290 0.2749 0.3948 0.7377 1.2290 0.7377 1.2290
0 1.2290 1.5727 0.3948 0.8644 1.5727 0.8644 1.5727

0.2826 1.2290 1.6387 0.3948 0.9732 1.6387 0.9732 1.6387
0.5 -0.2826 1.2293 0.2749 0.3775 0.7226 1.2293 0.7226 1.2293

0 1.2293 1.5723 0.3775 0.8332 1.5723 0.8332 1.5723
0.2826 1.2293 1.6385 0.3775 0.9268 1.6385 0.9268 1.6385

0.5 1.5 0.1 -0.2802 1.1806 0.2400 2.0836 2.7449 1.1806 2.7449 2.7449
0 1.1806 1.3796 2.0836 2.8196 1.3796 2.8196 2.8196

0.2802 1.1806 1.4578 2.0836 2.8862 1.4578 2.8862 2.8862
0.5 -0.2804 1.1810 0.2392 1.6979 2.3221 1.1810 2.3221 2.3221

0 1.1810 1.3642 1.6979 2.3611 1.3642 2.3611 2.3611
0.2804 1.1810 1.4430 1.6979 2.3965 1.4430 2.3965 2.3965

3.0 0.1 -0.2807 1.1895 0.2594 1.5896 1.6805 1.1895 1.6805 1.6805
0 1.1895 1.4596 1.5896 1.7994 1.4596 1.7994 1.7994

0.2807 1.1895 1.5305 1.5896 1.8959 1.5305 1.8959 1.8959
0.5 -0.2808 1.1911 0.2597 1.4190 1.5945 1.1911 1.5945 1.5945

0 1.1911 1.4577 1.4190 1.6795 1.4577 1.6795 1.6795
0.2808 1.1911 1.5287 1.4190 1.7486 1.5287 1.7486 1.7486
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Figure 3.21: CASE III-M: figures 3.211,3,5 show the streamlines and the points ξp, ξs

for
b

a
= 1, c1 = 0.5, c2 = 3.0, c3 = 0.5 and β − α = −α, 0, α, respectively and

M2 = 1. Figures 3.212,4,6 for M
2 = 5.
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Chapter 4

MHD three-dimensional

stagnation-point flow

The aim of this chapter is to understand how the steady three-dimensional stagna-
tion-point flow of a Newtonian or a micropolar fluid is influenced by an external
uniform magnetic field H0 when we neglect the induced magnetic field. The hy-
pothesis of neglecting the induced magnetic field is customary in the literature and
it is motivated by physical arguments when the magnetic Reynolds number is very
small.

To this purpose we will recall how the three-dimensional stagnation-point flow is
defined and we will start with the analysis of the same problem for an inviscid fluid.

The results obtained have been published or submitted for publication in [4], [7]
and [8].

4.1 Inviscid Fluids

We begin with the study of the steady three-dimensional MHD stagnation-point
flow of a homogeneous, incompressible, electrically conducting inviscid fluid near a
stagnation point filling the half-space S , given by (2.1).

In the three-dimensional stagnation-point flow we seek the velocity field as

v1 = ax1, v2 = −a(1 + c)x2, v3 = acx3, (x1, x3) ∈ R
2, x2 ∈ R

+, (4.1)

where a, c are constants (Chapter 1.3.1). We suppose a > 0, c 6= 0 and c > −1.
Equations (2.2) govern such a flow in the absence of external mechanical body

forces and free electric charges. To these equations we add boundary conditions
(2.4), (2.5), (2.6).

We assume that a uniform external magnetic field H0 is impressed and that the
electric field is absent.

135



136 4. MHD three-dimensional stagnation-point flow

As it is customary in the literature, we assume that the magnetic Reynolds
number is very small, so that the induced magnetic field is negligible in comparison
to the imposed field. Then

(∇×H)×H ≃ σeµe(v ×H0)×H0. (4.2)

We proceed to prove the following:

Theorem 4.1.1. Let a homogeneous, incompressible, electrically conducting in-
viscid fluid occupy the half-space S . If we impress an external magnetic field H0,
and we neglect the induced magnetic field, then the steady three-dimensional MHD
stagnation-point flow of such a fluid is possible for all c > −1 if, and only if, H0 is
parallel to one of the axes.

Proof. For the sake of brevity, we will denote by H the external magnetic field:

H = H1e1 +H2e2 +H3e3. (4.3)

On substituting the approximation (4.2) into (2.2)1, taking into account that the
velocity field v is given by (4.1), we get:

∂p

∂x1
= −ρa2x1 + σea[cB1B3x3 − (B2

2 +B2
3)x1 − (1 + c)B1B2x2],

∂p

∂x2
= −ρa2(1 + c)2x2 + σea[B1B2x1 + (1 + c)(B2

1 +B2
3)x2 + cB2B3x3],

∂p

∂x3
= −ρa2c2x3 + σea[−(1 + c)B2B3x2 − c(B2

1 +B2
2)x3 +B1B3x1], (4.4)

where B = µeH.
It is possible to find a function p = p(x1, x2, x3) satisfying (4.4) if, and only if,

∂2p

∂xi∂xj
=

∂2p

∂xj∂xi
, i, j = 1, 2, 3, i 6= j. (4.5)

On the other hand we have

∂2p

∂x1∂x2
= −σea(1 + c)B1B2,

∂2p

∂x2∂x1
= σeaB1B2, (4.6)

∂2p

∂x1∂x3
= σeacB1B3,

∂2p

∂x3∂x1
= σeaB1B3, (4.7)

∂2p

∂x2∂x3
= σeacB2B3,

∂2p

∂x3∂x2
= −σea(1 + c)B2B3. (4.8)
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Therefore, since c is arbitrary (> −1), conditions (4.6), (4.7), (4.8) are satisfied if,
and only if, B = Be1 or B = Be2 or B = Be3.
Finally, if B = Be1, then we deduce

p = −ρa
2

2
[x21 + (1 + c)2x22 + c2x23] +

a

2
σeB

2[(1 + c)x22 − cx23] + p0; (4.9)

if B = Be2, then

p = −ρa
2

2
[x21 + (1 + c)2x22 + c2x23]−

a

2
σeB

2[x21 + cx23] + p0; (4.10)

if B = Be3, then

p = −ρa
2

2
[x21 + (1 + c)2x22 + c2x23]−

a

2
σeB

2[x21 − (1 + c)x22] + p0. (4.11)

Remark 4.1.2. The results obtained in Theorem 4.1.1 hold for any c > −1.
If c = 1, then it is possible to consider also the magnetic field parallel to the plane
Ox1x3, as one can see from (4.7). In this case the pressure becomes

p = −ρa
2

2
[x21 + (1 + c)2x22 + c2x23] + aσe(B

2
1 +B2

3)x
2
2 −

a

2
σe(B3x1 − B1x3)

2 + p0.

Moreover, if c = −1
2
, then from (4.8) we can also impress a magnetic field parallel

to the plane Ox2x3. The corresponding pressure is

p = −ρa
2

2
[x21 + (1 + c)2x22 + c2x23]−

a

2
σe(B

2
2 +B2

3)x
2
1 +

a

4
σe(B3x2 − B2x3)

2 + p0.

Remark 4.1.3. From (4.9), (4.10), (4.11), we notice that the pressure takes its
maximum in the stagnation-point along the wall x2 = 0, as in the absence of the
external magnetic field.

Remark 4.1.4. In order to study the three-dimensional stagnation-point flow for
other models of fluids, it is convenient to consider a more general flow. As in
Remark 1.3.3, let the inviscid fluid impinge on the flat plane x2 = C and

v1 = ax1, v2 = −a(1 + c)(x2 − C), v3 = acx3, (x1, x3) ∈ R
2, x2 ≥ C, (4.12)

with C some constant.
In this situation, the stagnation point is (0, C, 0) and in the cases of Theorem

4.1.1 and Remark 4.1.2 the pressure must be modified by replacing x2 with x2 − C.
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4.2 Newtonian fluids

We now consider the steady three-dimensional MHD stagnation-point flow of a ho-
mogeneous, incompressible, electrically conducting Newtonian fluid occupying the
half-space S .

In the absence of external mechanical body forces and free electric charges, the
MHD equations for such a fluid are (2.22). We prescribe conditions (2.23), (2.5),
(2.6).

In this motion, the velocity components are (Chapter 1.3.2)

v1 = ax1f
′(x2), v2 = −a[f(x2) + cg(x2)], v3 = acx3g

′(x2), (4.13)

where f, g are sufficiently regular unknown functions (f, g ∈ C3(R+)).
The condition (2.23) is certainly satisfied if we ask :

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0. (4.14)

We prescribe at infinity

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1, (4.15)

so that the flow behaves like the three-dimensional stagnation-point flow of an in-
viscid fluid, whose velocity is given by (4.12).

The constant C in (4.12) is related to the behaviour of f and g at infinity: if

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B (4.16)

with A,B some constants, then

lim
x2→+∞

[f(x2) + cg(x2)− (1 + c)x2] = −(1 + c)C, (4.17)

where

C =
A+ cB

1 + c
.

The values of the constants A,B,C can be found by solving the problem.
In order to study the influence of a uniform external electromagnetic field, we

continue to use the approximation (4.2), where v is given by (4.13). As a result of
the Theorem 4.1.1, we can prove the following:

Theorem 4.2.1. Let a homogeneous, incompressible, electrically conducting New-
tonian fluid occupy the half-space S . If we impress the external magnetic field H0

parallel to one of the axes and if we neglect the induced magnetic field, then the
steady three-dimensional MHD stagnation-point flow of such a fluid has the form
(4.13), E = 0, and
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(I-N) if H0 = H0e1, then (f, g) satisfies the problem

ν

a
f ′′′ + (f + cg)f ′′ − f ′

2
+ 1 = 0,

ν

a
g′′′ + (f + cg)g′′ − cg′

2
+ c+M2(1− g′) = 0, (4.18)

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1, (4.19)

where M2 =
σeµ

2
eH

2
0

ρa
is the Hartmann number and the pressure field is given

by

p =− ρ
a2

2
[x21 + [f(x2) + cg(x2)]

2 + c2x23]− ρaν[f ′(x2) + cg′(x2)]

− σeaB
2
0

[

c

2
x23 −

∫ x2

0

(f(s) + cg(s))ds

]

+ p0; (4.20)

(II-N) if H0 = H0e2, then (f, g) satisfies

ν

a
f ′′′ + (f + cg)f ′′ − f ′

2
+ 1 +M2(1− f ′) = 0,

ν

a
g′′′ + (f + cg)g′′ − cg′

2
+ c+M2(1− g′) = 0, (4.21)

with the boundary conditions (4.19) and the pressure field is given by

p =− ρ
a2

2
[x21 + [f(x2) + cg(x2)]

2 + c2x23]− ρaν[f ′(x2) + cg′(x2)]

− σeaB
2
0(x

2
1 + cx23) + p0; (4.22)

(III-N) if H0 = H0e3, then (f, g) satisfies

ν

a
f ′′′ + (f + cg)f ′′ − f ′

2
+ 1 +M2(1− f ′) = 0,

ν

a
g′′′ + (f + cg)g′′ − cg′

2
+ c = 0, (4.23)

with the boundary conditions (4.19)and the pressure field is given by

p =− ρ
a2

2
[x21 + [f(x2) + cg(x2)]

2 + c2x23]− ρaν[f ′(x2) + cg′(x2)]

− σeaB
2
0

[

x21
2
−

∫ x2

0

(f(s) + cg(s))ds

]

+ p0. (4.24)
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Proof. Let us examine CASE I-N.
If

H0 = H0e1,

and the induced magnetic field is neglected, then we can make the following approx-
imation

(∇×H)×H ≃ σeµeaH
2
0 [(f + cg)e2 − cg′x3e3]. (4.25)

We substitute (4.13), and (4.25) into (2.22)1, so that

ax1

[

νf ′′′ + af ′′(f + cg)− af ′
2
]

=
1

ρ

∂p

∂x1
,

− νa(f ′′ + cg′′)− a2(f ′ + cg′)(f + cg) +
σea

ρ
B2
0(f + cg) =

1

ρ

∂p

∂x2
,

acx3

[

νg′′′ + ag′′(f + cg)− acg′
2 − σe

ρ
B2
0g
′

]

=
1

ρ

∂p

∂x3
. (4.26)

Then, by integrating (4.26)2, we find

p =− 1

2
ρa2[f(x2) + cg(x2)]

2 + σeaB
2
0

∫ x2

0

(f(s) + cg(s))ds

− ρaν[f ′(x2) + cg′(x2)] + P (x1, x3),

where the function P (x1, x3) is determined supposing that, far from the wall, the
pressure p has the same behaviour as for an inviscid fluid, whose velocity is given
by (4.12) and the pressure is given by (4.9) replacing x2 by x2 − C.
Therefore, by virtue of (4.15), and (4.16), we get

P (x1, x3) = −ρ
a2

2
(x1

2 + c2x23)−
a

2
σeB

2
0cx

2
3 + p∗0,

from which we find that the pressure field assumes the form

p =− ρ
a2

2
[x21 + [f(x2) + cg(x2)]

2 + c2x23] + σeaB
2
0

[
∫ x2

0

(f(s) + cg(s))ds− c

2
x23

]

− ρaν[f ′(x2) + cg′(x2)] + p0, (4.27)

where the constant p0 is the pressure at the origin.
In consideration of (4.26), we obtain the ordinary differential system

ν

a
f ′′′ + (f + cg)f ′′ − f ′

2
+ 1 = 0,

ν

a
g′′′ + (f + cg)g′′ − cg′

2
+ c+M2(1− g′) = 0, (4.28)
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where

M2 =
σeB

2
0

ρa

is the Hartmann number. To these equations we append the boundary conditions
(4.14), and (4.15).
The rest of the proof for CASEs II-N and III-N runs as before.

Remark 4.2.2. From (4.20), (4.22), (4.24) we see that the pressure takes again its
maximum along the wall x2 = 0 in the stagnation-point.

We now analyze the cases considered in Remark 4.1.2.

Proposition 4.2.3. Let a homogeneous, incompressible, electrically conducting New-
tonian fluid occupy the half-space S . If we neglect the induced magnetic field and we
suppose either

i) c = 1, H0 parallel to the plane Ox1x3,

or

ii) c = −1
2
, H0 parallel to the plane Ox2x3,

then there is no solution to the problem of the steady three-dimensional MHD stagna-
tion-point flow.

Proof. i) If c = 1 and the external magnetic induction field is B = B1e1 + B3e3
(B1, B3 6= 0), then from equations (2.22), (4.13), proceeding as in proof of Theorem
4.2.1, after some calculations, we deduce:

νf ′′′ + a(f + g)f ′′ − af ′
2
+B2

3

σe
ρ
(1− f ′) + a = 0,

σea

ρ
B1B3(g

′ − 1) = 0,

νg′′′ + a(f + g)g′′ − ag′
2
+B2

1

σe
ρ
(1− g′) + a = 0,

σea

ρ
B1B3(f

′ − 1) = 0. (4.29)

From (4.29)2, (4.29)4 one has f
′ = g′ = 1 for all x2 ≥ 0, which contradicts the

boundary conditions (4.14).

ii) Then we examine the case c = −1
2
and B = B2e2 +B3e3 (B2, B3 6= 0).
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By proceeding as above, we obtain

νf ′′′ + a(f − g

2
)f ′′ − af ′

2
+ (B2

2 +B2
3)
σe
ρ
(1− f ′) + a = 0,

νg′′′ + a(f − g

2
)g′′ +

a

2
g′
2
+B2

2

σe
ρ
(1− g′)− a

2
= 0,

σea

ρ
B2B3(f − g + A−B) = 0. (4.30)

From (4.30)3 evaluated at x2 = 0 and (4.14), we obtain f = g. So (4.30)1, (4.30)2
become

νf ′′′ + a
f

2
f ′′ − af ′

2
+ (B2

2 +B2
3)
σe
ρ
(1− f ′) + a = 0,

νf ′′′ + a
f

2
f ′′ +

a

2
f ′
2
+B2

2

σe
ρ
(1− f ′)− a

2
= 0. (4.31)

By subtracting (4.31)1 from (4.31)2, we arrive at

(f ′ − 1)

[

3

2
(f ′ + 1) +B2

3

σe
aρ

]

= 0. (4.32)

At x2 = 0, (4.32) gives the absurdum

3

2
+
σe
aρ
B2
3 = 0.

Remark 4.2.4. If c = 1, f = g, H0 = H0e2, the axisymmetric case is obtained.

Finally, with the dimensionless variables (1.35) we can rewrite equations (4.18)
as

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c+M2(1− γ′) = 0; (4.33)

equations (4.21) as

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 +M2(1− ϕ′) = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c+M2(1− γ′) = 0; (4.34)



4.2 Newtonian fluids 143

equations (4.23) as

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 +M2(1− ϕ′) = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c = 0. (4.35)

Of course we obtain three different ordinary differential problems by adding the
boundary conditions (4.19) in dimensionless form:

ϕ(0) = 0, ϕ′(0) = 0,

γ(0) = 0, γ′(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1. (4.36)

In dimensionless form we also have

α =

√

a

ν
A, β =

√

a

ν
B, hd =

α + cβ

1 + c
.

Remark 4.2.5. If M2 = 0, then equations (4.33), (4.34), (4.35) reduce to

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c = 0 (4.37)

which are the dimensionless equations governing the flow of a Newtonian fluid in
the absence of H0. This problem has already been treated in Chapter 1.3.2.

We recall that in [13] under the hypothesis that γ is analytical it is proved that
the problem (4.37), (4.36) does not admit solution for c < −1. As far as existence
of solutions is concerned, we refer to [29], [30].

Remark 4.2.6. If M2 6= 0 and under the hypothesis that γ is analytical, in the
next section we will prove that the problem (4.35), (4.36) does not admit solution
for c < −1 and that problems (4.33) and (4.34), together with boundary conditions
(4.36), do not admit solution for c < −1 and M2 < −2c.
Remark 4.2.7. It is physically interesting to determine the skin-friction components
τ1, τ3 along x1 and x3 axes :

τ1 = µ

(

∂v1
∂x2

)

x2=0

= ρ(ν)1/2a3/2x1ϕ
′′(0),

τ3 = µ

(

∂v3
∂x2

)

x2=0

= cρ(ν)1/2a3/2x3γ
′′(0). (4.38)

Formally τ1, τ3 have the same expression as in the absence of H0, but of course
ϕ′′(0), γ′′(0) depend on H0 through the Hartmann number M2.
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Remark 4.2.8. The regular solutions to problem (4.34), (4.36) are invariant under
the following transformation

ϕ

(

η,
1

c
,
M2

c

)

=
√
c γ

(

η√
c
, c,M2

)

, γ

(

η,
1

c
,
M2

c

)

=
√
c ϕ

(

η√
c
, c,M2

)

, c > 0,

so that we could confine our attention to c ∈ (−1, 1), c 6= 0.

We notice that by means of the previous transformation the regular solutions
to problem (4.33), (or (4.35)), (4.36) are transformed in the solutions to problem
(4.35), (or (4.33)), (4.36).

Remark 4.2.9. It is important to give the explicit form of the pressure field because,
as we have already said in Remark 1.3.7, when a fluid moves past a body, if one of
the components of the pressure gradient along a body surface has the same sign as
the corresponding component of the velocity, then the reverse flow appears.

As in the absence of the external magnetic field for the three-dimensional stagna-
tion-point flow, the numerical results show that there exists a negative value cr of c
such that if c ≥ cr, then g

′, g′′ > 0 ∀η > 0, and if c < cr then near the wall g′, g′′ < 0,

so that the reverse flow appears (i.e. v3 has the same sign as
∂p

∂x3
).

The reverse flow is also related to a sign change of the scalar component of the
skin friction (τ0) in the direction of e3 (see (4.38)).

When an external magnetic field H0 is impressed, as one can see from (4.20),
(4.22), (4.24), the pressure field depends on H0 through the Hartmann number M2,
which influences the sign of the components of the pressure gradient along the wall.
For this reason, as we will see in the next numerical sections, the presence of the
external magnetic field tends to prevent the occurrence of the reverse. This behaviour
appears more clearly in CASEs I-II-N, and it has also been observed in [3] in other
physical situations.

Remark 4.2.10. Of course, in all the three cases considered in Theorem 4.2.1 it
is interesting to classify the origin as nodal or saddle point and as attachment or
separation point. This classification can be done following the definitions given in
Remark 1.3.8. From those considerations it is clear that we need to know the signs of
c, ϕ′′(0), γ′′(0) in order to classify the stagnation-point. Yet now ϕ′′(0), γ′′(0) depend
on M2.

In particular, we will see that in CASE I-N the origin can also become a separa-
tion point, differently from the other two cases. Hence in CASE I-N for some values
of M2 ≥ 2.6662, we define

• cs the negative values of c such that if c < cs then the origin is a separation
point, while if c ≥ cs then it is an attachment point.
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The change of the origin from attachment point to separation point can be explained
by the form of system (4.33).

Remark 4.2.11. As it happened in the absence of the external magnetic field (see
Chapter 1.3.2), the numerical results point out that the three dimensional displace-
ment thickness hd can be negative, hence we denote by

• ch the negative values of c such that if c < ch, then hd < 0 and if c ≥ ch, then
hd ≥ 0.

Remark 4.2.12. The solution (ϕ, γ) of the three problems here considered satisfies
the conditions (4.36)5,6 so that, as in Remark 1.3.9, we indicate with

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99).

Hence if η > ηϕ (η > ηγ), then ϕ
∼= η − α (γ ∼= η − β).

The influence of the viscosity on the velocity appears only in a layer lining the
boundary whose thickness is δ = max(ηϕ, ηγ).

4.2.1 A non existence result for c < −1 and M2 < 2|c|.
Consider the system (4.34) with boundary conditions (4.36) and suppose that γ
is analytical. We want to prove that problem (4.34)-(4.36) doesn’t admit solution
when c < −1 and M2 < 2|c|. We have divided the proof into a sequence of lemmas
and theorems.

Lemma 4.2.13. If (ϕ, γ) is a solution of (4.34), (4.36), then ϕ′′(0) 6= 0 and γ′′(0) 6=
0.

Proof. If for instance γ′′(0) 6= 0 then, by differentiating the second equation of
(4.34), we get γ ≡ 0, which is clearly impossible for boundary condition (4.36)6.
Same proof for ϕ.

Remark 4.2.14 (Parabolas for ϕ). Assume that ϕ′′(η1) = 0 at some point. Then,
at that point, the second equation writes

y = x2 +M2x− (M2 + 1),

for x = ϕ′(η1) and y = ϕ′′′(η1), which does not depend on c. All parabolas vanish at
x1 = 1 and x2 = −M2 − 1 ≤ −1; if x = 0 then y0 = −M2 − 1.

Remark 4.2.15 (Parabolas for γ). Assume that γ′′(η1) = 0 at some point. Then,
at that point, the second equation writes

y = cx2 +M2x− (M2 + c),
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for x = γ′(η1) and y = γ′′′(η1). Write

y = c(x− 1)

(

x+
M2

c
+ 1

)

, y = c

[

(

x+
M2

2c

)2

− 1

4c2
(

M2 + 2c
)2

]

.

All parabolas vanish at x1 = 1 and x3 = −M2

c
− 1; if x = 0 then y0 = −M2 − c.

• Weak magnetic field: M2 < 2|c|. Then −1 ≤ x3 < 1 = x1, −|c| < y0 ≤ |c|. If
M2 = 0, then x3 = −1, y0 = |c|.

• Critical magnetic field: M2 = 2|c|. Then x1 = x3 = 1, y0 = c.

• Strong magnetic field: M2 > 2|c|. Then x1 = 1 < x3, y0 < −|c|.

Remark 4.2.16. The equations in (4.34) can be written as a dynamical system of
three equation. The representation in the phase space is hard and then we interpret
them as the following dynamical systems in two equations

ϕ′1 = ϕ2,
ϕ′2 = (ϕ1 − 1) (ϕ1 +M2 + 1)− (ϕ+ cγ)ϕ2,

(4.39)

γ′1 = γ2,

γ′2 = c(γ1 − 1)
(

γ1 +
M2

c
+ 1

)

− (ϕ+ cγ)γ2,
(4.40)

where ϕ and γ play the role of given functions satisfying the boundary conditions
(4.36). The stationary points of (4.39) and (4.40) are, respectively,

(1, 0),
(

−M2 − 1, 0
)

and (1, 0),

(

−M
2

c
− 1, 0

)

.

Lemma 4.2.17 (Critical points). For any c, if there exists η1 > 0:

ϕ1(η1) = 1 or ϕ1(η1) = −M2 − 1 ⇒ ϕ2(η1) 6= 0,

γ1(η1) = 1 or γ1(η1) = −
M2

c
− 1 ⇒ γ2(η1) 6= 0.

Proof. The stationary points of (4.40) provide constant solutions γ1 and γ2. How-
ever, neither γ1 = 1 nor γ1 = −M2

c
− 1 satisfy both the initial and the infinity

condition.
In the same manner we can prove the statement for ϕ.

Now, we study the vector fields Vϕ and Vγ . We have:

Vϕ(0, ϕ2) = (ϕ2,−M2 − 1), Vγ(0, γ2) = (γ2,−M2 − c),

Vϕ(1, ϕ2) = (1,−s(η̄))ϕ2, Vγ(1, γ2) = (1,−s(η̄))γ2,
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Figure 4.1: Vector fields and trajectories. Vectors with two arrows refer only to
η = 0 and, in general, not to other values of η; however on the line ϕ1 = 0, the field
points to the right if ϕ2 or γ2 is positive and to the left otherwise.
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where s = ϕ+ cγ and ϕ1(η̄) = 1 or γ1(η̄) = 1. They are depicted in Figure 4.1.
Here below minimum point means local and strict minimum point and analo-

gously for the maximum point. By Lemma 4.2.13, if either ϕ2(η1) = 0 or γ2(η1) = 0
then η1 > 0.

Lemma 4.2.18 (Behaviour around stationary points). Let c < 0. Assume that there
exists η1 > 0 such that ϕ2(η1) = 0. Then

ϕ1(η1) ∈ (−M2 − 1, 1) ⇒ η1 is a maximum point for ϕ1,
ϕ1(η1) /∈ (−M2 − 1, 1) ⇒ η1 is a minimum point for ϕ1.

On the other hand, assume that there exists η1 > 0 such that γ2(η1) = 0. Then

M2 < 2|c| : γ1(η1) ∈ (x2, 1) ⇒ η1 is a minimum point for γ1,
γ1(η1) /∈ (x2, 1) ⇒ η1 is a maximum point for γ1,

M2 = 2|c| : η1 is a maximum point for γ1,

M2 > 2|c| : γ1(η1) ∈ (1, x2) ⇒ η1 is a minimum point for γ1,
γ1(η1) /∈ (1, x2) ⇒ η1 is a maximum point for γ1.

Proof. If γ2(η1) = 0, then the dynamical system (4.40) reduces to

γ′2(η1) = cγ21(η1) +M2γ1(η1)− (M2 + c).

The analysis of the sign of the parabolas allows to conclude. Note that we also have
the direction of the trajectories, see Figure 4.1. Same proof for ϕ.

We introduce the following notation for sets:

If = (−M2 − 1, 1), Ef = (−∞,−M2 − 1) ∪ (1,+∞),

and

Ig =







(x3, 1) if M2 < 2|c|,
∅ if M2 = 2|c|,
(1, x3) if M2 > 2|c|,

Eg =







(−∞, x3) ∪ (1,+∞) if M2 < 2|c|,
R \ {1} if M2 = 2|c|,
(−∞, 1) ∪ (x3,+∞) if M2 > 2|c|,

Corollary 4.2.19. Let c < 0. Assume that there exists η0 ≥ 0 such that either
γ1(η) ∈ Ig for η > η0 or γ1(η) ∈ Eg for η > η0. Then γ1 has at most one stationary
point in (η0,+∞).

Same statement for ϕ.

Proof. By Lemma 4.2.18, the functions ϕ and γ′ cannot have two consecutive minima
or maxima.
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Consider the caseM2 < 2|c|. In this case, it is sufficient to study only the system
(4.40). We have two possibilities.

• For large η either γ1(η) ∈ I, or γ1(η) ∈ E.

• None of the two. In the latter case γ1(η) assume the value x2 or 1 infinitely
many times at points ηk, where ηk → +∞ as k → +∞. The case with x2 is
discarded because of the condition at infinity.

Let us examine the first case.

Theorem 4.2.20. Assume c < −1 andM2 < 2|c|. Assume also that either γ1(η) ∈ I
or γ1(η) ∈ E for η large. Then, no solution γ exists.

Proof. If there exists η1 large such that γ2(η1) = 0, then such point is unique and
η1 is a minimum point for γ1 by Corollary 4.2.19. By the study of trajectories,
γ2(η) > 0 for η > η1. Then, by the second equation of (4.40), γ

′

2(η) > 0 for η > η1,
which contradicts the condition at infinity: for η → +∞, either γ2 has no limit or
it tends to 0.

If γ2 never vanishes, then, from the first equation of (4.40), either γ1 increases
or decreases; the second possibility cannot happen since γ1 < 1. Then γ2 > 0. The
argument above works as well.

The case γ′(η) ∈ E works in the same way. In the second approach, the proof
is as follows. If there exists η1 > 0 such that γ2(η1) = 0, then such point is unique
and η1 is a maximum point for γ1 by Corollary 4.2.19. By the study of trajectories,
γ2(η) < 0 for η > η1. Then, by the second equation of (4.40), γ

′

2(η) < 0 for η > η1,
because the sign of (γ1 − 1)(γ1 +

M2

c
+ 1) is positive for γ1 ∈ E. This contradicts

the condition at infinity.
Assume now that γ2 never vanishes. The possibility γ1 < x2 cannot happen,

since otherwise γ1 must enter the region where γ1 ∈ I to reach the point 1. Then
we must have γ1 > 1; as a consequence, by the first equation in (4.40), γ1 must
decrease, then γ2 < 0. The argument above works as well.

Now, we consider the second case.

Lemma 4.2.21. Let c < −1 and M2 < 2|c|. Assume that there is a sequence {ηi}
with ηi < ηi+1 and lim

i→+∞
ηi = +∞ such that γ2(ηi) = 0. Then the sequence {γ1(ηi)}

cannot tend to 1 as i→ +∞.

Proof. Multiply the second equation in (4.40) by γ2 and integrate from ηi to ηi+1.
Then

1

3
γ31 +

M2

2c
γ21 −

(

M2

c
+ 1

)

γ1∣
∣ηi+1

>
1

3
γ31 +

M2

2c
γ21 −

(

M2

c
+ 1

)

γ1∣
∣ηi

(4.41)
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Introduce the cubic function

K(γ1) =
1

3
γ31 +

M2

2c
γ21 −

(

M2

c
+ 1

)

γ1,

which is easily seen to have a maximum point at x2 = −M2

c
−1 and a minimum point

at x1 = 1. The sequence of values {K(γ1(ηi))} is increasing by (4.41). Since γ1 = 1
is a minimum point for K, the sequence {γ1(ηi)} cannot tend to 1 as i→ +∞.

Theorem 4.2.22. Assume c < −1 and M2 < 2|c|. Suppose that neither γ′(η) ∈ I
nor γ′(η) ∈ E for η large. Then, no solution γ exists.

Proof. Since we need that γ1(η) → 1 for η → +∞, then by continuity γ1 must
assume the value 1 infinitely many times. Further, it cannot assume identically the
value 1 for η large. Then there is a sequence {ηi} with ηi < ηi+1 and lim

i→+∞
ηi = +∞

such that γ2(ηi) = 0. By Lemma 4.2.21 we reach a contradiction.

Therefore, in the case of a weak magnetic field, no orbits with the required
properties exist.

Remark 4.2.23. Since this proof doesn’t involve equations (4.39), problem (4.33),
(4.36) also doesn’t admit solution for c < −1 and M2 < 2|c|, when γ is analytical.

The non-existence of the solution of problem (4.35), (4.36) can be clearly obtained
for c < −1 and any M2 following [13], because equation (4.35)2 is the same equation
taken into account by the Author.

We now turn to the numerical integration of the three problems of Theorem
4.2.1, separately. The values of c are taken according to [13], [36] and Chapter 1.3,
while M2 is chosen as in Chapters 2 and 3.

4.2.2 CASE I-N: H0 = H0e1.

We have solved problem (4.33), (4.36) numerically using the bvp4c MATLAB rou-
tine.

Figure 4.2 shows the graphics of ϕ, ϕ′, ϕ′′ for M2 = 1, and c = 0.25.
As one can see,

lim
η→+∞

ϕ′′(η) = 0, lim
η→+∞

ϕ′(η) = 1.

The numerical values of the descriptive quantities of motion when M2 and c
change are shown in Table 4.1.

Our results are consistent with the previous studies when M2 = 0 ([13], [36]). In
particular, when M2 = 0 and c = 1 we obtain the axisymmetric flow: α = β = hd
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Figure 4.2: CASE I-N: ϕ, ϕ′, ϕ′′ profile for M2 = 1 and c = 0.25.

Table 4.1: CASE I-N: descriptive quantities of motion for some values of c and M2.

M2 c ϕ′′(0) γ′′(0) hd α β ηϕ ηγ δ

1 -0.75 1.2051 0.4660 -1.8314 0.6897 1.5300 2.7009 4.4766 4.4766
-0.25 1.2166 0.9234 0.6001 0.6692 0.8768 2.5219 3.0639 3.0639
0.25 1.2521 1.2537 0.6300 0.6253 0.6487 2.2449 2.3264 2.3264
1.00 1.3216 1.6383 0.5288 0.5627 0.4950 1.9227 1.7971 1.9227

2 -0.75 1.1823 1.0354 0.0149 0.7231 0.9592 2.9236 3.9003 3.9003
-0.25 1.2123 1.3401 0.6732 0.6741 0.6769 2.5466 2.6438 2.6438
0.25 1.2550 1.5927 0.6080 0.6229 0.5485 2.2347 2.1021 2.2347
1.00 1.3288 1.9133 0.5012 0.5582 0.4442 1.9076 1.6801 1.9076

4 -0.75 1.1608 1.7342 1.2399 0.7547 0.5930 3.1184 2.7003 3.1184
-0.25 1.2072 1.9369 0.7403 0.6795 0.4970 2.5713 2.1121 2.5713
0.25 1.2588 2.1217 0.5832 0.6198 0.4366 2.2229 1.7909 2.2229
1.00 1.3393 2.3732 0.4645 0.5521 0.3769 1.8871 1.5014 1.8871

5 -0.75 1.1543 1.9982 1.5127 0.7639 0.5143 3.1703 2.3676 3.1703
-0.25 1.2055 2.1771 0.7593 0.6812 0.4470 2.5788 1.9361 2.5788
0.25 1.2602 2.3433 0.5752 0.6188 0.4011 2.2191 1.6772 2.2191
1.00 1.3434 2.5735 0.4514 0.5498 0.3530 1.8797 1.4309 1.8797

10 -0.75 1.1355 2.9930 2.1349 0.7892 0.3407 3.3014 1.5866 3.3014
-0.25 1.2002 3.1160 0.8090 0.6863 0.3182 2.5994 1.4312 2.5994
0.25 1.2647 3.2346 0.5524 0.6155 0.2999 2.2076 1.3140 2.2076
1.00 1.3578 3.4051 0.4099 0.5421 0.2777 1.8559 1.1825 1.8559
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Figure 4.3: CASE I-N: the first picture shows the profiles of γ, γ′, γ′′ in the reverse
flow (M2 = 0.2, c = −0.75). The second picture shows the profile of γ in the absence
of the reverse flow (M2 = 1, c = 0.25).

and ϕ′′(0) = g′′(0). We notice that there are no results in the literature if M2 6= 0
([7]).

As far as the behaviour of γ, γ′, γ′′ is concerned, if c < cr then the behaviour of
γ, γ′, γ′′ is shown in Figure 4.31, otherwise it is given in Figure 4.32. We underline
that in the first Figure there is a zone where the reverse flow appears. The values
of cr in dependence on M

2 are given in Table 4.2.
Table 4.1 shows that if M2 is fixed, then, when c increases, the values of ϕ′′(0),

γ′′(0) increase, while the values of α, β, ηϕ, ηγ decrease. Hence the thickness of the
boundary layer decreases when c increases.

In Table 4.1, we can also see the values of the descriptive quantities of the motion
when M2 increases:

• ϕ′′(0), γ′′(0) and ηϕ increase;

• α, β and ηγ decrease.

The thickness δ of the boundary layer also depends on M2 and decreases when
M2 increases (as easily seen in Figures 4.4).

Table 4.2 underlines that as the Hartmann number M2 increases, the value of cr
for which the reverse flow does not occur (i.e. when γ′′(0) = 0) decreases and when
M2 = 0.8123, the reverse flow does not occur at all for any value of c. Actually,
the magnetic field prevents the occurrence of the reverse flow. This fact can be
explained by observing that

∂p

∂x3
= −ρa2cx3(c+M2),
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Table 4.2: CASE I-N: values of cr and ch when M
2 increases.

M2 cr ch

0 -0.4294 -0.3919
0.10 -0.4991 -0.4097
0.20 -0.5691 -0.4274
0.30 -0.6393 -0.4452
0.40 -0.7097 -0.4630
0.50 -0.7802 -0.4808
0.60 -0.8507 -0.4986
0.70 -0.9210 -0.5164
0.80 -0.9913 -0.5343
0.8122 -0.9999 -0.5364
0.8123 no reverse flow -0.5365
3.3306 no reverse flow h = 0

from which one can see that the signs of c and of (c+M2) modify the sign of
∂p

∂x3
.

From Table 4.1 we find that the value of hd, which is the height of the plane
towards which the inviscid fluid moves, regardless of the value of M2, increases
if c < 0, while it decreases if c > 0. Moreover, ch ≥ cr, which means that the
three-dimensional displacement thickness is always negative when the reverse flow
appears (see Table 4.2). The presence of M2 influences ch and it decreases when
M2 increases and starting from M2 = 3.3306 we have that hd is always positive.

As far as the classification of the stagnation-point is concerned, we have found
a very interesting new result: for negative values of c when M2 ≥ 2.6662, the origin
becomes a point of separation, unlike what occurs in the absence of the magnetic
field or in the next two cases, as we will see.

We note that if M2 < 2.6662, then the stagnation-point is always a point of
attachment. If c > 0 or where there is the reverse flow, the origin is a nodal point,
while when c < 0 and the reverse flow does not appear, it is a saddle point (as we
can see from Table 4.3).

In Table 4.4, for some values ofM2 ≥ 2.6662, we list the negative value of c (cs),
for which if c < cs then the origin is a separation point, while if c ≥ cs then it is
an attachment point. The change of the origin from attachment point to separation
point can be explained by the form of system (4.33). Since M2 directly influences
γ and only indirectly influences ϕ, when M2 increases, γ′′(0) becomes much greater
than ϕ′′(0) as we can see from Tables 4.2 and 4.3.

In order to summarize the classification of the stagnation-point in dependence
on M2 and c, we provide Figure 4.5.
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Table 4.3: CASE I-N: values of ϕ′′(0) + cγ′′(0) and cϕ′′(0)γ′′(0) for several values of
c, M2.

M2 c ϕ′′(0) γ′′(0) ϕ′′(0) + cγ′′(0) cϕ′′(0)γ′′(0)

1 -0.90 1.2097 0.2987 0.9409 -0.3252
-0.75 1.2051 0.4660 0.8556 -0.4212
-0.50 1.2064 0.7166 0.8481 -0.4322
-0.40 1.2096 0.8039 0.8880 -0.3890
-0.10 1.2257 1.0319 1.1225 -0.1265

10 -0.90 1.1165 2.9552 -1.5431 -2.9696
-0.75 1.1355 2.9930 -1.1093 -2.5488
-0.50 1.1676 3.0550 -0.3599 -1.7836
-0.40 1.1806 3.0795 -0.0512 -1.4543
-0.10 1.2196 3.1520 0.9044 -0.3844

30 -0.90 1.0857 5.3570 -3.7355 -5.2347
-0.75 1.1101 5.3780 -2.9234 -4.4777
-0.50 1.1513 5.4129 -1.5552 -3.1158
-0.40 1.1677 5.4268 -1.0030 -2.5348
-0.10 1.2166 5.4682 0.6698 -0.6653

Table 4.4: CASE I-N: values of cs whenM
2 increases (separation point - attachment

point).

M2 cs

4 -0.6593
5 -0.5677
10 -0.3836
15 -0.3110



156 4. MHD three-dimensional stagnation-point flow

-1 cr 0
nodal point
of attachment

saddle point
of attachment

nodal point
of attachment

M
2
<0.8123 (reverse flow in (-1,cr ) )

c

-1 0
saddle point of attachment nodal point

of attachment

0.8123≤M
2
<2.6662 (no reverse flow)

c

-1 cs 0saddle point
of separation

saddle point
of attachment

nodal point
of attachment

M
2

2.6662 (no reverse flow)≥

c

Figure 4.5: CASE I-N: classification of the stagnation-point in dependence on M2

and c.

4.2.3 CASE II-N: H0 = H0e2.

We now furnish the numerical solution of problem (4.34), (4.36).

Figure 4.6 shows the graphics of ϕ, ϕ′, ϕ′′ for M2 = 1, and c = 0.25.

As far as the behaviour of γ, γ′, γ′′ is concerned, as in CASE I-N, if c < cr, then
the reverse flow appears and the behaviour of γ, γ′, γ′′ is the same as in Figure 4.71.
Otherwise γ′ is always positive and the trend of γ, γ′, γ′′ is shown in Figure 4.72.

The numerical integration furnishes ϕ′′(0), γ′′(0), hd, α, β, ηϕ, and ηγ : their
values, when M2 and c change, are reported in Table 4.5.

We notice that if M2 is fixed, then the descriptive quantities behave as in CASE
I-N when c increases.

When c is fixed, we find that if M2 increases, then ϕ′′(0), γ′′(0) increase, while
the other parameters decrease.
Hence we have that the thickness δ of the boundary layer decreases when M2 in-
creases. In this case the thickness of the boundary layer is smaller than in CASE
I-N. Figure 4.8 illustrates the change of the velocity for different values of M2.

Table 4.6 shows that as the Hartmann number M2 increases, then the value of
cr for which the reverse flow does not occur decreases and when M2 = 0.7583, the
reverse flow does not occur at all for any value of c. In this case

∂p

∂x3
= −ρa2cx3(c+ 2M2),
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Figure 4.6: CASE II-N: ϕ, ϕ′, ϕ′′ profiles for M2 = 1 and c = 0.25.
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Figure 4.7: CASE II-N: the first picture shows the profile of γ, γ′, γ′′ in the reverse
flow (M2 = 0.2, c = −0.75). The second picture shows the profile of γ, γ′, γ′′ in
the absence of the reverse flow (M2 = 1, c = 0.25).
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Table 4.5: CASE II-N: descriptive quantities of motion for some values of c andM2.

M2 c ϕ′′(0) γ′′(0) hd α β ηϕ ηγ δ

1 -0.75 1.5678 0.4894 -2.1123 0.5628 1.4544 2.3006 4.3855 4.3855
-0.25 1.5752 0.9395 0.4523 0.5522 0.8521 2.1961 2.9803 2.9803
0.25 1.5980 1.2647 0.5505 0.5286 0.6385 2.0156 2.2864 2.2864
1.00 1.6453 1.6453 0.4910 0.4910 0.4910 1.7797 1.7797 1.7797

2 -0.75 1.8501 1.0585 -0.7283 0.4980 0.9068 2.1251 3.6713 3.6713
-0.25 1.8639 1.3579 0.4260 0.4836 0.6563 1.9869 2.5441 2.5441
0.25 1.8845 1.6065 0.4802 0.4658 0.5380 1.8416 2.0509 2.0509
1.00 1.9232 1.9232 0.4392 0.4392 0.4392 1.6556 1.6556 1.6556

4 -0.75 2.3240 1.7547 -0.0685 0.4098 0.5692 1.8039 2.5268 2.5268
-0.25 2.3384 1.9544 0.3709 0.3991 0.4836 1.6986 2.0251 2.0251
0.25 2.3556 2.1366 0.3961 0.3881 0.4281 1.6006 1.7391 1.7391
1.00 2.3852 2.3852 0.3720 0.3720 0.3720 1.4730 1.4730 1.4730

5 -0.75 2.5290 2.0177 0.0298 0.3796 0.4962 1.6836 2.2264 2.2264
-0.25 2.5429 2.1942 0.3489 0.3706 0.4358 1.5941 1.8581 1.8581
0.25 2.5589 2.3582 0.3680 0.3616 0.3935 1.5114 1.6282 1.6282
1.00 2.5858 2.5858 0.3484 0.3484 0.3484 1.4025 1.4025 1.4025

10 -0.75 3.3743 3.0094 0.1598 0.2898 0.3331 1.3072 1.5192 1.5192
-0.25 3.3857 3.1310 0.2763 0.2853 0.3125 1.2612 1.3837 1.3837
0.25 3.3978 3.2484 0.2838 0.2809 0.2954 1.2180 1.2790 1.2790
1.00 3.4174 3.4174 0.2745 0.2745 0.2745 1.1590 1.1590 1.1590
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Figure 4.8: CASE II-N: profiles of ϕ′ (Figure 4.81) and γ
′ (Figure 4.82,3) for several

values of M2.
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Table 4.6: CASE II-N: values of cr and ch when M
2 increases.

M2 cr ch

0.10 -0.5024 -0.4058
0.20 -0.5752 -0.4194
0.30 -0.6479 -0.4327
0.40 -0.7202 -0.4457
0.50 -0.7922 -0.4583
0.60 -0.8636 -0.4707
0.70 -0.9342 -0.4827
0.7583 -0.9751 -0.4895
0.7584 no reverse flow -0.4896
100.00 no reverse flow -0.9836

from which one can see that the signs of c and of (c+2M2) modify the sign of
∂p

∂x3
.

From Table 4.5 we see that hd, regardless of the values of M
2, increases if c < 0,

while it decreases if c > 0.
The three-dimensional displacement thickness is always negative when the re-

verse flow appears since ch ≥ cr (see Table 4.6). The presence of M
2 influences ch

and it decreases when M2, but different from the previous case, hd can be always
negative for physically reasonable values of M2.

As far as the classification of the stagnation-point is concerned, we have found
that ϕ′′(0) + cγ′′(0) is always positive, so that the origin is a point of attachment.
We remark that in this case M2 directly influences ϕ and γ, as we can see from
system (4.34).
If c > 0 or where there is the reverse flow, then the origin is a nodal point, while
when c < 0 and the reverse flow does not appear, it is a saddle point. These results
are the same as for M2 = 0.

4.2.4 CASE III-N: H0 = H0e3.

The functions ϕ, ϕ′, ϕ′′ solution of (4.35), (4.36) are displayed in Figure 4.9 for
M2 = 1, and c = 0.25.

As before, if c < cr, then the reverse flow appears and the behaviour of γ, γ′, γ′′

is the same as in Figure 4.101. When c ≥ cr the function γ
′ is always positive and

γ, γ′, γ′′ are displayed in Figure 4.102.
The values of ϕ′′(0), γ′′(0), hd, α, β, ηϕ, and ηγ are shown in Table 4.7.
We have that if M2 is fixed, then the descriptive quantities behave as in CASE

I-N when c increases, even if they do not change in a relevant way compared to the
previous cases.
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Figure 4.9: CASE III-N: ϕ, ϕ′, ϕ′′ profiles for M2 = 1 and c = 0.25.
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Figure 4.10: CASE III-N: the first picture shows the profiles of γ, γ′, γ′′ in the
reverse flow (M2 = 0.2, c = −0.75). The second picture shows the profiles of
γ, γ′, γ′′ in the absence of the reverse flow (M2 = 1, c = 0.25).
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Table 4.7: CASE III-N: descriptive quantities of motion for some values of c and
M2.

M2 c ϕ′′(0) γ′′(0) hd α β ηϕ ηγ δ

1 -0.75 1.5941 -0.4355 -5.1702 0.5358 2.4378 2.1012 4.4881 4.4881
-0.25 1.5805 0.3035 0.2946 0.5472 1.3049 2.1626 3.5180 3.5180
0.25 1.5950 0.8234 0.5869 0.5309 0.8112 2.0279 2.5816 2.5816
1.00 1.6383 1.3216 0.5288 0.4950 0.5627 1.7971 1.9227 1.9227

2 -0.75 1.8799 -0.4130 -5.2322 0.4716 2.3728 1.9069 4.4603 4.4603
-0.25 1.8700 0.3264 0.2171 0.4787 1.2637 1.9522 3.4541 3.4541
0.25 1.8806 0.8361 0.5342 0.4683 0.7979 1.8567 2.5469 2.5469
1.00 1.9133 1.3288 0.5012 0.4442 0.5582 1.6801 1.9076 1.9076

4 -0.75 2.3507 -0.3834 -5.3083 0.3919 2.2920 1.6424 4.4241 4.4241
-0.25 2.3443 0.3559 0.1227 0.3956 1.2143 1.6706 3.3766 3.3766
0.25 2.3513 0.8535 0.4683 0.3902 0.7808 1.6151 2.5031 2.5031
1.00 2.3732 1.3393 0.4645 0.3769 0.5521 1.5014 1.8871 1.8871

5 -0.75 2.5541 -0.3729 -5.3339 0.3648 2.2644 1.5462 4.4113 4.4113
-0.25 2.5486 0.3663 0.0909 0.3676 1.1979 1.5692 3.3504 3.3504
0.25 2.5547 0.8599 0.4457 0.3635 0.7748 1.5251 2.4881 2.4881
1.00 2.5735 1.3434 0.4514 0.3530 0.5498 1.4309 1.8797 1.8797

10 -0.75 3.3936 -0.3396 -5.4114 0.2826 2.1806 1.2359 4.3710 4.3710
-0.25 3.3905 0.3995 -0.0047 0.2837 1.1489 1.2465 3.2719 3.2719
0.25 3.3940 0.8815 0.3768 0.2821 0.7559 1.2277 2.4417 2.4417
1.00 3.4051 1.3578 0.4099 0.2777 0.5421 1.1825 1.8559 1.8559
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Figure 4.11: CASE III-N: profiles of ϕ′ (Figure 4.111) and γ
′ (Figures 4.112,3) for

several values of M2.

When c is fixed, if M2 increases, then ϕ′′(0), γ′′(0) increase, while the other
parameters decrease, so that the thickness δ of the boundary layer decreases when
M2 increases (as easily seen in Figures 4.11). The boundary layer is thinner than
in CASE II-N.

Table 4.8 shows that as the Hartmann number M2 increases, then the value of
cr for which the reverse flow does not occur (i.e. when γ′′(0) = 0) decreases very
slowly, so that in this case the influence of the magnetic field is much less significant
with respect to CASEs I-N and II-N. This is due to the form of

∂p

∂x3
= −ρa2c2x3,

∂p

∂x1
= −ρa2x1(1 +M2),

which have the same sign that they would have in the absence of the external mag-
netic field. In particular, we see that the reverse flow always appears for physically
meaningful values of M2.
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Table 4.8: CASE III-N: values of cr and ch when M
2 increases.

M2 cr ch

1 -0.4564 -0.3608
2 -0.4740 -0.3377
10 -0.5295 -0.2476
20 -0.5524 -0.2010
50 -0.5768 -0.1441
100 -0.5904 -0.1085

From Table 4.8 it appears a new interesting result: ch increases when M2 in-
creases. Further the three-dimensional displacement thickness is always negative
when the reverse flow appears (ch ≥ cr more than in the other two cases).

As far as the classification of the stagnation-point is concerned, as for the previous
case, we have found that the origin is always a point of attachment. As one can
see, M2 directly influences ϕ and only directly influences γ in system (4.35), so that
when M2 increases, ϕ′′(0) becomes much greater than γ′′(0).

Finally, if c > 0 or where there is the reverse flow, the origin is a nodal point,
while when c < 0 and the reverse flow does not appear, it is a saddle point.

4.3 Micropolar fluids

We now investigate the steady three-dimensional MHD stagnation-point flow of a
homogeneous, incompressible, electrically conducting micropolar fluid towards a flat
surface coinciding with the plane x2 = 0.

In the absence of free electric charges and external mechanical body forces and
body couples, the MHD equations for such a fluid are (2.44).

The velocity v and the microrotation w are given by

v1 = ax1f
′(x2), v2 = −a[f(x2) + cg(x2)], v3 = acx3g

′(x2),

w1 = −cx3F (x2), w2 = 0, w3 = x1G(x2), (x1, x3) ∈ R
2, x2 ∈ R

+, (4.42)

where f, g, F,G are sufficiently regular unknown functions (f, g ∈ C3(R+), F, G ∈
C2(R+)).

We ask

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0,

F (0) = 0, G(0) = 0, (4.43)
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so that the no-slip and the strict adherence conditions are satisfied.

We, further, assume that at infinity, the flow approaches the flow of an inviscid
fluid, whose velocity is given by (4.12):

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = 0. (4.44)

The constant C is related to the asymptotic behaviour of f and g at infinity as
for the Newtonian case. So relations (4.16) and (4.17) continue to hold.

We now proceed by neglecting the induced magnetic field and we prove:

Theorem 4.3.1. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the half-space S . If we impress the external magnetic field H0

parallel to one of the axes and if we neglect the induced magnetic field, then the
steady three-dimensional MHD stagnation-point flow of such a fluid has the form

v = ax1f
′(x2)e1 − a[f(x2) + cg(x2)]e2 + acx3g

′(x2)e3,

w = −cx3F (x2)e2 + x1G(x2)e3, E = 0, (x1, x3) ∈ R
2, x2 ∈ R

+,

and

(I-M) if H0 = H0e1, then the pressure field is given by

p =− ρ
a2

2
[x21 + [f(x2) + cg(x2)]

2 + c2x23]

− ρa(ν + νr)[f
′(x2) + cg′(x2)]− 2νrρ

∫ x2

0

(cF (s) +G(s))ds

− σeaB
2
0

[

c

2
x23 −

∫ x2

0

(f(s) + cg(s))ds

]

+ p0, (4.45)
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and (f, g, F,G) satisfies problem

ν + νr
a

f ′′′ + (f + cg)f ′′ − f ′
2
+ 1 +

2νr
a2
G′ = 0,

ν + νr
a

g′′′ + (f + cg)g′′ − cg′
2
+ c+

2νr
a2
F ′ +M2(1− g′) = 0, (4.46)

λF ′′ + Ia[F ′(f + cg)− cFg′]− 2νr(2F + ag′′) = 0,

λG′′ + Ia[G′(f + cg)−Gf ′]− 2νr(2G+ af ′′) = 0, (4.47)

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0,

F (0) = 0, G(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = 0, (4.48)

provided F,G ∈ L1([0,+∞));

(II-M) if H0 = H0e2, then the pressure field is given by

p =− ρ
a2

2
[x21 + [f(x2) + cg(x2)]

2 + c2x23]

− ρa(ν + νr)[f
′(x2) + cg′(x2)]

− 2νrρ

∫ x2

0

(cF (s) +G(s))ds− σeaB
2
0(x

2
1 + cx23) + p0, (4.49)

and (f, g, F,G) satisfies problem

ν + νr
a

f ′′′ + (f + cg)f ′′ − f ′
2
+ 1 +

2νr
a2
G′ +M2(1− f ′) = 0,

ν + νr
a

g′′′ + (f + cg)g′′ − cg′
2
+ c+

2νr
a2
F ′ +M2(1− g′) = 0, (4.50)

with (4.47), and (4.48), provided F,G ∈ L1([0,+∞));
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(III-M) if H0 = H0e3, then the pressure field is given by

p =− ρ
a2

2
[x21 + [f(x2) + cg(x2)]

2 + c2x23]

− ρa(ν + νr)[f
′(x2) + cg′(x2)]− 2νrρ

∫ x2

0

(cF (s) +G(s))ds

− σeaB
2
0

[x21
2
−

∫ x2

0

(f(s) + cg(s))ds
]

+ p0, (4.51)

and (f, g, F,G) satisfies problem

ν + νr
a

f ′′′ + (f + cg)f ′′ − f ′
2
+ 1 +

2νr
a2
G′ +M2(1− f ′) = 0,

ν + νr
a

g′′′ + (f + cg)g′′ − cg′
2
+ c +

2νr
a2
F ′ = 0, (4.52)

with (4.47), and (4.48), provided F,G ∈ L1([0,+∞)).

Proof. We begin by proving CASE I-M.
If

H0 = H0e1,

then

(∇×H)×H ≃ σeµeaH
2
0 [(f + cg)e2 − cg′x3e3]. (4.53)

We substitute (4.53) into (2.44)1,3, so that

ax1

[

(ν + νr)f
′′′ + af ′′(f + cg)− af ′

2
+
2νr
a
G′

]

=
1

ρ

∂p

∂x1
,

−(ν + νr)a(f
′′ + cg′′)− a2(f ′ + cg′)(f + cg)

−2νr(cF +G) +
σea

ρ
B2
0(f + cg) =

1

ρ

∂p

∂x2
,

cx3

[

(ν + νr)g
′′′ + ag′′(f + cg)− cg′

2
+
2νr
a
F ′ − σe

ρ
B2
0g
′

]

=
1

ρ

∂p

∂x3
,

c[λF ′′ + Ia[F ′(f + cg)− cFg′]− 2νr(2F + ag′′)] = 0,

λG′′ + Ia[G′(f + cg)−Gf ′]− 2νr(2G+ af ′′) = 0. (4.54)

Since we are interested in three-dimensional flow, we assume c 6= 0 and so equation
(4.54)4 can be replaced by

λF ′′ + Ia[F ′(f + cg)− cFg′]− 2νr(2F + ag′′) = 0. (4.55)
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Then, by integrating (4.54)2, we find

p =− 1

2
ρa2[f(x2) + cg(x2)]

2 − ρa(ν + νr)[f
′(x2) + cg′(x2)]

− 2νrρ

∫ x2

0

[cF (s) +G(s)]ds+ σeaB
2
0

∫ x2

0

[f(s) + cg(s)]ds+ P (x1, x3),

where the function P (x1, x3) is determined supposing that, far from the wall, the
pressure p has the same behaviour as for an inviscid fluid, whose pressure is given
by (4.11) replacing x2 by x2 − C.
Therefore, under the assumption F,G ∈ L1([0,+∞)), by virtue of (4.44), (4.16), we
get

P (x1, x3) = −ρ
a2

2
(x1

2 + c2x23)−
a

2
σeB

2
0cx

2
3 + p∗0.

Finally, the pressure field assumes the form

p =− ρ
a2

2
[x21 + (f(x2) + cg(x2))

2 + c2x23]

− ρa(ν + νr)[f
′(x2) + cg′(x2)]− 2νrρ

∫ x2

0

(cF (s) +G(s))ds

− σeaB
2
0

[

c

2
x23 −

∫ x2

0

(f(s) + cg(s))ds

]

+ p0, (4.56)

where the constant p0 is the pressure at the origin.

In consideration of (4.56), we obtain the ordinary differential system

ν + νr
a

f ′′′ + (f + cg)f ′′ − f ′
2
+ 1 +

2νr
a2
G′ = 0,

ν + νr
a

g′′′ + (f + cg)g′′ − cg′
2
+ c+

2νr
a2
F ′ +M2(1− g′) = 0, (4.57)

whereM2 is the Hartmann number. To these equations we append equations (4.54)5,
and (4.55) and the boundary conditions (4.43), and (4.44).
As far as the other two cases are concerned, if we proceed as previously, then we get
the assertion.

Remark 4.3.2. We see from (4.45), (4.49), (4.51) that the pressure takes again its
maximum along the wall x2 = 0 in the stagnation-point.

Remark 4.3.3. If c = 1, f = g, F = G, H0 = H0e2, the axisymmetric case is
obtained.
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It is now convenient to rewrite the boundary value problems in Theorem 4.3.1
in dimensionless using transformation (1.49).

Hence system (4.46), (4.47) can be written as

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 + Γ′ = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c+ Φ′ +M2(1− γ′) = 0,

Φ′′ + c3Φ
′(ϕ+ cγ)− Φ(c3cγ

′ + c2)− c1γ
′′ = 0,

Γ′′ + c3Γ
′(ϕ+ cγ)− Γ(c3ϕ

′ + c2)− c1ϕ
′′ = 0, (4.58)

where c1, c2, c3 are given by (1.25).
The boundary conditions (4.48) in dimensionless form become:

ϕ(0) = 0, ϕ′(0) = 0,

γ(0) = 0, γ′(0) = 0,

Φ(0) = 0, Γ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1,

lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = 0. (4.59)

Equations (4.50) can be written as

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 + Γ′ +M2(1− ϕ′) = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c+ Φ′ +M2(1− γ′) = 0; (4.60)

and equations (4.52) as

ϕ′′′ + (ϕ+ cγ)ϕ′′ − ϕ′
2
+ 1 + Γ′ +M2(1− ϕ′) = 0,

γ′′′ + (ϕ+ cγ)γ′′ − cγ′
2
+ c+ Φ′ = 0. (4.61)

We obtain other two different ordinary differential problems by adding equations
(4.58)3,4 and the boundary conditions (4.59).

In dimensionless form we also have

α =

√

a

ν + νr
A, β =

√

a

ν + νr
B, hd =

α + cβ

1 + c
.

The remainder of this section will be devoted to prove that the cases considered
in Remark 4.1.2 are not possible. For the sake of simplicity we use the dimensionless
equations.
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Proposition 4.3.4. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the half-space S. If we neglect the induced magnetic field and we
suppose either

i) c = 1, H0 parallel to the plane Ox1x3,

or

ii) c = −1
2
, H0 parallel to the plane Ox2x3,

then, under the hypothesis ϕ,Φ,Γ ∈ C5(R+), there is no solution to the problem of
the steady three-dimensional MHD stagnation-point flow.

Proof. i) If c = 1 and the external magnetic induction field is B = B1e1 + B3e3
(B1, B3 6= 0), then after some calculations we deduce:

ϕ′′′ + (ϕ+ γ)ϕ′′ − ϕ′
2
+M2

3 (1− ϕ′) + 1 + Γ′ = 0,

M1M3(γ
′ − 1) = 0,

γ′′′ + (ϕ+ γ)γ′′ − γ′
2
+M2

1 (1− γ′) + 1 + Φ′ = 0,

M1M3(ϕ
′ − 1) = 0, (4.62)

where M2
i =

σeB
2
i

ρa
, i = 1, 3.

From (4.62)2, (4.62)4, we have ϕ
′ = γ′ = 1, ∀η ≥ 0, which contradicts the boundary

conditions (4.59)2,4.

ii) If c = −1
2
and B = B2e2 +B3e3 (B2, B3 6= 0), then we arrive at:

ϕ′′′ +
(

ϕ− γ

2

)

ϕ′′ − ϕ′
2
+ (M2

2 +M2
3 )(1− ϕ′) + 1 + Γ′ = 0,

γ′′′ +
(

ϕ− γ

2

)

γ′′ +
γ′2

2
+M2

2 (1− γ′)− 1

2
+ Φ′ = 0,

M2M3(ϕ− γ + α− β) = 0. (4.63)

From (4.63)3 evaluated at η = 0 and using (4.59)1,3, we deduce ϕ = γ. Therefore
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we have to solve the following overdetermined ODEs system

ϕ′′′ +
ϕ

2
ϕ′′ − ϕ′

2
+ (M2

2 +M2
3 )(1− ϕ′) + 1 + Γ′ = 0,

ϕ′′′ +
ϕ

2
ϕ′′ +

ϕ′2

2
+M2

2 (1− ϕ′)− 1

2
+ Φ′ = 0,

Φ′′ + c3Φ
′
ϕ

2
+ Φ

(c3
2
ϕ′ − c2

)

− c1ϕ
′′ = 0,

Γ′′ + c3Γ
′
ϕ

2
− Γ(c3ϕ

′ + c2)− c1ϕ
′′ = 0, (4.64)

together with the boundary conditions (4.59).
Our purpose is to prove that such a problem does not admit solution. To this

end, by subtracting (4.64)1 from (4.64)2, we obtain that (ϕ,Φ,Γ) solves the equation

3

2
(ϕ′

2 − 1) +M2
3 (ϕ

′ − 1) + Φ′ − Γ′ = 0. (4.65)

Computing (4.65), (4.64)3,4 at η = 0, gives

Φ′(0)− Γ′(0) =
3

2
+M2

3 , Φ′′(0) = Γ′′(0) = c1ϕ
′′(0). (4.66)

If we differentiate (4.65), then we have

3ϕ′ϕ′′ +M2
3ϕ

′′ + Φ′′ − Γ′′ = 0. (4.67)

By means of (4.66)2, (4.67) we deduce

Φ′′(0) = Γ′′(0) = ϕ′′(0) = 0. (4.68)

After differentiating (4.64)3,4 we get

Γ′′′(0) = −c2(1 +M2
2 +M2

3 ) + (c1 − c2)ϕ
′′′(0),

Φ′′′(0)− Γ′′′(0) = c2

(3

2
+M2

3

)

, (4.69)

where we have used (4.66)1, and (4.64)1.
If we differentiate (4.67), then we obtain

3ϕ′′
2
+ 3ϕ′ϕ′′′ +M2

3ϕ
′′′ + Φ′′′ − Γ′′′ = 0, (4.70)

from which, taking account of (4.68)3, follows

ϕ′′′(0) = −Φ
′′′(0)− Γ′′′(0)

M2
3

. (4.71)
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Further, from (4.64)1,2 we get

Φ′(0) =
1

2
−M2

2 − ϕ′′′(0), Γ′(0) = −[1 +M2
2 +M2

3 + ϕ′′′(0)]. (4.72)

Differentiating of (4.70) furnishes:

9ϕ′′ϕ′′′ + 3ϕ′ϕIV +M2
3ϕ

IV + ΦIV − ΓIV = 0. (4.73)

Another differentiation of (4.64)3,4 gives

ΦIV (0) = ΓIV (0) = c1ϕ
IV (0),

so that (4.73)

ΦIV (0) = ΓIV (0) = ϕIV (0) = 0. (4.74)

If we differentiate (4.73) and evaluate the resulting equation at η = 0, we obtain

9ϕ′′′(0)2 +M2
3ϕ

V (0) + ΦV (0)− ΓV (0) = 0. (4.75)

On the other hand we can find ϕV (0) from (4.64)1 after two differentiations:

ϕV (0) = (M2
2 +M2

3 )ϕ
′′′(0)− Γ′′′(0). (4.76)

By means of another differentiation of (4.64)3,4 we arrive at

ΦV (0)− ΓV (0) = c2[Φ
′′′(0)− Γ′′′(0)]− c3ϕ

′′′(0)
[

2Φ′(0) +
5

2
Γ′(0)

]

. (4.77)

Finally, on substituting (4.76), (4.77) into (4.75) and taking into account (4.69)1,
(4.71), (4.72), we get

9

2
(2 + c3)ϕ

′′′(0)2 +
[

M2
3 (M

2
2 +M2

3 − c1 +
5

2
c3) +

c3
2
(9M2

2 + 3)
]

ϕ′′′(0)

+ c2M
2
3 (1 +M2

2 +M2
3 ) = 0. (4.78)

The conclusion follows easily because, as one can see from (4.69), (4.71), ϕ′′′(0)
does not depend on c1 and by differentiating (4.78) with respect to c1, we obtain

M2
3ϕ

′′′(0) = 0, (4.79)

which gives the absurdum

3

2
+
σe
aρ
B2
3 = 0,

as for a Newtonian fluid.
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Remark 4.3.5. If M2 = 0, then equations (4.58)1,2 (or (4.60), or (4.61)), (4.58)3,4
reduce to equations found by Guram and Anwar Kamal in [26] and they have already
been integrated numerically in Chapter 1.3.3.

Remark 4.3.6. The skin-friction components τ1, τ3 along x1 and x3 axes are given
by (4.80). Actually, ϕ′′(0), γ′′(0) depend on H0 through M2.

Remark 4.3.7. The solutions of problem (4.60), (4.58)3,4, (4.59) are invariant under
the following transformation

ϕ

(

η,
1

c
,
c1
c
,
c2
c
, c3,

M2

c

)

=
√
c γ

(

η√
c
, c, c1, c2, c3,M

2

)

,

γ

(

η,
1

c
,
c1
c
,
c2
c
, c3,

M2

c

)

=
√
c ϕ

(

η√
c
, c, c1, c2, c3,M

2

)

,

Φ

(

η,
1

c
,
c1
c
,
c2
c
, c3,

M2

c

)

=
1√
c
Γ

(

η√
c
, c, c1, c2, c3,M

2

)

,

Γ

(

η,
1

c
,
c1
c
,
c2
c
, c3,

M2

c

)

=
1√
c
Φ

(

η√
c
, c, c1, c2, c3,M

2

)

, c > 0,

so that we can confine our attention to c ∈ (−1, 1), c 6= 0.
If M2 = 0, then the previous transformation reduces to that in Remark 4.2.8.
By means of the previous transformation regular solutions of problem (4.58)1,2 (or

(4.61)), (4.58)3,4, (4.59) are transformed in solutions of problem (4.61) (or (4.58)1,2),
(4.58)3,4, (4.59).

Remark 4.3.8. As we have already said it in Remark 1.3.15, it is important to give
the explicit form of the pressure field because if one of the components of the pressure
gradient parallel to the wall has the same sign as the corresponding component of
the velocity or of the microrotation curl field, then the reverse flow or the reverse
microrotation appears.

The numerical results show that there exists a negative value cr of c such that if
c ≥ cr, then γ′, γ′′ > 0 ∀η > 0, and if c < cr then near the wall γ′, γ′′ < 0, so that

the reverse flow appears (i.e. v3 has the same sign as
∂p

∂x3
).

There also exists a negative value crw of c such that if c ≥ crw, then Φ′(0) < 0,
Φ(η) < 0 ∀η > 0, and if c < crw then near the wall Φ,Φ′ > 0 so that the reverse

microrotation appears (i.e. (∇×w)3 =
a2

2νr
cx3Φ

′(η) has the same sign as
∂p

∂x3
and

w1 has opposite sign that of x3).
The reverse flow and the reverse microrotation are also related to a sign change

of the scalar component of the skin friction (τ0) in the direction of e3 and of the
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scalar component of the skin couple friction (γ0) in the direction of e1:

τ0 = ρa3/2(ν + νr)
1/2[x1ϕ

′′(0)e1 + cx3γ
′′(0)e3], (4.80)

σ0 = ρλ
a2

2νr
[−cx3Φ′(0)e1 + x1Γ

′(0)e3]. (4.81)

As one can see from (4.45), (4.49), (4.51), the pressure field depends on the
external magnetic field through the Hartmann number M2, which influences the sign
of the components of the pressure gradient along the surface. For this reason, as
we will see in the next numerical sections, the magnetic field tends to prevent the
occurrence of the reverse flow and of the reverse microrotation. This behaviour
appears more clearly in CASEs I-II-M, as it happened for the Newtonian fluids.

In particular, we indicate with

• M2
r (M2

rw) the value ofM
2 starting from which the reverse flow (microrotation)

doesn’t occur at all for any value of c.

Remark 4.3.9. In all the three cases considered in Theorem 4.3.1 it is interesting to
classify the origin as nodal or saddle point and as attachment or separation point.
This classification can be done following the definitions given in Remark 1.3.16.
From those considerations it is clear that we need to know the signs of c, ϕ′′(0), γ′′(0)
in order to classify the stagnation-point as in Chapter 1.3.3. Yet now ϕ′′(0), γ′′(0)
depend on M2.

As in CASE I-N, we will see that in CASE I-M the origin can be also become
a separation point, differently from the other two cases. Hence in CASE I-M we
denote by

• M2
s the value of M2 starting from which the origin becomes a point of separa-

tion;

and for some values of M2 ≥ M2
s , we define

• cs the negative values of c such that if c < cs then the origin is a separation
point, while if c ≥ cs then it is an attachment point.

The change of the origin from attachment point to separation point can be explained
by the form of system (4.58).

Remark 4.3.10. As in the absence of the external magnetic field (see Chapter 1.3.3),
from the numerical results we will see that the three dimensional displacement thick-
ness hd can be negative, so that

• ch is the negative values of c such that if c < ch, then hd < 0 and if c ≥ ch,
then hd ≥ 0.
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Figure 4.12: CASE I-M: ϕ, ϕ′, ϕ′′ profiles.

Remark 4.3.11. In the following sections, we will show that the solution (ϕ, γ,Φ,Γ)
of the three problems considered in Theorem 4.3.1 satisfies the conditions (4.59)7,10;
therefore we recall Remark 1.3.17, where we defined:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99);

• ηΦ (ηΓ) the value of η such that Φ(ηΦ) = −0.01 (Γ(ηΓ) = −0.01).

If η > ηϕ (η > ηγ), then ϕ
∼= η−α (γ ∼= η− β), and if η > ηΦ (η > ηΓ), then Φ

∼= 0
(Γ ∼= 0).
The effect of the viscosity on the velocity and on the microrotation appears only in
a layer lining the boundary whose thickness is δv = max(ηf , ηg) for the velocity and
δw = max(ηF , ηG) for the microrotation. The thickness δ of the boundary layer for
the flow is defined as

δ := max(δv, δw).

In the next three sections, we present our numerical results in tabular and graph-
ical forms in order to investigate the important features of the boundary value prob-
lems given in Theorem 4.3.1. The values of M2, c, c1, c2 and c3 are taken according
to the previous Chapters.

4.3.1 CASE I-M: H0 = H0e1.

We consider the solution of problem (4.58), (4.59): ϕ, ϕ′, ϕ′′ are shown in Figure
4.12.

As far as the behaviour of γ, γ′, γ′′ is concerned, if c < cr, then it is shown in
Figure 4.131 (reverse flow appears), otherwise it is given in Figure 4.132.
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Figure 4.13: CASE I-M: the first picture shows the profiles of γ, γ′, γ′′ in the reverse
flow. The second picture shows the profiles of γ, γ′, γ′′ in the absence of the reverse
flow.

The function Φ also presents a zone of reverse microrotation for some negative
values of c. If c < crw (Φ′(0) > 0) then the behaviour of Φ,Φ′ is shown in Figure
4.141, otherwise it is given in Figure 4.142. The thickness of the reverse microrotation
zone is very small.

Figure 4.15 shows the profiles of Γ,Γ′.
The numerical integration furnishes the value of ϕ′′(0), γ′′(0), Φ′(0), Γ′(0), hd,

α, β, ηϕ, ηγ, ηΦ, ηΓ, δv, δw and δ when c, c1, c2, c3 and M
2 change, as it is shown

in Tables 4.9, 4.10, 4.11 and 4.12.
We underline that there are no results in the literature if M2 6= 0 ([8]).
From Tables 4.11-4.12 and from Figures 4.16-4.18 it appears that if we fix two

parameters among c1, c2, c3, then we get the same considerations as in the absence
of the external electromagnetic field (Chapter 1.3.3).

In Table 4.9, 4.10, 4.11 and 4.12 we see the values of the descriptive quantities
of the motion when M2 increases and assumes the values 1, 2, 5. If M2 increases,
then

• γ′′(0) increases;

• Φ′(0), β, ηγ , ηΦ decrease;

• Γ′(0), hd, α, ηϕ, ηΓ increase if c < 0, otherwise they decrease;

• ϕ′′(0) increases if c > 0, otherwise it decreases.

Further the thickness δ of the boundary layer depends onM2 and decreases when
M2 increases (as easily seen in Figures 4.19 and 4.20).
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Table 4.9: CASE I-M: descriptive quantities of motion for some values of c, c1, c2, c3,
and M2.

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) Φ′(0) Γ′(0) hd α β

1 -0.75 0.1 1.5 0.1 1.1944 0.4584 -0.0299 -0.0520 -1.7886 0.6856 1.5104
0.5 1.1955 0.4582 -0.0309 -0.0501 -1.7837 0.6859 1.5091

3.0 0.1 1.1976 0.4614 -0.0224 -0.0433 -1.8080 0.6867 1.5182
0.5 1.1981 0.4613 -0.0227 -0.0425 -1.8063 0.6868 1.5178

0.5 1.5 0.1 1.1505 0.4276 -0.1522 -0.2602 -1.5851 0.6693 1.4208
0.5 1.1564 0.4264 -0.1577 -0.2508 -1.5581 0.6707 1.4137

3.0 0.1 1.1672 0.4425 -0.1128 -0.2167 -1.7045 0.6745 1.4675
0.5 1.1697 0.4421 -0.1146 -0.2125 -1.6960 0.6752 1.4656

-0.25 0.1 1.5 0.1 1.2059 0.9134 -0.0456 -0.0525 0.5977 0.6656 0.8692
0.5 1.2071 0.9137 -0.0457 -0.0505 0.5980 0.6658 0.8692

3.0 0.1 1.2091 0.9168 -0.0367 -0.0438 0.5981 0.6665 0.8716
0.5 1.2096 0.9169 -0.0368 -0.0429 0.5983 0.6666 0.8716

0.5 1.5 0.1 1.1620 0.8720 -0.2288 -0.2627 0.5885 0.6508 0.8379
0.5 1.1683 0.8739 -0.2295 -0.2528 0.5899 0.6520 0.8382

3.0 0.1 1.1785 0.8896 -0.1838 -0.2190 0.5904 0.6554 0.8503
0.5 1.1812 0.8902 -0.1844 -0.2146 0.5911 0.6559 0.8504

0.25 0.1 1.5 0.1 1.2414 1.2433 -0.0534 -0.0539 0.6268 0.6223 0.6450
0.5 1.2428 1.2442 -0.0522 -0.0516 0.6270 0.6225 0.6452

3.0 0.1 1.2445 1.2464 -0.0444 -0.0451 0.6276 0.6230 0.6459
0.5 1.2451 1.2467 -0.0440 -0.0440 0.6277 0.6231 0.6460

0.5 1.5 0.1 1.1977 1.2006 -0.2673 -0.2694 0.6139 0.6099 0.6302
0.5 1.2050 1.2054 -0.2617 -0.2582 0.6149 0.6109 0.6310

3.0 0.1 1.2138 1.2166 -0.2224 -0.2255 0.6177 0.6134 0.6349
0.5 1.2169 1.2185 -0.2204 -0.2204 0.6182 0.6139 0.6353

1.00 0.1 1.5 0.1 1.3110 1.6281 -0.0599 -0.0561 0.5267 0.5603 0.4932
0.5 1.3127 1.6296 -0.0570 -0.0533 0.5269 0.5605 0.4933

3.0 0.1 1.3139 1.6307 -0.0514 -0.0473 0.5272 0.5608 0.4935
0.5 1.3147 1.6314 -0.0500 -0.0460 0.5273 0.5609 0.4936

0.5 1.5 0.1 1.2682 1.5870 -0.2994 -0.2807 0.5182 0.5506 0.4857
0.5 1.2769 1.5944 -0.2854 -0.2668 0.5190 0.5515 0.4864

3.0 0.1 1.2832 1.6003 -0.2570 -0.2367 0.5204 0.5532 0.4876
0.5 1.2871 1.6038 -0.2504 -0.2305 0.5208 0.5537 0.4880

2 -0.75 0.1 1.5 0.1 1.1715 1.0257 -0.0455 -0.0511 0.0257 0.7188 0.9499
0.5 1.1725 1.0252 -0.0468 -0.0493 0.0288 0.7190 0.9491

3.0 0.1 1.1748 1.0289 -0.0369 -0.0425 0.0207 0.7199 0.9530
0.5 1.1752 1.0288 -0.0375 -0.0417 0.0218 0.7200 0.9527

0.5 1.5 0.1 1.1274 0.9859 -0.2284 -0.2556 0.0744 0.7013 0.9102
0.5 1.1330 0.9832 -0.2351 -0.2468 0.0914 0.7024 0.9060

3.0 0.1 1.1444 1.0027 -0.1850 -0.2124 0.0455 0.7069 0.9273
0.5 1.1467 1.0018 -0.1876 -0.2085 0.0517 0.7075 0.9260

-0.25 0.1 1.5 0.1 1.2015 1.3299 -0.0535 -0.0524 0.6698 0.6705 0.6725
0.5 1.2027 1.3301 -0.0535 -0.0504 0.6701 0.6707 0.6725

3.0 0.1 1.2047 1.3330 -0.0446 -0.0437 0.6706 0.6714 0.6737
0.5 1.2052 1.3330 -0.0446 -0.0428 0.6707 0.6715 0.6737

0.5 1.5 0.1 1.1575 1.2881 -0.2676 -0.2619 0.6560 0.6556 0.6545
0.5 1.1637 1.2893 -0.2682 -0.2521 0.6575 0.6567 0.6545

3.0 0.1 1.1741 1.3039 -0.2229 -0.2183 0.6599 0.6601 0.6608
0.5 1.1768 1.3043 -0.2235 -0.2139 0.6606 0.6607 0.6608
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Table 4.10: CASE I-M: continuum of Table 4.9.

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) Φ′(0) Γ′(0) hd α β

2 0.25 0.1 1.5 0.1 1.2443 1.5826 -0.0582 -0.0540 0.6050 0.6198 0.5459
0.5 1.2457 1.5833 -0.0570 -0.0516 0.6052 0.6200 0.5461

3.0 0.1 1.2474 1.5853 -0.0495 -0.0452 0.6057 0.6205 0.5466
0.5 1.2480 1.5857 -0.0490 -0.0441 0.6058 0.6206 0.5466

0.5 1.5 0.1 1.2007 1.5413 -0.2914 -0.2699 0.5930 0.6074 0.5355
0.5 1.2080 1.5453 -0.2855 -0.2586 0.5940 0.6085 0.5361

3.0 0.1 1.2167 1.5554 -0.2477 -0.2259 0.5965 0.6110 0.5386
0.5 1.2199 1.5571 -0.2454 -0.2209 0.5970 0.6115 0.5389

1.00 0.1 1.5 0.1 1.3183 1.9035 -0.0628 -0.0563 0.4993 0.5558 0.4427
0.5 1.3200 1.9048 -0.0599 -0.0534 0.4994 0.5560 0.4429

3.0 0.1 1.3212 1.9059 -0.0546 -0.0475 0.4997 0.5564 0.4430
0.5 1.3220 1.9065 -0.0532 -0.0462 0.4998 0.5565 0.4431

0.5 1.5 0.1 1.2757 1.8640 -0.3140 -0.2817 0.4915 0.5461 0.4368
0.5 1.2844 1.8706 -0.2999 -0.2677 0.4923 0.5472 0.4374

3.0 0.1 1.2905 1.8760 -0.2729 -0.2378 0.4935 0.5488 0.4382
0.5 1.2945 1.8792 -0.2660 -0.2314 0.4939 0.5493 0.4385

5 -0.75 0.1 1.5 0.1 1.1433 1.9885 -0.0618 -0.0500 1.5029 0.7595 0.5118
0.5 1.1443 1.9880 -0.0635 -0.0483 1.5040 0.7597 0.5116

3.0 0.1 1.1468 1.9911 -0.0532 -0.0415 1.5051 0.7605 0.5124
0.5 1.1472 1.9908 -0.0539 -0.0407 1.5056 0.7606 0.5123

0.5 1.5 0.1 1.0987 1.9494 -0.3091 -0.2498 1.4629 0.7418 0.5014
0.5 1.1038 1.9464 -0.3175 -0.2415 1.4687 0.7425 0.5005

3.0 0.1 1.1163 1.9622 -0.2660 -0.2072 1.4742 0.7470 0.5047
0.5 1.1183 1.9610 -0.2697 -0.2034 1.4771 0.7475 0.5043

-0.25 0.1 1.5 0.1 1.1946 2.1676 -0.0643 -0.0521 0.7550 0.6775 0.4452
0.5 1.1958 2.1677 -0.0644 -0.0502 0.7552 0.6777 0.4452

3.0 0.1 1.1979 2.1699 -0.0560 -0.0434 0.7560 0.6784 0.4456
0.5 1.1984 2.1700 -0.0561 -0.0425 0.7561 0.6785 0.4456

0.5 1.5 0.1 1.1505 2.1293 -0.3217 -0.2607 0.7375 0.6627 0.4381
0.5 1.1567 2.1297 -0.3223 -0.2510 0.7389 0.6637 0.4381

3.0 0.1 1.1673 2.1410 -0.2799 -0.2171 0.7428 0.6671 0.4401
0.5 1.1699 2.1412 -0.2805 -0.2128 0.7435 0.6676 0.4401

0.25 0.1 1.5 0.1 1.2495 2.3341 -0.0663 -0.0541 0.5725 0.6157 0.3998
0.5 1.2509 2.3346 -0.0650 -0.0518 0.5727 0.6159 0.3998

3.0 0.1 1.2526 2.3362 -0.0582 -0.0453 0.5731 0.6164 0.4000
0.5 1.2532 2.3365 -0.0577 -0.0443 0.5732 0.6165 0.4000

0.5 1.5 0.1 1.2061 2.2968 -0.3313 -0.2707 0.5616 0.6033 0.3945
0.5 1.2134 2.2995 -0.3253 -0.2593 0.5625 0.6045 0.3948

3.0 0.1 1.2219 2.3075 -0.2911 -0.2267 0.5647 0.6070 0.3958
0.5 1.2251 2.3087 -0.2884 -0.2216 0.5652 0.6075 0.3960

1.00 0.1 1.5 0.1 1.3330 2.5646 -0.0684 -0.0567 0.4497 0.5474 0.3521
0.5 1.3347 2.5656 -0.0656 -0.0538 0.4499 0.5476 0.3522

3.0 0.1 1.3359 2.5665 -0.0608 -0.0479 0.4501 0.5479 0.3523
0.5 1.3367 2.5670 -0.0594 -0.0466 0.4502 0.5480 0.3523

0.5 1.5 0.1 1.2909 2.5289 -0.3421 -0.2837 0.4431 0.5377 0.3485
0.5 1.2996 2.5339 -0.3282 -0.2694 0.4438 0.5388 0.3488

3.0 0.1 1.3054 2.5383 -0.3042 -0.2398 0.4448 0.5404 0.3493
0.5 1.3094 2.5408 -0.2969 -0.2332 0.4452 0.5409 0.3495
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Table 4.11: CASE I-M: descriptive quantities of boundary layer for some values of
c, c1, c2, c3, and M

2.

M2 c c1 c2 c3 ηϕ ηγ ηΦ ηΓ δv δw δ

1 -0.75 0.1 1.5 0.1 2.6324 4.4061 2.8389 1.6521 4.4061 2.8389 4.4061
0.5 2.6456 4.4085 2.8391 1.4082 4.4085 2.8391 4.4085

3.0 0.1 2.6606 4.4420 1.2244 0.9894 4.4420 1.2244 4.4420
0.5 2.6664 4.4430 1.2270 0.8414 4.4430 1.2270 4.4430

0.5 1.5 0.1 2.3779 3.9683 4.3190 3.0868 3.9683 4.3190 4.3190
0.5 2.4267 3.9708 4.1848 2.6951 3.9708 4.1848 4.1848

3.0 0.1 2.4981 4.2676 3.8460 2.4566 4.2676 3.8460 4.2676
0.5 2.5246 4.2738 3.7663 2.2739 4.2738 3.7663 4.2738

-0.25 0.1 1.5 0.1 2.4626 2.9763 2.0094 1.6307 2.9763 2.0094 2.9763
0.5 2.4741 2.9868 1.8741 1.3742 2.9868 1.8741 2.9868

3.0 0.1 2.4862 3.0164 1.1615 0.9980 3.0164 1.1615 3.0164
0.5 2.4914 3.0209 1.1305 0.8469 3.0209 1.1305 3.0209

0.5 1.5 0.1 2.2411 2.6386 3.3984 2.9919 2.6386 3.3984 3.3984
0.5 2.2837 2.6713 3.0574 2.5513 2.6713 3.0574 3.0574

3.0 0.1 2.3426 2.8206 2.7874 2.4016 2.8206 2.7874 2.8206
0.5 2.3667 2.8404 2.6373 2.1961 2.8404 2.6373 2.8404

0.25 0.1 1.5 0.1 2.1962 2.2724 1.6337 1.5637 2.2724 1.6337 2.2724
0.5 2.2069 2.2816 1.4150 1.2847 2.2816 1.4150 2.2816

3.0 0.1 2.2146 2.2937 1.0270 0.9997 2.2937 1.0270 2.2937
0.5 2.2197 2.2981 0.9270 0.8394 2.2981 0.9270 2.2981

0.5 1.5 0.1 2.0172 2.0734 2.9063 2.8229 2.0734 2.9063 2.9063
0.5 2.0564 2.1046 2.4401 2.3142 2.1046 2.4401 2.4401

3.0 0.1 2.0946 2.1636 2.3434 2.2801 2.1636 2.3434 2.3434
0.5 2.1176 2.1826 2.1302 2.0359 2.1826 2.1302 2.1826

1.00 0.1 1.5 0.1 1.8856 1.7651 1.3137 1.4440 1.8856 1.4440 1.8856
0.5 1.8952 1.7719 1.0337 1.1384 1.8952 1.1384 1.8952

3.0 0.1 1.8986 1.7754 0.8585 0.9722 1.8986 0.9722 1.8986
0.5 1.9036 1.7792 0.6894 0.7942 1.9036 0.7942 1.9036

0.5 1.5 0.1 1.7501 1.6482 2.4856 2.5938 1.7501 2.5938 2.5938
0.5 1.7859 1.6732 1.9286 2.0134 1.7859 2.0134 2.0134

3.0 0.1 1.8037 1.6912 1.9994 2.1059 1.8037 2.1059 2.1059
0.5 1.8257 1.7077 1.7211 1.8116 1.8257 1.8116 1.8257

2 -0.75 0.1 1.5 0.1 2.8486 3.7930 2.0517 1.6916 3.7930 2.0517 3.7930
0.5 2.8613 3.7840 2.1804 1.4634 3.7840 2.1804 3.7840

3.0 0.1 2.8803 3.8471 0.8920 0.9792 3.8471 0.9792 3.8471
0.5 2.8856 3.8453 1.0419 0.8332 3.8453 1.0419 3.8453

0.5 1.5 0.1 2.5638 3.3081 3.7733 3.1983 3.3081 3.7733 3.7733
0.5 2.6121 3.2521 3.7473 2.8538 3.2521 3.7473 3.7473

3.0 0.1 2.7038 3.6080 3.0478 2.5381 3.6080 3.0478 3.6080
0.5 2.7286 3.5968 3.0514 2.3802 3.5968 3.0514 3.5968

-0.25 0.1 1.5 0.1 2.4866 2.5749 1.6911 1.6382 2.5749 1.6911 2.5749
0.5 2.4981 2.5788 1.6012 1.3837 2.5788 1.6012 2.5788

3.0 0.1 2.5106 2.6039 0.9775 0.9984 2.6039 0.9984 2.6039
0.5 2.5158 2.6061 0.9609 0.8477 2.6061 0.9609 2.6061

0.5 1.5 0.1 2.2627 2.3186 3.1048 3.0069 2.3186 3.1048 3.1048
0.5 2.3052 2.3269 2.8089 2.5711 2.3269 2.8089 2.8089

3.0 0.1 2.3657 2.4436 2.4707 2.4137 2.4436 2.4707 2.4707
0.5 2.3896 2.4522 2.3514 2.2112 2.4522 2.3514 2.4522
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Table 4.12: CASE I-M: continuum of Table 4.11.

M2 c c1 c2 c3 ηϕ ηγ ηΦ ηΓ δv δw δ

2 0.25 0.1 1.5 0.1 2.1864 2.0577 1.4499 1.5592 2.1864 1.5592 2.1864
0.5 2.1971 2.0632 1.2604 1.2794 2.1971 1.2794 2.1971

3.0 0.1 2.2046 2.0739 0.8937 0.9985 2.2046 0.9985 2.2046
0.5 2.2097 2.0769 0.8067 0.8377 2.2097 0.8377 2.2097

0.5 1.5 0.1 2.0081 1.8952 2.7379 2.8159 2.0081 2.8159 2.8159
0.5 2.0474 1.9126 2.2976 2.3052 2.0474 2.3052 2.3052

3.0 0.1 2.0849 1.9624 2.1747 2.2741 2.0849 2.2741 2.2741
0.5 2.1081 1.9749 1.9789 2.0286 2.1081 2.0286 2.1081

1.00 0.1 1.5 0.1 1.8707 1.6522 1.2062 1.4349 1.8707 1.4349 1.8707
0.5 1.8804 1.6572 0.9452 1.1282 1.8804 1.1282 1.8804

3.0 0.1 1.8834 1.6607 0.7702 0.9677 1.8834 0.9677 1.8834
0.5 1.8886 1.6637 0.6005 0.7889 1.8886 0.7889 1.8886

0.5 1.5 0.1 1.7361 1.5512 2.3901 2.5816 1.7361 2.5816 2.5816
0.5 1.7721 1.5691 1.8492 1.9989 1.7721 1.9989 1.9989

3.0 0.1 1.7892 1.5857 1.9081 2.0954 1.7892 2.0954 2.0954
0.5 1.8114 1.5984 1.6404 1.7992 1.8114 1.7992 1.8114

5 -0.75 0.1 1.5 0.1 3.0911 2.3136 1.4057 1.7379 3.0911 1.7379 3.0911
0.5 3.1026 2.3076 1.5639 1.5262 3.1026 1.5639 3.1026

3.0 0.1 3.1253 2.3336 0.7609 0.9647 3.1253 0.9647 3.1253
0.5 3.1296 2.3312 0.8454 0.8149 3.1296 0.8454 3.1296

0.5 1.5 0.1 2.7848 2.1161 2.9474 3.3251 2.7848 3.3251 3.3251
0.5 2.8309 2.0942 3.1013 3.0289 2.8309 3.1013 3.1013

3.0 0.1 2.9399 2.1987 2.2239 2.6329 2.9399 2.6329 2.9399
0.5 2.9616 2.1876 2.2894 2.4999 2.9616 2.4999 2.9616

-0.25 0.1 1.5 0.1 2.5183 1.8996 1.2584 1.6494 2.5183 1.6494 2.5183
0.5 2.5296 1.8987 1.2194 1.3974 2.5296 1.3974 2.5296

3.0 0.1 2.5426 1.9112 0.7170 0.9995 2.5426 0.9995 2.5426
0.5 2.5476 1.9112 0.7140 0.8494 2.5476 0.8494 2.5476

0.5 1.5 0.1 2.2921 1.7666 2.6516 3.0276 2.2921 3.0276 3.0276
0.5 2.3341 1.7612 2.4346 2.5979 2.3341 2.5979 2.5979

3.0 0.1 2.3967 1.8144 2.0307 2.4309 2.3967 2.4309 2.4309
0.5 2.4201 1.8139 1.9547 2.2321 2.4201 2.2321 2.4201

0.25 0.1 1.5 0.1 2.1709 1.6502 1.1357 1.5516 2.1709 1.5516 2.1709
0.5 2.1816 1.6512 0.9944 1.2705 2.1816 1.2705 2.1816

3.0 0.1 2.1889 1.6579 0.6640 0.9960 2.1889 0.9960 2.1889
0.5 2.1942 1.6589 0.5874 0.8345 2.1942 0.8345 2.1942

0.5 1.5 0.1 1.9936 1.5519 2.4351 2.8046 1.9936 2.8046 2.8046
0.5 2.0331 1.5539 2.0471 2.2911 2.0331 2.2911 2.2911

3.0 0.1 2.0697 1.5832 1.8864 2.2642 2.0697 2.2642 2.2642
0.5 2.0932 1.5867 1.7224 2.0169 2.0932 2.0169 2.0932

1.00 0.1 1.5 0.1 1.8432 1.4119 0.9877 1.4172 1.8432 1.4172 1.8432
0.5 1.8529 1.4137 0.7647 1.1087 1.8529 1.1087 1.8529

3.0 0.1 1.8557 1.4165 0.5817 0.9585 1.8557 0.9585 1.8557
0.5 1.8609 1.4179 0.4265 0.7779 1.8609 0.7779 1.8609

0.5 1.5 0.1 1.7102 1.3427 2.1924 2.5591 1.7102 2.5591 2.5591
0.5 1.7466 1.3489 1.6889 1.9722 1.7466 1.9722 1.9722

3.0 0.1 1.7624 1.3615 1.7244 2.0757 1.7624 2.0757 2.0757
0.5 1.7849 1.3674 1.4800 1.7761 1.7849 1.7761 1.7849
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Figure 4.16: CASE I-M: ϕ′, γ′,Φ,Γ profiles for M2 = 1, c2 = 3, c3 = 0.5, c = −0.25
when c1 = 0.1 and c1 = 0.5.
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Figure 4.17: CASE I-M: ϕ′, γ′,Φ,Γ profiles forM2 = 1, c1 = 0.5, c3 = 0.5, c = −0.25
when c2 = 1.5 and c2 = 3.
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Figure 4.18: CASE I-M: ϕ′, γ′,Φ,Γ profiles for M2 = 1, c1 = 0.5, c2 = 3, c = −0.25
when c3 = 0.1 and c3 = 0.5.
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Figure 4.19: CASE I-M: profiles of ϕ′ (Figure 4.191) and γ′ (Figures 4.192,3) for
several values of M2 which elucidate the boundary layer thickness.
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Figure 4.20: CASE I-M: profiles of Φ (Figure 4.201,2) and Γ (Figures 4.203) for
several values of M2 which elucidate the boundary layer thickness.
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As it was underlined in Remark 4.3.8, the magnetic field tends to prevent the
occurrence of the reverse flow. So Tables 4.13-4.14 show that as the Hartmann
number M2 increases, the values of cr and of crw for the reverse flow and the reverse
microrotation decrease. In particular, for example for c1 = 0.1, c2 = 3.0, c3 = 0.1,
from M2 = 0.7810 =: M2

r (M2 = 0.5148 =: M2
rw), the reverse flow (the reverse

microrotation) does not occur at all for any value of c. This fact can be explained
by observing that

∂p

∂x3
= −ρa2cx3(c+M2),

from which one can see that the signs of c and of (c+M2) modify the sign of
∂p

∂x3
.

From Tables 4.9-4.10 and 4.13-4.14 we note that the value of hd, which is the height
of the plane towards which the inviscid fluid moves, regardless of the values of
M2, increases if c < 0, while it decreases if c > 0. We have ch ≥ cr, which
means that the three-dimensional displacement thickness is always negative when
the reverse flow and the reverse microrotation appear (see Tables 4.13-4.14). The
presence of M2 influences ch and it decreases when M

2 increases and, for example
for c1 = 0.1, c2 = 3.0, c3 = 0.1, starting fromM2 = 3.3148, we have that hd is always
positive.

As far as the classification of the stagnation-point is concerned, Tables 4.15-4.16
show that ϕ′′(0) + cγ′′(0) can be negative for large values of M2, as it happened in
CASE I-N.

We have a very interesting result: for negative values of c when M2 ≥ M2
s (see

Table 4.17), the origin becomes a point of separation, unlike what occurs in the
absence of the magnetic field or in the next two cases, as we will see. We note that
if M2 < M2

s , then the stagnation-point is always a point of attachment. Moreover,
if c > 0 or where there is the reverse flow, the origin is a nodal point, while when
c < 0 and the reverse flow does not appear, it is a saddle point (as we can see from
Tables 4.9-4.10, 4.15-4.16).

In Table 4.18, for some values of M2 ≥ M2
s , we list the negative value of c (cs),

for which if c < cs then the origin is a separation point, while if c ≥ cs then it is
an attachment point. The form of system (4.58) explain the change of the origin
from attachment point to separation point. Since M2 directly influences γ and only
indirectly influences ϕ, when M2 increases, γ′′(0) becomes much greater than ϕ′′(0)
as we can see from Tables 4.9-4.10, 4.15-4.16.

Figure 4.21 summarizes the classification of the stagnation-point in dependence
on M2 and c.



188 4. MHD three-dimensional stagnation-point flow

Table 4.13: CASE I-M: values of cr, crw and ch when M
2 increases.

c1 c2 c3 M2 cr crw ch

0.10 1.50 0.10 0 -0.4271 -0.7606 -0.3953
0.10 -0.4974 -0.8315 -0.4131
0.20 -0.5682 -0.9020 -0.4309
0.30 -0.6397 -0.9725 -0.4487
0.3388 -0.6676 no reverse microrotation -0.4556
0.40 -0.7120 no reverse microrotation -0.4665
0.50 -0.7852 no reverse microrotation -0.4843
0.60 -0.8596 no reverse microrotation -0.5022
0.70 -0.9354 no reverse microrotation -0.5200
0.7836 no reverse flow no reverse microrotation -0.5349
0.80 no reverse flow no reverse microrotation -0.5379
3.3118 no reverse flow no reverse microrotation h = 0

0.50 0 -0.4273 -0.7813 -0.3953
0.10 -0.4975 -0.8546 -0.4131
0.20 -0.5682 -0.9276 -0.4309
0.2991 -0.6390 no reverse microrotation -0.4485
0.30 -0.6396 no reverse microrotation -0.4488
0.40 -0.7119 no reverse microrotation -0.4666
0.50 -0.7851 no reverse microrotation -0.4845
0.60 -0.8594 no reverse microrotation -0.5023
0.70 -0.9352 no reverse microrotation -0.5202
0.7841 no reverse flow no reverse microrotation -0.5350
0.80 no reverse flow no reverse microrotation -0.5381
3.3084 no reverse flow no reverse microrotation h = 0

3.00 0.10 0 -0.4286 -0.6428 -0.3941
0.10 -0.4989 -0.7116 -0.4119
0.20 -0.5697 -0.7805 -0.4297
0.30 -0.6412 -0.8497 -0.4475
0.40 -0.7136 -0.9192 -0.4654
0.50 -0.7869 -0.9895 -0.4832
0.5148 -0.7979 no reverse microrotation -0.4858
0.60 -0.8615 no reverse microrotation -0.5010
0.70 -0.9374 no reverse microrotation -0.5189
0.7810 no reverse flow no reverse microrotation -0.5334
0.80 no reverse flow no reverse microrotation -0.5368
3.3148 no reverse flow no reverse microrotation h = 0

0.50 0 -0.4286 -0.6500 -0.3941
0.10 -0.4989 -0.7193 -0.4119
0.20 -0.5697 -0.7887 -0.4297
0.30 -0.6412 -0.8584 -0.4476
0.40 -0.7135 -0.9284 -0.4654
0.50 -0.7869 -0.9991 -0.4833
0.5011 -0.7877 no reverse microrotation -0.4835
0.60 -0.8614 no reverse microrotation -0.5011
0.70 -0.9373 no reverse microrotation -0.5190
0.7811 no reverse flow no reverse microrotation -0.5335
0.80 no reverse flow no reverse microrotation -0.5369
3.3134 no reverse flow no reverse microrotation h = 0
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Table 4.14: CASE I-M: continuum of Table 4.13.

c1 c2 c3 M2 cr crw ch

0.50 1.50 0.10 0 -0.4141 -0.8034 -0.4082
0.10 -0.4845 -0.8718 -0.4257
0.20 -0.5552 -0.9393 -0.4433
0.2906 -0.6197 no reverse microrotation -0.4593
0.30 -0.6264 no reverse microrotation -0.4609
0.40 -0.6981 no reverse microrotation -0.4785
0.50 -0.7705 no reverse microrotation -0.4961
0.60 -0.8438 no reverse microrotation -0.5137
0.70 -0.9184 no reverse microrotation -0.5314
0.80 -0.9944 no reverse microrotation -0.5490
0.8072 no reverse flow no reverse microrotation -0.5503
0.90 no reverse flow no reverse microrotation -0.5667
3.2825 no reverse flow no reverse microrotation h = 0

0.50 0 -0.4147 -0.8226 -0.4077
0.10 -0.4847 -0.8943 -0.4255
0.20 -0.5551 -0.9652 -0.4433
0.2493 -0.5900 no reverse microrotation -0.4521
0.30 -0.6260 no reverse microrotation -0.4611
0.40 -0.6975 no reverse microrotation -0.4789
0.50 -0.7696 no reverse microrotation -0.4967
0.60 -0.8427 no reverse microrotation -0.5145
0.70 -0.9170 no reverse microrotation -0.5324
0.80 -0.9926 no reverse microrotation -0.5502
0.8095 no reverse flow no reverse microrotation -0.5519
0.90 no reverse flow no reverse microrotation -0.5680
3.2628 no reverse flow no reverse microrotation h = 0

3.00 0.10 0 -0.4214 -0.6542 -0.4002
0.10 -0.4917 -0.7223 -0.4179
0.20 -0.5624 -0.7902 -0.4356
0.30 -0.6337 -0.8581 -0.4534
0.40 -0.7057 -0.9264 -0.4711
0.50 -0.7786 -0.9953 -0.4889
0.5067 -0.7835 no reverse microrotation -0.4901
0.60 -0.8526 no reverse microrotation -0.5066
0.70 -0.9279 no reverse microrotation -0.5244
0.7937 no reverse flow no reverse microrotation -0.5411
0.80 no reverse flow no reverse microrotation -0.5422
3.3007 no reverse flow no reverse microrotation h = 0

0.50 0 -0.4215 -0.6614 -0.4002
0.10 -0.4917 -0.7300 -0.4179
0.20 -0.5623 -0.7985 -0.4357
0.30 -0.6335 -0.8671 -0.4535
0.40 -0.7054 -0.9359 -0.4713
0.4923 -0.7726 no reverse microrotation -0.4878
0.50 -0.7783 no reverse microrotation -0.4892
0.60 -0.8522 no reverse microrotation -0.5070
0.70 -0.9275 no reverse microrotation -0.5248
0.7945 no reverse flow no reverse microrotation -0.5417
0.80 no reverse flow no reverse microrotation -0.5427
3.2926 no reverse flow no reverse microrotation h = 0
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Table 4.15: CASE I-M: values of ϕ′′(0) + cγ′′(0) and cϕ′′(0)γ′′(0) in dependence on
the values of c, c1, c2, c3, and M

2.

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) ϕ′′(0) + cγ′′(0) cϕ′′(0)γ′′(0)

1 -0.60 0.10 1.50 0.10 1.1938 0.6134 0.8258 -0.4394
0.50 1.1950 0.6133 0.8270 -0.4397

3.00 0.10 1.1971 0.6166 0.8271 -0.4428
0.50 1.1975 0.6165 0.8276 -0.4430

0.50 1.50 0.10 1.1499 0.5780 0.8032 -0.3988
0.50 1.1558 0.5774 0.8094 -0.45

3. 0.10 1.1666 0.5945 0.8099 -0.4161
0.50 1.1691 0.5943 0.8125 -0.4168

-0.45 0.10 1.50 0.10 1.1971 0.7516 0.8588 -0.4049
0.50 1.1982 0.7517 0.86 -0.4053

3.00 0.10 1.23 0.7550 0.8606 -0.4078
0.50 1.28 0.7550 0.8610 -0.4080

0.50 1.50 0.10 1.1532 0.7128 0.8324 -0.3699
0.50 1.1592 0.7132 0.8383 -0.3721

3.00 0.10 1.1698 0.7302 0.8412 -0.3844
0.50 1.1723 0.7303 0.8437 -0.3853

-0.40 0.10 1.50 0.10 1.1988 0.7942 0.8811 -0.3809
0.50 1.20 0.7944 0.8823 -0.3813

3.00 0.10 1.2021 0.7976 0.8830 -0.3835
0.50 1.2026 0.7977 0.8835 -0.3837

0.50 1.50 0.10 1.1550 0.7546 0.8531 -0.3486
0.50 1.1611 0.7554 0.8589 -0.3508

3.00 0.10 1.1716 0.7721 0.8627 -0.3618
0.50 1.1741 0.7723 0.8652 -0.3627

-0.10 0.10 1.50 0.10 1.2149 1.0216 1.1128 -0.1241
0.50 1.2162 1.0221 1.1140 -0.1243

3.00 0.10 1.2181 1.0249 1.1156 -0.1248
0.50 1.2187 1.0251 1.1162 -0.1249

0.50 1.50 0.10 1.1711 0.9794 1.0731 -0.1147
0.50 1.1776 0.9822 1.0794 -0.1157

3.00 0.10 1.1875 0.9966 1.0878 -0.1183
0.50 1.1903 0.9976 1.0905 -0.1187

10 -0.60 0.10 1.50 0.10 1.1437 3.0219 -0.6694 -2.0736
0.50 1.1447 3.0216 -0.6682 -2.0753

3.00 0.10 1.1471 3.0236 -0.6671 -2.0811
0.50 1.1475 3.0235 -0.6666 -2.0817

0.50 1.50 0.10 1.0987 2.9878 -0.6940 -1.9696
0.50 1.1039 2.9862 -0.6878 -1.9780

3.00 0.10 1.1164 2.9966 -0.6816 -2.72
0.50 1.1185 2.9959 -0.6790 -2.0105

-0.45 0.10 1.50 0.10 1.1632 3.0589 -0.2133 -1.6011
0.50 1.1643 3.0587 -0.2122 -1.6025

3.00 0.10 1.1666 3.0606 -0.2107 -1.6067
0.50 1.1670 3.0605 -0.2102 -1.6072

0.50 1.50 0.10 1.1184 3.0250 -0.2428 -1.5225
0.50 1.1241 3.0242 -0.2368 -1.5298

3.00 0.10 1.1358 3.0337 -0.2294 -1.5505
0.50 1.1381 3.0333 -0.2269 -1.5535
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Table 4.16: CASE I-M: continuum of Table 4.15

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) ϕ′′(0) + cγ′′(0) cϕ′′(0)γ′′(0)

10 -0.40 0.10 1.50 0.10 1.1697 3.0711 -0.0588 -1.4369
0.50 1.1708 3.0710 -0.0576 -1.4382

3.00 0.10 1.1731 3.0728 -0.0561 -1.4418
0.50 1.1735 3.0728 -0.0556 -1.4424

0.50 1.50 0.10 1.1250 3.0374 -0.0899 -1.3669
0.50 1.1308 3.0368 -0.0839 -1.3736

3.00 0.10 1.1423 3.0459 -0.0761 -1.3918
0.50 1.1447 3.0456 -0.0736 -1.3945

-0.10 0.10 1.50 0.10 1.2088 3.1437 0.8945 -0.38
0.50 1.2101 3.1438 0.8957 -0.3804

3.00 0.10 1.2121 3.1453 0.8975 -0.3812
0.50 1.2126 3.1454 0.8981 -0.3814

0.50 1.50 0.10 1.1648 3.1104 0.8538 -0.3623
0.50 1.1713 3.1111 0.8602 -0.3644

3.00 0.10 1.1814 3.1186 0.8695 -0.3684
0.50 1.1841 3.1189 0.8722 -0.3693

30 -0.60 0.10 1.50 0.10 1.1237 5.3927 -2.1120 -3.6358
0.50 1.1246 5.3926 -2.1109 -3.6388

3.00 0.10 1.1272 5.3936 -2.1090 -3.6477
0.50 1.1276 5.3935 -2.1085 -3.6489

0.50 1.50 0.10 1.0782 5.3678 -2.1425 -3.4724
0.50 1.0833 5.3669 -2.1369 -3.4883

3.00 0.10 1.0962 5.3722 -2.1271 -3.5334
0.50 1.0982 5.3717 -2.1248 -3.5396

-0.45 0.10 1.50 0.10 1.1485 5.4136 -1.2877 -2.7978
0.50 1.1495 5.4135 -1.2866 -2.84

3.00 0.10 1.1519 5.4145 -1.2846 -2.8066
0.50 1.1523 5.4144 -1.2842 -2.8076

0.50 1.50 0.10 1.1033 5.3888 -1.3216 -2.6755
0.50 1.1089 5.3883 -1.3158 -2.6887

3.00 0.10 1.1210 5.3931 -1.3060 -2.7205
0.50 1.1232 5.3928 -1.3036 -2.7258

-0.40 0.10 1.50 0.10 1.1567 5.4206 -1.0115 -2.5080
0.50 1.1578 5.4205 -1.0104 -2.5104

3.00 0.10 1.1601 5.4214 -1.85 -2.5158
0.50 1.1606 5.4214 -1.80 -2.5168

0.50 1.50 0.10 1.1117 5.3958 -1.0466 -2.3994
0.50 1.1174 5.3954 -1.0407 -2.4115

3.00 0.10 1.1292 5.41 -1.0308 -2.4391
0.50 1.1315 5.3999 -1.0284 -2.4440

-0.10 0.10 1.50 0.10 1.2057 5.4621 0.6595 -0.6586
0.50 1.2070 5.4622 0.6608 -0.6593

3.00 0.10 1.2090 5.4629 0.6627 -0.6605
0.50 1.2095 5.4630 0.6632 -0.6608

0.50 1.50 0.10 1.1616 5.4375 0.6179 -0.6316
0.50 1.1681 5.4378 0.6244 -0.6352

3.00 0.10 1.1782 5.4417 0.6341 -0.6412
0.50 1.1810 5.4418 0.6368 -0.6427
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Table 4.17: CASE I-M: values of M2 (M2
s ) starting from which the origin becomes

a point of separation for different values of c1, c2 and c3.

c1 c2 c3 M2
s

0.10 1.50 0.10 2.6635
0.50 2.6681

3.00 0.10 2.6640
0.50 2.6656

0.50 1.50 0.10 2.6525
0.50 2.6766

3.00 0.10 2.6547
0.50 2.6633

-1 cr 0
nodal point
of attachment

saddle point
of attachment

nodal point
of attachment

M
2
< (reverse flow in (-1,Mr

2
cr ) )

c

-1 0
saddle point of attachment nodal point

of attachment

M Mr s

2 2
≤M

2
< (no reverse flow)

c

-1 cs 0saddle point
of separation

saddle point
of attachment

nodal point
of attachment

M
2

(no reverse flow)≥Ms

2

c

Figure 4.21: CASE I-M: classification of the stagnation-point in dependence on M2

and c (for example if c1 = 0.1, c2 = 3.0 and c3 = 0.1, then M2
r = 0.7810 and

M2
s = 2.6640, see Tables 4.13-4.14 and 4.17).
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Table 4.18: CASE I-M: values of cs when M
2 increases (separation point - attach-

ment point) for different values of c1, c2 and c3.

c1 c2 c3 M2 cs

0.10 1.50 0.10 4 -0.6565
5 -0.5649
10 -0.3811
15 -0.3088

0.50 4 -0.6573
5 -0.5655
10 -0.3815
15 -0.3091

3.00 0.10 4 -0.6575
5 -0.5659
10 -0.3820
15 -0.3095

0.50 4 -0.6579
5 -0.5662
10 -0.3821
15 -0.3097

0.50 1.50 0.10 4 -0.6448
5 -0.5531
10 -0.3708
15 -0.2997

0.50 4 -0.6492
5 -0.5564
10 -0.3727
15 -0.3013

3.00 0.10 4 -0.6501
5 -0.5585
10 -0.3753
15 -0.3036

0.50 4 -0.6519
5 -0.5599
10 -0.3761
15 -0.3042
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Figure 4.22: CASE II-M: ϕ, ϕ′, ϕ′′ profiles.

4.3.2 CASE II-M: H0 = H0e2.

We have solved problem (4.60), (4.58)3,4, (4.59) numerically.
The graphics of ϕ, ϕ′, ϕ′′ are displayed in Figure 4.22.
The behaviour of γ, γ′, γ′′ is given in Figure 4.231 when c < cr, while otherwise,

when the reverse doesn’t occur, we see the profiles of γ, γ′, γ′′ in Figure 4.232.
The reverse microrotation is show in Figure 4.241, while if c > crw then the

behaviour of Φ,Φ′ is given in Figure 4.242.
The functions Γ,Γ′ are displayed in Figure 4.25.
In Tables 4.19, 4.20, 4.21 and 4.22 we see the numerical values of ϕ′′(0), γ′′(0),

Φ′(0), Γ′(0), hd, α, β, ηϕ, ηγ, ηΦ, and ηΓ when M
2, c1, c2, c3 and c change.

We note that if M2 is fixed and if one among c, c1, c2, c3 increases, then the
descriptive quantities of motion behave as in the absence of the external magnetic
field and as in the previous case.

The influence of the parameters c1, c2, c3 on the functions ϕ
′, γ′, Φ, Γ can be seen

in Figures from 4.26 to 4.28. As in the previous case, we have that the functions
which are most influenced by c1, c2, c3 are Φ and Γ, in other words the microrotation.

When c, c1, c2, c3 are fixed, from Table 4.19 and 4.21 we find that ifM2 increases,
then ϕ′′(0), γ′′(0), |Φ′(0)|, |Γ′(0)| increase, while the other parameters decrease.

The thickness δ of the boundary layer depends on M2 and decreases when M2

increases (as easily seen in Figures 4.29 and 4.30). In this case the boundary layer
is thinner than in CASE I-M.
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Figure 4.23: CASE II-M: the first picture shows the profiles of γ, γ′, γ′′ in the reverse
flow. The second picture shows the profile of γ in the absence of the reverse flow.
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Figure 4.24: CASE II-M: the first picture shows the profiles of Φ,Φ′ in the reverse
microrotation. The second picture shows the profiles of Φ,Φ′ in the absence of the
reverse microrotation.
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Table 4.19: CASE II-M: descriptive quantities of motion for some values of
c, c1, c2, c3, and M

2.

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) Φ′(0) Γ′(0) hd α β

1 -0.75 0.1 1.5 0.1 1.5575 0.4819 -0.0313 -0.0576 -2.0634 0.5600 1.4345
0.5 1.5585 0.4817 -0.0323 -0.0556 -2.0593 0.5602 1.4334

3.0 0.1 1.5603 0.4847 -0.0236 -0.0491 -2.0850 0.5607 1.4425
0.5 1.5608 0.4846 -0.0239 -0.0481 -2.0836 0.5608 1.4422

0.5 1.5 0.1 1.5159 0.4516 -0.1598 -0.2882 -1.8349 0.5489 1.3435
0.5 1.5210 0.4505 -0.1656 -0.2781 -1.8131 0.5499 1.3376

3.0 0.1 1.5301 0.4658 -0.1188 -0.2455 -1.9656 0.5522 1.3915
0.5 1.5324 0.4654 -0.1208 -0.2407 -1.9589 0.5528 1.3900

-0.25 0.1 1.5 0.1 1.5649 0.9295 -0.0463 -0.0579 0.4514 0.5497 0.8446
0.5 1.5660 0.9299 -0.0464 -0.0558 0.4516 0.5499 0.8447

3.0 0.1 1.5677 0.9328 -0.0373 -0.0494 0.4514 0.5503 0.8470
0.5 1.5682 0.9329 -0.0374 -0.0484 0.4515 0.5504 0.8470

0.5 1.5 0.1 1.5233 0.8886 -0.2325 -0.2896 0.4479 0.5394 0.8138
0.5 1.5287 0.8905 -0.2330 -0.2790 0.4489 0.5403 0.8146

3.0 0.1 1.5374 0.9057 -0.1871 -0.2469 0.4478 0.5424 0.8261
0.5 1.5398 0.9063 -0.1876 -0.2419 0.4483 0.5429 0.8264

0.25 0.1 1.5 0.1 1.5878 1.2543 -0.0538 -0.0587 0.5480 0.5263 0.6348
0.5 1.5890 1.2552 -0.0526 -0.0563 0.5482 0.5265 0.6350

3.0 0.1 1.5905 1.2574 -0.0448 -0.0501 0.5486 0.5268 0.6358
0.5 1.5910 1.2577 -0.0444 -0.0490 0.5487 0.5269 0.6359

0.5 1.5 0.1 1.5463 1.2120 -0.2692 -0.2934 0.5379 0.5173 0.6201
0.5 1.5525 1.2168 -0.2634 -0.2816 0.5387 0.5182 0.6211

3.0 0.1 1.5601 1.2277 -0.2243 -0.2507 0.5408 0.5198 0.6249
0.5 1.5629 1.2297 -0.2221 -0.2452 0.5412 0.5202 0.6253

1.00 0.1 1.5 0.1 1.6352 1.6352 -0.0600 -0.0600 0.4891 0.4891 0.4891
0.5 1.6367 1.6367 -0.0572 -0.0572 0.4893 0.4893 0.4893

3.0 0.1 1.6378 1.6378 -0.0516 -0.0516 0.4895 0.4895 0.4895
0.5 1.6385 1.6385 -0.0502 -0.0502 0.4896 0.4896 0.4896

0.5 1.5 0.1 1.5943 1.5943 -0.3003 -0.3003 0.4817 0.4817 0.4817
0.5 1.6017 1.6017 -0.2862 -0.2862 0.4825 0.4825 0.4825

3.0 0.1 1.6075 1.6075 -0.2579 -0.2579 0.4836 0.4836 0.4836
0.5 1.6110 1.6110 -0.2512 -0.2512 0.4840 0.4840 0.4840

2 -0.75 0.1 1.5 0.1 1.8403 1.0489 -0.0467 -0.0610 -0.7090 0.4958 0.8975
0.5 1.8411 1.0485 -0.0480 -0.0590 -0.7066 0.4960 0.8968

3.0 0.1 1.8428 1.0521 -0.0380 -0.0527 -0.7167 0.4963 0.9007
0.5 1.8432 1.0519 -0.0385 -0.0517 -0.7158 0.4964 0.9005

0.5 1.5 0.1 1.8004 1.0096 -0.2346 -0.3049 -0.6256 0.4871 0.8580
0.5 1.8047 1.0073 -0.2414 -0.2949 -0.6125 0.4878 0.8545

3.0 0.1 1.8130 1.0259 -0.1902 -0.2633 -0.6678 0.4897 0.8755
0.5 1.8150 1.0251 -0.1930 -0.2584 -0.6633 0.4900 0.8745

-0.25 0.1 1.5 0.1 1.8540 1.3477 -0.0541 -0.0614 0.4248 0.4816 0.6519
0.5 1.8550 1.3480 -0.0541 -0.0592 0.4250 0.4817 0.6520

3.0 0.1 1.8565 1.3507 -0.0452 -0.0531 0.4250 0.4820 0.6532
0.5 1.8569 1.3508 -0.0453 -0.0520 0.4251 0.4821 0.6532

0.5 1.5 0.1 1.8142 1.3064 -0.2711 -0.3070 0.4203 0.4737 0.6341
0.5 1.8189 1.3079 -0.2713 -0.2962 0.4211 0.4744 0.6345

3.0 0.1 1.8267 1.3218 -0.2262 -0.2655 0.4211 0.4759 0.6405
0.5 1.8289 1.3223 -0.2266 -0.2602 0.4215 0.4763 0.6407
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Table 4.20: CASE II-M: continuum of Table 4.19.

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) Φ′(0) Γ′(0) hd α β

2 0.25 0.1 1.5 0.1 1.8747 1.5964 -0.0587 -0.0620 0.4783 0.4641 0.5354
0.5 1.8758 1.5972 -0.0574 -0.0596 0.4785 0.4642 0.5355

3.0 0.1 1.8771 1.5991 -0.0499 -0.0537 0.4788 0.4644 0.5360
0.5 1.8776 1.5995 -0.0494 -0.0525 0.4788 0.4645 0.5361

0.5 1.5 0.1 1.8350 1.5555 -0.2935 -0.3101 0.4707 0.4571 0.5250
0.5 1.8405 1.5597 -0.2872 -0.2980 0.4714 0.4578 0.5257

3.0 0.1 1.8473 1.5694 -0.2499 -0.2687 0.4728 0.4589 0.5282
0.5 1.8499 1.5712 -0.2473 -0.2628 0.4731 0.4593 0.5285

1.00 0.1 1.5 0.1 1.9135 1.9135 -0.0630 -0.0630 0.4377 0.4377 0.4377
0.5 1.9148 1.9148 -0.0601 -0.0601 0.4379 0.4379 0.4379

3.0 0.1 1.9158 1.9158 -0.0548 -0.0548 0.4380 0.4380 0.4380
0.5 1.9165 1.9165 -0.0534 -0.0534 0.4381 0.4381 0.4381

0.5 1.5 0.1 1.8743 1.8743 -0.3151 -0.3151 0.4318 0.4318 0.4318
0.5 1.8809 1.8809 -0.3008 -0.3008 0.4324 0.4324 0.4324

3.0 0.1 1.8861 1.8861 -0.2741 -0.2741 0.4333 0.4333 0.4333
0.5 1.8893 1.8893 -0.2670 -0.2670 0.4336 0.4336 0.4336

5 -0.75 0.1 1.5 0.1 2.5201 2.0082 -0.0624 -0.0675 0.0327 0.3784 0.4937
0.5 2.5207 2.0077 -0.0639 -0.0655 0.0334 0.3785 0.4935

3.0 0.1 2.5220 2.0106 -0.0538 -0.0597 0.0316 0.3786 0.4943
0.5 2.5223 2.0104 -0.0545 -0.0587 0.0320 0.3787 0.4943

0.5 1.5 0.1 2.4841 1.9695 -0.3123 -0.3374 0.0445 0.3736 0.4833
0.5 2.4872 1.9671 -0.3199 -0.3277 0.0481 0.3740 0.4826

3.0 0.1 2.4938 1.9819 -0.2691 -0.2987 0.0392 0.3748 0.4867
0.5 2.4954 1.9810 -0.2726 -0.2936 0.0408 0.3750 0.4864

-0.25 0.1 1.5 0.1 2.5340 2.1848 -0.0648 -0.0678 0.3480 0.3695 0.4340
0.5 2.5347 2.1850 -0.0647 -0.0656 0.3481 0.3696 0.4341

3.0 0.1 2.5359 2.1870 -0.0564 -0.0601 0.3482 0.3697 0.4345
0.5 2.5363 2.1871 -0.0565 -0.0589 0.3482 0.3698 0.4345

0.5 1.5 0.1 2.4981 2.1469 -0.3240 -0.3390 0.3445 0.3651 0.4270
0.5 2.5018 2.1477 -0.3238 -0.3281 0.3450 0.3655 0.4270

3.0 0.1 2.5077 2.1583 -0.2823 -0.3005 0.3453 0.3662 0.4290
0.5 2.5096 2.1587 -0.2825 -0.2947 0.3455 0.3664 0.4291

0.25 0.1 1.5 0.1 2.5500 2.3491 -0.0666 -0.0681 0.3669 0.3606 0.3922
0.5 2.5508 2.3497 -0.0652 -0.0657 0.3670 0.3607 0.3923

3.0 0.1 2.5519 2.3512 -0.0586 -0.0605 0.3671 0.3608 0.3925
0.5 2.5523 2.3514 -0.0579 -0.0592 0.3672 0.3608 0.3925

0.5 1.5 0.1 2.5142 2.3122 -0.3330 -0.3407 0.3626 0.3565 0.3870
0.5 2.5185 2.3152 -0.3263 -0.3284 0.3630 0.3569 0.3873

3.0 0.1 2.5237 2.3226 -0.2929 -0.3024 0.3637 0.3575 0.3884
0.5 2.5259 2.3240 -0.2898 -0.2960 0.3639 0.3577 0.3885

1.00 0.1 1.5 0.1 2.5770 2.5770 -0.0686 -0.0686 0.3475 0.3475 0.3475
0.5 2.5780 2.5780 -0.0657 -0.0657 0.3476 0.3476 0.3476

3.0 0.1 2.5788 2.5788 -0.0611 -0.0611 0.3477 0.3477 0.3477
0.5 2.5793 2.5793 -0.0595 -0.0595 0.3477 0.3477 0.3477

0.5 1.5 0.1 2.5416 2.5416 -0.3432 -0.3432 0.3438 0.3438 0.3438
0.5 2.5468 2.5468 -0.3288 -0.3288 0.3443 0.3443 0.3443

3.0 0.1 2.5508 2.5508 -0.3054 -0.3054 0.3447 0.3447 0.3447
0.5 2.5535 2.5535 -0.2978 -0.2978 0.3449 0.3449 0.3449
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Table 4.21: CASE II-M: descriptive quantities of boundary layer for some values of
c, c1, c2, c3, and M

2.

M2 c c1 c2 c3 ηϕ ηγ ηΦ ηΓ δv δw δ

1 -0.75 0.1 1.5 0.1 2.2487 4.3030 2.7433 1.4385 4.3030 2.7433 4.3030
0.5 2.2569 4.3065 2.7301 1.2187 4.3065 2.7301 4.3065

3.0 0.1 2.2677 4.3453 1.1640 0.8639 4.3453 1.1640 4.3453
0.5 2.2719 4.3468 1.1622 0.7287 4.3468 1.1622 4.3468

0.5 1.5 0.1 2.0596 3.8090 4.2281 2.8348 3.8090 4.2281 4.2281
0.5 2.0889 3.8180 4.0760 2.4496 3.8180 4.0760 4.0760

3.0 0.1 2.1386 4.1460 3.7223 2.2236 4.1460 3.7223 4.1460
0.5 2.1567 4.1551 3.6370 2.0484 4.1551 3.6370 4.1551

-0.25 0.1 1.5 0.1 2.1491 2.8933 1.9727 1.4247 2.8933 1.9727 2.8933
0.5 2.1566 2.9048 1.8271 1.1932 2.9048 1.8271 2.9048

3.0 0.1 2.1661 2.9329 1.1634 0.8677 2.9329 1.1634 2.9329
0.5 2.1699 2.9378 1.1245 0.7280 2.9378 1.1245 2.9378

0.5 1.5 0.1 1.9769 2.5621 3.3426 2.7688 2.5621 3.3426 3.3426
0.5 2.0037 2.5976 2.9883 2.3396 2.5976 2.9883 2.9883

3.0 0.1 2.0477 2.7389 2.7353 2.1892 2.7389 2.7353 2.7389
0.5 2.0647 2.7606 2.5781 1.9931 2.7606 2.5781 2.7606

0.25 0.1 1.5 0.1 1.9756 2.2331 1.6151 1.3837 2.2331 1.6151 2.2331
0.5 1.9829 2.2426 1.3912 1.1304 2.2426 1.3912 2.2426

3.0 0.1 1.9894 2.2541 1.0224 0.8687 2.2541 1.0224 2.2541
0.5 1.9932 2.2586 0.9189 0.7180 2.2586 0.9189 2.2586

0.5 1.5 0.1 1.8296 2.0371 2.8781 2.6491 2.0371 2.8781 2.8781
0.5 1.8554 2.0692 2.4037 2.1574 2.0692 2.4037 2.4037

3.0 0.1 1.8869 2.1252 2.3187 2.1117 2.1252 2.3187 2.3187
0.5 1.9037 2.1451 2.1004 1.8792 2.1451 2.1004 2.1451

1.00 0.1 1.5 0.1 1.7481 1.7481 1.3045 1.3045 1.7481 1.3045 1.7481
0.5 1.7549 1.7549 1.0225 1.0225 1.7549 1.0225 1.7549

3.0 0.1 1.7582 1.7582 0.8549 0.8549 1.7582 0.8549 1.7582
0.5 1.7622 1.7622 0.6840 0.6840 1.7622 0.6840 1.7622

0.5 1.5 0.1 1.6322 1.6322 2.4722 2.4722 1.6322 2.4722 2.4722
0.5 1.6577 1.6577 1.9114 1.9114 1.6577 1.9114 1.9114

3.0 0.1 1.6747 1.6747 1.9882 1.9882 1.6747 1.9882 1.9882
0.5 1.6914 1.6914 1.7067 1.7067 1.6914 1.7067 1.7067

2 -0.75 0.1 1.5 0.1 2.0816 3.5565 2.0014 1.3145 3.5565 2.0014 3.5565
0.5 2.0867 3.5505 2.0844 1.1232 3.5505 2.0844 3.5505

3.0 0.1 2.0964 3.6140 0.9777 0.7734 3.6140 0.9777 3.6140
0.5 2.0992 3.6133 1.0749 0.6464 3.6133 1.0749 3.6133

0.5 1.5 0.1 1.9219 3.0689 3.6416 2.7199 3.0689 3.6416 3.6416
0.5 1.9404 3.0298 3.5735 2.3786 3.0298 3.5735 3.5735

3.0 0.1 1.9832 3.3626 2.9311 2.1081 3.3626 2.9311 3.3626
0.5 1.9957 3.3573 2.9099 1.9582 3.3573 2.9099 3.3573

-0.25 0.1 1.5 0.1 1.9486 2.4769 1.6574 1.2909 2.4769 1.6574 2.4769
0.5 1.9536 2.4819 1.5486 1.0787 2.4819 1.5486 2.4819

3.0 0.1 1.9612 2.5049 0.9784 0.7765 2.5049 0.9784 2.5049
0.5 1.9641 2.5076 0.9505 0.6400 2.5076 0.9505 2.5076

0.5 1.5 0.1 1.8082 2.2291 3.0418 2.6271 2.2291 3.0418 3.0418
0.5 1.8257 2.2416 2.7193 2.2131 2.2416 2.7193 2.7193

3.0 0.1 1.8606 2.3479 2.4184 2.0569 2.3479 2.4184 2.4184
0.5 1.8729 2.3589 2.2842 1.8707 2.3589 2.2842 2.3589
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Table 4.22: CASE II-M: continuum of Table 4.21.

M2 c c1 c2 c3 ηϕ ηγ ηΦ ηΓ δv δw δ

2 0.25 0.1 1.5 0.1 1.8082 2.0072 1.4284 1.2559 2.0072 1.4284 2.0072
0.5 1.8132 2.0132 1.2297 1.0205 2.0132 1.2297 2.0132

3.0 0.1 1.8187 2.0229 0.8890 0.7760 2.0229 0.8890 2.0229
0.5 1.8217 2.0262 0.7960 0.6262 2.0262 0.7960 2.0262

0.5 1.5 0.1 1.6866 1.8487 2.7019 2.5211 1.8487 2.7019 2.7019
0.5 1.7042 1.8677 2.2467 2.0419 1.8677 2.2467 2.2467

3.0 0.1 1.7302 1.9136 2.1452 1.9916 1.9136 2.1452 2.1452
0.5 1.7427 1.9269 1.9397 1.7671 1.9269 1.9397 1.9397

1.00 0.1 1.5 0.1 1.6282 1.6282 1.1940 1.1940 1.6282 1.1940 1.6282
0.5 1.6332 1.6332 0.9294 0.9294 1.6332 0.9294 1.6332

3.0 0.1 1.6364 1.6364 0.7657 0.7657 1.6364 0.7657 1.6364
0.5 1.6394 1.6394 0.5922 0.5922 1.6394 0.5922 1.6394

0.5 1.5 0.1 1.5287 1.5287 2.3706 2.3706 1.5287 2.3706 2.3706
0.5 1.5471 1.5471 1.8232 1.8232 1.5471 1.8232 1.8232

3.0 0.1 1.5624 1.5624 1.8927 1.8927 1.5624 1.8927 1.8927
0.5 1.5754 1.5754 1.6196 1.6196 1.5754 1.6196 1.6196

5 -0.75 0.1 1.5 0.1 1.6577 2.1751 1.3735 1.0599 2.1751 1.3735 2.1751
0.5 1.6596 2.1706 1.4720 0.9067 2.1706 1.4720 2.1706

3.0 0.1 1.6646 2.1937 0.7644 0.5850 2.1937 0.7644 2.1937
0.5 1.6657 2.1922 0.8255 0.4492 2.1922 0.8255 2.1922

0.5 1.5 0.1 1.5632 1.9891 2.8623 2.4406 1.9891 2.8623 2.8623
0.5 1.5694 1.9719 2.9023 2.1451 1.9719 2.9023 2.9023

3.0 0.1 1.5907 2.0647 2.1672 1.8584 2.0647 2.1672 2.1672
0.5 1.5962 2.0576 2.1847 1.7342 2.0576 2.1847 2.1847

-0.25 0.1 1.5 0.1 1.5707 1.8229 1.2329 1.0379 1.8229 1.2329 1.8229
0.5 1.5724 1.8227 1.1650 0.8602 1.8227 1.1650 1.8227

3.0 0.1 1.5766 1.8339 0.7145 0.5855 1.8339 0.7145 1.8339
0.5 1.5779 1.8344 0.6962 0.4422 1.8344 0.6962 1.8344

0.5 1.5 0.1 1.4850 1.6956 2.5963 2.3587 1.6956 2.5963 2.5963
0.5 1.4905 1.6929 2.3269 1.9751 1.6929 2.3269 2.3269

3.0 0.1 1.5094 1.7406 1.9917 1.8154 1.7406 1.9917 1.9917
0.5 1.5149 1.7417 1.8877 1.6472 1.7417 1.8877 1.8877

0.25 0.1 1.5 0.1 1.4900 1.6021 1.1159 1.0134 1.6021 1.1159 1.6021
0.5 1.4919 1.6034 0.9595 0.8127 1.6034 0.9595 1.6034

3.0 0.1 1.4954 1.6094 0.6597 0.5837 1.6094 0.6597 1.6094
0.5 1.4967 1.6106 0.5712 0.4343 1.6106 0.5712 1.6106

0.5 1.5 0.1 1.4124 1.5069 2.3964 2.2789 1.5069 2.3964 2.3964
0.5 1.4182 1.5102 1.9811 1.8296 1.5102 1.9811 1.9811

3.0 0.1 1.4340 1.5367 1.8586 1.7712 1.5367 1.8586 1.8586
0.5 1.4397 1.5412 1.6769 1.5642 1.5412 1.6769 1.6769

1.00 0.1 1.5 0.1 1.3840 1.3840 0.9740 0.9740 1.3840 0.9740 1.3840
0.5 1.3860 1.3860 0.7442 0.7442 1.3860 0.7442 1.3860

3.0 0.1 1.3885 1.3885 0.5770 0.5770 1.3885 0.5770 1.3885
0.5 1.3900 1.3900 0.4215 0.4215 1.3900 0.4215 1.3900

0.5 1.5 0.1 1.3165 1.3165 2.1676 2.1676 1.3165 2.1676 2.1676
0.5 1.3234 1.3234 1.6519 1.6519 1.3234 1.6519 1.6519

3.0 0.1 1.3347 1.3347 1.7062 1.7062 1.3347 1.7062 1.7062
0.5 1.3410 1.3410 1.4520 1.4520 1.3410 1.4520 1.4520
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Figure 4.30: CASE II-M: profiles of Φ (Figur 4.301) and Γ (Figures 4.302,3) for
several values of M2 which elucidate the boundary layer thickness.

Tables 4.23-4.24 show that as the Hartmann number M2 increases, the values
of cr and of crw for the reverse flow and the reverse microrotation decrease. In
particular, for example when c1 = 0.1, c2 = 3.0, c3 = 0.1 from M2 = 0.7615
(M2 = 0.4903), the reverse flow (the reverse microrotation) does not occur at all
for any value of c, so that the magnetic field tends to prevent the occurrence of the
reverse flow. In this case

∂p

∂x3
= −ρa2cx3(c + 2M2),

from which one can see that the signs of c and of (c+ 2M2) modify the sign of

∂p

∂x3
.

The values of M2 starting from which the reverse flow and the reverse microro-
tation do not appear for any values of c are smaller than in CASE I-M.
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Figure 4.31: CASE III-M: ϕ, ϕ′, ϕ′′ profiles.

From Tables 4.23-4.24 we see that the value of hd, regardless of the values ofM
2,

increases if c < 0, while it decreases if c > 0. Moreover, ch ≥ cr, which means that
the three-dimensional displacement thickness is always negative when the reverse
flow and the reverse microrotation appears. The presence ofM2 influences ch and it
decreases whenM2 increases, but unlike the previous case, hd can be always negative
for physically reasonable values ofM2 (as it happened in CASE II-N Chapter 4.2.4).

As far as the classification of the stagnation-point is concerned, since ϕ′′(0) +
cγ′′(0) is always positive, the origin is a point of attachment. In this caseM2 directly
influences ϕ and γ, as we can see from system (4.60).

Further, if c > 0 or where there is the reverse flow, then the origin is a nodal
point, while when c < 0 and the reverse flow does not appear, it is a saddle point.
These results are the same as for M2 = 0 (Chapter 1.3.3).

4.3.3 CASE III-M: H0 = H0e3.

The trend of the functions ϕ, ϕ′, ϕ′′, which are part of the solution of problem (1.70),
(1.66)3,4, (1.67) is shown in Figure 4.31.

As far as the behaviour of γ, γ′, γ′′ is concerned, it is similar to that of the
previous cases: if c < cr the profiles of γ, γ

′, γ′′ are shown in Figure 4.321, while the
reverse flow doesn’t appear in Figure 4.322.

Figure 4.331 gives Φ,Φ
′ if c < crw, otherwise these functions are plotted in Figure

4.332.
The behaviour of Γ,Γ′ is given in Figure 4.34.
In Table 4.25, 4.26, 4.27 and 4.28 we give the values of the descriptive quantities

of the flow in dependence on M2, c1, c2, c3 and c.
When M2 is fixed, the descriptive quantities behave as in CASEs I-M and II-M.
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Table 4.23: CASE II-M: values of cr, crw and ch when M
2 increases.

M2 c1 c2 c3 cr crw ch

0.10 1.50 0.10 0.10 -0.5008 -0.8365 -0.4092
0.20 -0.5745 -0.9115 -0.4227
0.30 -0.6485 -0.9858 -0.4360
0.3190 -0.6626 no reverse microrotation -0.4385
0.40 -0.7228 no reverse microrotation -0.4489
0.50 -0.7978 no reverse microrotation -0.4616
0.60 -0.8736 no reverse microrotation -0.4739
0.70 -0.9503 no reverse microrotation -0.4858
0.7639 no reverse flow no reverse microrotation -0.4933
0.80 no reverse flow no reverse microrotation -0.4975
100 no reverse flow no reverse microrotation -0.9836

0.50 0.10 -0.5008 -0.8600 -0.4092
0.20 -0.5745 -0.9378 -0.4228
0.2804 -0.6339 no reverse microrotation -0.4335
0.30 -0.6484 no reverse microrotation -0.4361
0.40 -0.7227 no reverse microrotation -0.4490
0.50 -0.7976 no reverse microrotation -0.4617
0.60 -0.8733 no reverse microrotation -0.4740
0.70 -0.9500 no reverse microrotation -0.4860
0.7643 no reverse flow no reverse microrotation -0.4935
0.80 no reverse flow no reverse microrotation -0.4976
100 no reverse flow no reverse microrotation -0.9837

3.00 0.10 0.10 -0.5022 -0.7162 -0.4080
0.20 -0.5759 -0.7891 -0.4215
0.30 -0.6499 -0.8617 -0.4348
0.40 -0.7244 -0.9343 -0.4478
0.4903 -0.7921 no reverse microrotation -0.4592
0.50 -0.7994 no reverse microrotation -0.4604
0.60 -0.8753 no reverse microrotation -0.4727
0.70 -0.9521 no reverse microrotation -0.4847
0.7615 no reverse flow no reverse microrotation -0.4919
0.80 no reverse flow no reverse microrotation -0.4963
100 no reverse flow no reverse microrotation -0.9836

0.50 0.10 -0.5022 -0.7241 -0.4080
0.20 -0.5759 -0.7976 -0.4216
0.30 -0.6499 -0.8708 -0.4348
0.40 -0.7243 -0.9440 -0.4478
0.4763 -0.7815 no reverse microrotation -0.4575
0.50 -0.7994 no reverse microrotation -0.4605
0.60 -0.8752 no reverse microrotation -0.4728
0.70 -0.9520 no reverse microrotation -0.4848
0.7616 no reverse flow no reverse microrotation -0.4920
0.80 no reverse flow no reverse microrotation -0.4964
100 no reverse flow no reverse microrotation -0.9836
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Table 4.24: CASE II-M: continuum of Table 4.23.

M2 c1 c2 c3 cr crw ch

0.50 1.50 0.10 0.10 -0.4881 -0.8775 -0.4219
0.20 -0.5620 -0.9497 -0.4353
0.2705 -0.6141 no reverse microrotation -0.4446
0.30 -0.6358 no reverse microrotation -0.4484
0.40 -0.7098 no reverse microrotation -0.4612
0.50 -0.7840 no reverse microrotation -0.4736
0.60 -0.8588 no reverse microrotation -0.4858
0.70 -0.9343 no reverse microrotation -0.4976
0.7859 no reverse flow no reverse microrotation -0.5075
0.80 no reverse flow no reverse microrotation -0.5091
100 no reverse flow no reverse microrotation -0.9837

0.50 0.10 -0.4882 -0.9003 -0.4216
0.20 -0.5618 -0.9763 -0.4351
0.2314 -0.5849 no reverse microrotation -0.4393
0.30 -0.6353 no reverse microrotation -0.4484
0.40 -0.7091 no reverse microrotation -0.4614
0.50 -0.7831 no reverse microrotation -0.4740
0.60 -0.8575 no reverse microrotation -0.4863
0.70 -0.9328 no reverse microrotation -0.4982
0.7881 no reverse flow no reverse microrotation -0.5084
0.80 no reverse flow no reverse microrotation -0.5098
100 no reverse flow no reverse microrotation -0.9838

3.00 0.10 0.10 -0.4951 -0.7270 -0.4140
0.20 -0.5688 -0.7991 -0.4276
0.30 -0.6426 -0.8706 -0.4408
0.40 -0.7168 -0.9419 -0.4538
0.4813 -0.7774 no reverse microrotation -0.4641
0.50 -0.7914 no reverse microrotation -0.4664
0.60 -0.8667 no reverse microrotation -0.4787
0.70 -0.9430 no reverse microrotation -0.4906
0.7737 no reverse flow no reverse microrotation -0.4992
0.80 no reverse flow no reverse microrotation -0.5022
100 no reverse flow no reverse microrotation -0.9837

0.50 0.10 -0.4950 -0.7349 -0.4141
0.20 -0.5686 -0.8077 -0.4277
0.30 -0.6424 -0.8799 -0.4410
0.40 -0.7165 -0.9520 -0.4539
0.4666 -0.7660 no reverse microrotation -0.4624
0.50 -0.7910 no reverse microrotation -0.4666
0.60 -0.8663 no reverse microrotation -0.4789
0.70 -0.9425 no reverse microrotation -0.4909
0.7744 no reverse flow no reverse microrotation -0.4996
0.80 no reverse flow no reverse microrotation -0.5026
100 no reverse flow no reverse microrotation -0.9838
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Figure 4.32: CASE III-M: the first picture shows the profiles of γ, γ′, γ′′ in the reverse
flow. The second picture shows the profiles of γ, γ′, γ′′ in the absence of the reverse
flow.
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Figure 4.33: CASE III-M: the first picture shows the profiles of Φ,Φ′ in the reverse
microrotation. The second picture shows the profiles of Φ,Φ′ in the absence of the
reverse microrotation.
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Table 4.25: CASE III-M: descriptive quantities of motion for some values of
c, c1, c2, c3, and M

2.

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) Φ′(0) Γ′(0) hd α β

1 -0.75 0.1 1.5 0.1 1.5838 -0.4365 -0.0026 -0.0585 -5.0530 0.5334 2.3955
0.5 1.5849 -0.4371 -0.0036 -0.0562 -5.0598 0.5336 2.3981

3.0 0.1 1.5865 -0.4357 0.0033 -0.0500 -5.1062 0.5339 2.4140
0.5 1.5871 -0.4359 0.0029 -0.0489 -5.1084 0.5341 2.4149

0.5 1.5 0.1 1.5418 -0.4354 -0.0237 -0.2925 -4.4661 0.5238 2.1871
0.5 1.5477 -0.4400 -0.0278 -0.2813 -4.5297 0.5250 2.2099

3.0 0.1 1.5561 -0.4355 0.0133 -0.2499 -4.8204 0.5265 2.3088
0.5 1.5588 -0.4371 0.0113 -0.2445 -4.8372 0.5270 2.3151

-0.25 0.1 1.5 0.1 1.5703 0.2960 -0.0306 -0.0581 0.2972 0.5447 1.2872
0.5 1.5713 0.2965 -0.0308 -0.0559 0.2972 0.5449 1.2879

3.0 0.1 1.5730 0.2990 -0.0221 -0.0495 0.2958 0.5453 1.2938
0.5 1.5735 0.2992 -0.0222 -0.0485 0.2958 0.5454 1.2940

0.5 1.5 0.1 1.5286 0.2655 -0.1569 -0.2904 0.3084 0.5346 1.2130
0.5 1.5342 0.2680 -0.1579 -0.2796 0.3082 0.5355 1.2177

3.0 0.1 1.5427 0.2806 -0.1120 -0.2478 0.3007 0.5375 1.2479
0.5 1.5452 0.2813 -0.1129 -0.2426 0.3008 0.5380 1.2495

0.25 0.1 1.5 0.1 1.5847 0.8130 -0.0461 -0.0586 0.5840 0.5286 0.8053
0.5 1.5859 0.8142 -0.0450 -0.0562 0.5842 0.5288 0.8056

3.0 0.1 1.5874 0.8165 -0.0369 -0.0500 0.5847 0.5291 0.8069
0.5 1.5880 0.8169 -0.0366 -0.0489 0.5848 0.5292 0.8071

0.5 1.5 0.1 1.5431 0.7704 -0.2312 -0.2929 0.5719 0.5196 0.7811
0.5 1.5493 0.7765 -0.2260 -0.2812 0.5729 0.5204 0.7829

3.0 0.1 1.5570 0.7883 -0.1850 -0.2503 0.5756 0.5221 0.7897
0.5 1.5598 0.7906 -0.1834 -0.2448 0.5761 0.5225 0.7904

1.00 0.1 1.5 0.1 1.6281 1.3110 -0.0561 -0.0599 0.5267 0.4932 0.5603
0.5 1.6296 1.3127 -0.0533 -0.0570 0.5269 0.4933 0.5605

3.0 0.1 1.6307 1.3139 -0.0473 -0.0514 0.5272 0.4935 0.5608
0.5 1.6314 1.3147 -0.0460 -0.0500 0.5273 0.4936 0.5609

0.5 1.5 0.1 1.5870 1.2682 -0.2807 -0.2994 0.5182 0.4857 0.5506
0.5 1.5944 1.2769 -0.2668 -0.2854 0.5190 0.4864 0.5515

3.0 0.1 1.6003 1.2832 -0.2367 -0.2570 0.5204 0.4876 0.5532
0.5 1.6038 1.2871 -0.2305 -0.2504 0.5208 0.4880 0.5537

2 -0.75 0.1 1.5 0.1 1.8700 -0.4138 -0.0039 -0.0619 -5.1119 0.4697 2.3303
0.5 1.8710 -0.4144 -0.0050 -0.0595 -5.1195 0.4699 2.3330

3.0 0.1 1.8725 -0.4132 0.0022 -0.0536 -5.1665 0.4701 2.3490
0.5 1.8729 -0.4134 0.0017 -0.0524 -5.1690 0.4702 2.3499

0.5 1.5 0.1 1.8299 -0.4110 -0.0311 -0.3093 -4.5089 0.4624 2.1195
0.5 1.8351 -0.4161 -0.0354 -0.2978 -4.5786 0.4632 2.1438

3.0 0.1 1.8426 -0.4126 0.0075 -0.2679 -4.8735 0.4643 2.2436
0.5 1.8450 -0.4144 0.0053 -0.2622 -4.8920 0.4647 2.2503

-0.25 0.1 1.5 0.1 1.8601 0.3190 -0.0317 -0.0616 0.2203 0.4768 1.2464
0.5 1.8611 0.3195 -0.0319 -0.0593 0.2203 0.4770 1.2472

3.0 0.1 1.8626 0.3219 -0.0230 -0.0533 0.2188 0.4773 1.2528
0.5 1.8630 0.3220 -0.0232 -0.0522 0.2188 0.4773 1.2531

0.5 1.5 0.1 1.8203 0.2887 -0.1625 -0.3079 0.2342 0.4691 1.1738
0.5 1.8252 0.2912 -0.1634 -0.2968 0.2335 0.4699 1.1791

3.0 0.1 1.8328 0.3034 -0.1170 -0.2664 0.2257 0.4713 1.2081
0.5 1.8351 0.3041 -0.1179 -0.2610 0.2256 0.4717 1.2098
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Table 4.26: CASE III-M: continuum of Table 4.25.

M2 c c1 c2 c3 ϕ′′(0) γ′′(0) Φ′(0) Γ′(0) hd α β

2 0.25 0.1 1.5 0.1 1.8708 0.8257 -0.0465 -0.0619 0.5317 0.4666 0.7920
0.5 1.8719 0.8269 -0.0454 -0.0595 0.5318 0.4667 0.7923

3.0 0.1 1.8732 0.8292 -0.0373 -0.0536 0.5323 0.4670 0.7937
0.5 1.8737 0.8296 -0.0370 -0.0524 0.5324 0.4670 0.7938

0.5 1.5 0.1 1.8310 0.7835 -0.2336 -0.3096 0.5213 0.4596 0.7681
0.5 1.8364 0.7896 -0.2283 -0.2976 0.5222 0.4602 0.7700

3.0 0.1 1.8434 0.8011 -0.1873 -0.2681 0.5245 0.4614 0.7767
0.5 1.8459 0.8034 -0.1856 -0.2623 0.5249 0.4617 0.7774

1.00 0.1 1.5 0.1 1.9035 1.3183 -0.0563 -0.0628 0.4993 0.4427 0.5558
0.5 1.9048 1.3200 -0.0534 -0.0599 0.4994 0.4429 0.5560

3.0 0.1 1.9059 1.3212 -0.0475 -0.0546 0.4997 0.4430 0.5564
0.5 1.9065 1.3220 -0.0462 -0.0532 0.4998 0.4431 0.5565

0.5 1.5 0.1 1.8640 1.2757 -0.2817 -0.3140 0.4915 0.4368 0.5461
0.5 1.8706 1.2844 -0.2677 -0.2999 0.4923 0.4374 0.5472

3.0 0.1 1.8760 1.2905 -0.2378 -0.2729 0.4935 0.4382 0.5488
0.5 1.8792 1.2945 -0.2314 -0.2660 0.4939 0.4385 0.5493

5 -0.75 0.1 1.5 0.1 2.5452 -0.3733 -0.0063 -0.0680 -5.2087 0.3637 2.2212
0.5 2.5460 -0.3740 -0.0074 -0.0657 -5.2176 0.3638 2.2243

3.0 0.1 2.5471 -0.3730 0.0002 -0.0604 -5.2656 0.3639 2.2405
0.5 2.5475 -0.3733 -0.0003 -0.0591 -5.2686 0.3640 2.2415

0.5 1.5 0.1 2.5091 -0.3669 -0.0441 -0.3402 -4.5799 0.3596 2.0061
0.5 2.5131 -0.3730 -0.0486 -0.3286 -4.6598 0.3600 2.0332

3.0 0.1 2.5188 -0.3717 -0.0028 -0.3018 -4.9612 0.3605 2.1345
0.5 2.5209 -0.3736 -0.0051 -0.2957 -4.9826 0.3608 2.1419

-0.25 0.1 1.5 0.1 2.5397 0.3590 -0.0335 -0.0679 0.0950 0.3666 1.1812
0.5 2.5405 0.3595 -0.0337 -0.0657 0.0948 0.3666 1.1822

3.0 0.1 2.5416 0.3618 -0.0247 -0.0602 0.0932 0.3668 1.1874
0.5 2.5420 0.3619 -0.0249 -0.0590 0.0932 0.3668 1.1878

0.5 1.5 0.1 2.5039 0.3294 -0.1719 -0.3396 0.1125 0.3622 1.1113
0.5 2.5077 0.3318 -0.1727 -0.3283 0.1110 0.3626 1.1174

3.0 0.1 2.5134 0.3433 -0.1253 -0.3012 0.1029 0.3633 1.1444
0.5 2.5154 0.3440 -0.1263 -0.2952 0.1025 0.3635 1.1465

0.25 0.1 1.5 0.1 2.5458 0.8497 -0.0474 -0.0680 0.4438 0.3625 0.7690
0.5 2.5466 0.8509 -0.0462 -0.0656 0.4439 0.3625 0.7694

3.0 0.1 2.5477 0.8531 -0.0382 -0.0604 0.4443 0.3627 0.7706
0.5 2.5481 0.8535 -0.0378 -0.0591 0.4443 0.3627 0.7708

0.5 1.5 0.1 2.5099 0.8082 -0.2380 -0.3402 0.4358 0.3584 0.7453
0.5 2.5141 0.8143 -0.2323 -0.3282 0.4365 0.3588 0.7476

3.0 0.1 2.5194 0.8252 -0.1914 -0.3019 0.4383 0.3593 0.7540
0.5 2.5216 0.8276 -0.1896 -0.2956 0.4386 0.3595 0.7549

1.00 0.1 1.5 0.1 2.5646 1.3330 -0.0567 -0.0684 0.4497 0.3521 0.5474
0.5 2.5656 1.3347 -0.0538 -0.0656 0.4499 0.3522 0.5476

3.0 0.1 2.5665 1.3359 -0.0479 -0.0608 0.4501 0.3523 0.5479
0.5 2.5670 1.3367 -0.0466 -0.0594 0.4502 0.3523 0.5480

0.5 1.5 0.1 2.5289 1.2909 -0.2837 -0.3421 0.4431 0.3485 0.5377
0.5 2.5339 1.2996 -0.2694 -0.3282 0.4438 0.3488 0.5388

3.0 0.1 2.5383 1.3054 -0.2398 -0.3042 0.4448 0.3493 0.5404
0.5 2.5408 1.3094 -0.2332 -0.2969 0.4452 0.3495 0.5409
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Table 4.27: CASE III-M: descriptive quantities of boundary layer for some values
of c, c1, c2, c3, and M

2.

M2 c c1 c2 c3 ηϕ ηγ ηΦ ηΓ δv δw δ

1 -0.75 0.1 1.5 0.1 2.0567 4.4038 3.5863 1.3947 4.4038 3.5863 4.4038
0.5 2.0649 4.4241 3.3481 1.1515 4.4241 3.3481 4.4241

3.0 0.1 2.0722 4.4471 2.8076 0.8650 4.4471 2.8076 4.4471
0.5 2.0766 4.4540 2.7016 0.7190 4.4540 2.7016 4.4540

0.5 1.5 0.1 1.8977 3.8326 4.4948 2.7211 3.8326 4.4948 4.4948
0.5 1.9261 3.9965 4.2611 2.2679 3.9965 4.2611 4.2611

3.0 0.1 1.9596 4.2298 4.1720 2.1427 4.2298 4.1720 4.2298
0.5 1.9782 4.2791 3.9988 1.9302 4.2791 3.9988 4.2791

-0.25 0.1 1.5 0.1 2.1167 3.4083 2.5781 1.4159 3.4083 2.5781 3.4083
0.5 2.1244 3.4326 2.3439 1.1805 3.4326 2.3439 3.4326

3.0 0.1 2.1332 3.4613 1.7201 0.8674 3.4613 1.7201 3.4613
0.5 2.1372 3.4703 1.6292 0.7259 3.4703 1.6292 3.4703

0.5 1.5 0.1 1.9489 2.9648 3.7845 2.7488 2.9648 3.7845 3.7845
0.5 1.9761 3.0586 3.3754 2.3094 3.0586 3.3754 3.3754

3.0 0.1 2.0172 3.2208 3.2526 2.1742 3.2208 3.2526 3.2526
0.5 2.0346 3.2654 3.0483 1.9721 3.2654 3.0483 3.2654

0.25 0.1 1.5 0.1 1.9877 2.5154 1.8972 1.3884 2.5154 1.8972 2.5154
0.5 1.9949 2.5313 1.6307 1.1365 2.5313 1.6307 2.5313

3.0 0.1 2.0017 2.5434 1.2509 0.8695 2.5434 1.2509 2.5434
0.5 2.0056 2.5503 1.1237 0.7199 2.5503 1.1237 2.5503

0.5 1.5 0.1 1.8406 2.2694 3.1179 2.6576 2.2694 3.1179 3.1179
0.5 1.8662 2.3259 2.6106 2.1692 2.3259 2.6106 2.6106

3.0 0.1 1.8986 2.3902 2.5673 2.1184 2.3902 2.5673 2.5673
0.5 1.9152 2.4209 2.3256 1.8882 2.4209 2.3256 2.4209

1.00 0.1 1.5 0.1 1.7651 1.8856 1.4440 1.3137 1.8856 1.4440 1.8856
0.5 1.7719 1.8952 1.1384 1.0337 1.8952 1.1384 1.8952

3.0 0.1 1.7754 1.8986 0.9722 0.8585 1.8986 0.9722 1.8986
0.5 1.7792 1.9036 0.7942 0.6894 1.9036 0.7942 1.9036

0.5 1.5 0.1 1.6482 1.7501 2.5938 2.4856 1.7501 2.5938 2.5938
0.5 1.6732 1.7859 2.0134 1.9286 1.7859 2.0134 2.0134

3.0 0.1 1.6912 1.8037 2.1059 1.9994 1.8037 2.1059 2.1059
0.5 1.7077 1.8257 1.8116 1.7211 1.8257 1.8116 1.8257

2 -0.75 0.1 1.5 0.1 1.8709 4.3718 3.5390 1.2669 4.3718 3.5390 4.3718
0.5 1.8762 4.3933 3.2996 1.0420 4.3933 3.2996 4.3933

3.0 0.1 1.8822 4.4176 2.7513 0.7744 4.4176 2.7513 4.4176
0.5 1.8854 4.4248 2.6464 0.6300 4.4248 2.6464 4.4248

0.5 1.5 0.1 1.7419 3.7796 4.4641 2.5859 3.7796 4.4641 4.4641
0.5 1.7604 3.9496 4.2231 2.1449 3.9496 4.2231 4.2231

3.0 0.1 1.7871 4.1918 4.1308 2.0189 4.1918 4.1308 4.1918
0.5 1.8006 4.2436 3.9556 1.8146 4.2436 3.9556 4.2436

-0.25 0.1 1.5 0.1 1.9147 3.3443 2.5254 1.2815 3.3443 2.5254 3.3443
0.5 1.9199 3.3693 2.2892 1.0639 3.3693 2.2892 3.3693

3.0 0.1 1.9271 3.3973 1.6846 0.7760 3.3973 1.6846 3.3973
0.5 1.9299 3.4066 1.5921 0.6364 3.4066 1.5921 3.4066

0.5 1.5 0.1 1.7786 2.9036 3.7333 2.6048 2.9036 3.7333 3.7333
0.5 1.7964 2.9988 3.3186 2.1769 2.9988 3.3186 3.3186

3.0 0.1 1.8287 3.1571 3.1976 2.0409 3.1571 3.1976 3.1976
0.5 1.8414 3.2029 2.9916 1.8464 3.2029 2.9916 3.2029
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Table 4.28: CASE III-M: continuum of Table 4.27.

M2 c c1 c2 c3 ηϕ ηγ ηΦ ηΓ δv δw δ

2 0.25 0.1 1.5 0.1 1.8231 2.4811 1.8751 1.2614 2.4811 1.8751 2.4811
0.5 1.8281 2.4971 1.6064 1.0285 2.4971 1.6064 2.4971

3.0 0.1 1.8337 2.5089 1.2405 0.7770 2.5089 1.2405 2.5089
0.5 1.8367 2.5158 1.1119 0.6290 2.5158 1.1119 2.5158

0.5 1.5 0.1 1.7002 2.2374 3.0913 2.5319 2.2374 3.0913 3.0913
0.5 1.7174 2.2944 2.5798 2.0579 2.2944 2.5798 2.5798

3.0 0.1 1.7444 2.3566 2.5421 1.9997 2.3566 2.5421 2.5421
0.5 1.7567 2.3876 2.2979 1.7787 2.3876 2.2979 2.3876

1.00 0.1 1.5 0.1 1.6522 1.8707 1.4349 1.2062 1.8707 1.4349 1.8707
0.5 1.6572 1.8804 1.1282 0.9452 1.8804 1.1282 1.8804

3.0 0.1 1.6607 1.8834 0.9677 0.7702 1.8834 0.9677 1.8834
0.5 1.6637 1.8886 0.7889 0.6005 1.8886 0.7889 1.8886

0.5 1.5 0.1 1.5512 1.7361 2.5816 2.3901 1.7361 2.5816 2.5816
0.5 1.5691 1.7721 1.9989 1.8492 1.7721 1.9989 1.9989

3.0 0.1 1.5857 1.7892 2.0954 1.9081 1.7892 2.0954 2.0954
0.5 1.5984 1.8114 1.7992 1.6404 1.8114 1.7992 1.8114

5 -0.75 0.1 1.5 0.1 1.5242 4.3156 3.4568 1.0227 4.3156 3.4568 4.3156
0.5 1.5261 4.3393 3.2166 0.8325 4.3393 3.2166 4.3393

3.0 0.1 1.5296 4.3655 2.6548 0.5839 4.3655 2.6548 4.3655
0.5 1.5311 4.3733 2.5518 0.4370 4.3733 2.5518 4.3733

0.5 1.5 0.1 1.4449 3.6875 4.4081 2.3297 3.6875 4.4081 4.4081
0.5 1.4507 3.8683 4.1555 1.9172 3.8683 4.1555 4.1555

3.0 0.1 1.4659 4.1255 4.0586 1.7914 4.1255 4.0586 4.1255
0.5 1.4717 4.1815 3.8810 1.6041 4.1815 3.8810 4.1815

-0.25 0.1 1.5 0.1 1.5464 3.2404 2.4399 1.0300 3.2404 2.4399 3.2404
0.5 1.5482 3.2661 2.2007 0.8457 3.2661 2.2007 3.2661

3.0 0.1 1.5522 3.2934 1.6262 0.5847 3.2934 1.6262 3.2934
0.5 1.5536 3.3031 1.5309 0.4395 3.3031 1.5309 3.3031

0.5 1.5 0.1 1.4630 2.8051 3.6491 2.3387 2.8051 3.6491 3.6491
0.5 1.4689 2.9019 3.2258 1.9376 2.9019 3.2258 3.2258

3.0 0.1 1.4865 3.0541 3.1089 1.8026 3.0541 3.1089 3.1089
0.5 1.4922 3.1013 2.8998 1.6237 3.1013 2.8998 3.1013

0.25 0.1 1.5 0.1 1.5036 2.4231 1.8366 1.0187 2.4231 1.8366 2.4231
0.5 1.5052 2.4392 1.5641 0.8215 2.4392 1.5641 2.4392

3.0 0.1 1.5089 2.4504 1.2210 0.5849 2.4504 1.2210 2.4504
0.5 1.5102 2.4574 1.0897 0.4360 2.4574 1.0897 2.4574

0.5 1.5 0.1 1.4249 2.1834 3.0454 2.2904 2.1834 3.0454 3.0454
0.5 1.4304 2.2412 2.5269 1.8489 2.2412 2.5269 2.5269

3.0 0.1 1.4469 2.2994 2.4991 1.7791 2.2994 2.4991 2.4991
0.5 1.4524 2.3314 2.2502 1.5774 2.3314 2.2502 2.3314

1.00 0.1 1.5 0.1 1.4119 1.8432 1.4172 0.9877 1.8432 1.4172 1.8432
0.5 1.4137 1.8529 1.1087 0.7647 1.8529 1.1087 1.8529

3.0 0.1 1.4165 1.8557 0.9585 0.5817 1.8557 0.9585 1.8557
0.5 1.4179 1.8609 0.7779 0.4265 1.8609 0.7779 1.8609

0.5 1.5 0.1 1.3427 1.7102 2.5591 2.1924 1.7102 2.5591 2.5591
0.5 1.3489 1.7466 1.9722 1.6889 1.7466 1.9722 1.9722

3.0 0.1 1.3615 1.7624 2.0757 1.7244 1.7624 2.0757 2.0757
0.5 1.3674 1.7849 1.7761 1.4800 1.7849 1.7761 1.7849
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Figure 4.34: CASE III-M: Γ,Γ′ profiles.

Figures from 4.35 to 4.37 elucidate the dependence of the functions ϕ′, γ′, Φ, Γ,
on the parameters c1, c2, c3 when M

2 = 1.

When c, c1, c2, c3 are fixed, from Table 4.25 and 4.27 we find that ifM2 increases,
then ϕ′′(0), |γ′′(0)|, |Φ′(0)|, |Γ′(0)| increase, while the other parameters decrease.
Actually, the thickness δ of the boundary layer decreases when M2 increases (as
easily seen in Figures 4.38 and 4.39). In CASE II-M the boundary layer is thinner
than in this case.

Tables 4.29 and 4.30 show that as the Hartmann number M2 increases, the
values of cr and of crw decrease very slowly, so that in this case the influence of the
magnetic field is much less significant with respect to CASEs I-II-M. In this regard
we underline that

∂p

∂x3
,

∂p

∂x1

have the same sign that they would have in the absence of the external magnetic
field.

In particular, we see that the reverse flow always appears for physically mean-
ingful values M2, as it happened in CASE III-N.

From Table 4.29 and 4.30 it appears a new interesting result: similar to what
happened for the Newtonian fluid, ch increases when M2 increases. We see that
ch ≥ cr more than in the other two cases, so that the three-dimensional displacement
thickness is always negative when the reverse flow appears and it is negative in a
region of values of c, which is bigger than in the other two cases.

As for the previous case and CASE III-N, the origin is always a point of attach-
ment. As one can see, M2 directly influences ϕ and only indirectly influences γ in
system (4.61), so that when M2 increases, ϕ′′(0) becomes much greater than γ′′(0).
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Figure 4.35: CASE III-M: ϕ′, γ′,Φ,Γ profiles forM2 = 1, c2 = 3, c3 = 0.5, c = −0.25
when c1 = 0.1 and c1 = 0.5.
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Figure 4.37: CASE III-M: ϕ′, γ′,Φ,Γ profiles forM2 = 1, c1 = 0.5, c2 = 3, c = −0.25
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Figure 4.38: CASE III-M: profiles of ϕ′ (Figure 4.381) and γ
′ (Figures 4.382,3) for

several values of M2 which elucidate the boundary layer thickness.
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Figure 4.39: CASE III-M: profiles of Φ (Figure 4.391) and Γ (Figures 4.392,3) for
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Table 4.29: CASE III-M: values of cr, crw and ch when M
2 increases.

c1 c2 c3 M2 cr crw ch

0.10 1.50 0.10 1 -0.4546 -0.8024 -0.3639
2 -0.4724 -0.8290 -0.3407
5 -0.5036 -0.8742 -0.2943
10 -0.5292 -0.9099 -0.2500
20 -0.5528 -0.9416 -0.2030
50 -0.5780 -0.9741 -0.1456
100 -0.5921 -0.9917 -0.1097

0.50 1 -0.4546 -0.8261 -0.3638
2 -0.4724 -0.8549 -0.3406
5 -0.5035 -0.9044 -0.2942
10 -0.5290 -0.9440 -0.2498
20 -0.5526 -0.9800 -0.2029

31.3232 -0.5658 no reverse microrotation -0.1736
50 -0.5777 no reverse microrotation -0.1455
100 -0.5917 no reverse microrotation -0.1096

3.00 0.10 1 -0.4558 -0.6804 -0.3626
2 -0.4735 -0.7044 -0.3395
5 -0.5044 -0.7452 -0.2932
10 -0.5297 -0.7775 -0.2490
20 -0.5531 -0.8064 -0.2022
50 -0.5780 -0.8360 -0.1451
100 -0.5919 -0.8521 -0.1092

0.50 1 -0.4558 -0.6887 -0.3626
2 -0.4735 -0.7135 -0.3394
5 -0.5044 -0.7559 -0.2932
10 -0.5297 -0.7897 -0.2490
20 -0.5530 -0.8201 -0.2022
50 -0.5779 -0.8516 -0.1450
100 -0.5918 -0.8689 -0.1092
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Table 4.30: CASE III-M: continuum of Table 4.29.

c1 c2 c3 M2 cr crw ch

0.50 1.50 0.10 1 -0.4434 -0.8507 -0.3769
2 -0.4627 -0.8812 -0.3535
5 -0.4966 -0.9331 -0.3064
10 -0.5248 -0.9744 -0.2608

15.9283 -0.5430 no reverse microrotation -0.2281
20 -0.5513 no reverse microrotation -0.2121
50 -0.5798 no reverse microrotation -0.1524
100 -0.5959 no reverse microrotation -0.1148

0.50 1 -0.4435 -0.8717 -0.3761
2 -0.4624 -0.9034 -0.3526
5 -0.4957 -0.9579 -0.3053

9.7249 -0.5222 no reverse microrotation -0.2616
10 -0.5233 no reverse microrotation -0.2596
20 -0.5491 no reverse microrotation -0.2111
50 -0.5768 no reverse microrotation -0.1515
100 -0.5925 no reverse microrotation -0.1141

3.00 0.10 1 -0.4494 -0.6934 -0.3691
2 -0.4676 -0.7185 -0.3460
5 -0.4997 -0.7614 -0.2996
10 -0.5261 -0.7953 -0.2550
20 -0.5507 -0.8257 -0.2075
50 -0.5770 -0.8570 -0.1491
100 -0.5918 -0.8740 -0.1124

0.50 1 -0.4493 -0.7015 -0.3689
2 -0.4675 -0.7274 -0.3458
5 -0.4993 -0.7715 -0.2994
10 -0.5256 -0.8068 -0.2547
20 -0.5499 -0.8385 -0.2072
50 -0.5760 -0.8716 -0.1489
100 -0.5907 -0.8897 -0.1122
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If c > 0 or where there is the reverse flow, the origin is a nodal point, while when
c < 0 and the reverse flow does not appear, it is a saddle point.



Chapter 5

MHD orthogonal stagnation-point

flow with H and v parallel at

infinity

In the next three chapters, we will analyze the previous three types of stagnation-
point flow under a hypothesis assuring that the magnetic field is parallel to the flow
at infinity. Differently from the previous chapters, the wall towards which the fluid
is pointed is the boundary of a solid which is a rigid uncharged dielectric at rest.

We now start with the study of the orthogonal stagnation-point flow under the
previous conditions. This problem has been studied in [17] for a Newtonian fluid,
but the Authors didn’t explain properly the physics of the problem and didn’t take
into consideration the thickness of the boundary layer, the behaviour of the solution
and the influence of the parameters on the motion.

The results presented for the micropolar fluids are new ([9]).

5.1 Inviscid fluids CASE IV

We first consider the steady plane MHD flow of a homogeneous, incompressible,
electrically conducting inviscid fluid near a stagnation point filling the half-space S
(see Figure 5.1), given by

S = {(x1, x2, x3) ∈ R
3 : (x1, x3) ∈ R

2, x2 > 0}. (5.1)

Differently from the previous chapters, ∂S, i.e. the plane x2 = 0, is now the
boundary of a solid which is a rigid uncharged dielectric at rest occupying S− given
by

S− = {(x1, x2, x3) ∈ R
3 : (x1, x3) ∈ R

2, x2 < 0}. (5.2)

223
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x1

x2

O

H

Figure 5.1: Description flow in CASE IV.

In the orthogonal plane stagnation-point flow of an inviscid fluid we search the
velocity in the following form

v1 = ax1, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (5.3)

with a positive constant.
The equations governing such a flow in the absence of external mechanical body

forces and free electric charges are (2.2). As usual, we impose the no-penetration
condition to the velocity field and we assume that the electromagnetic field satisfies
(2.5), (2.6).

We suppose that the external magnetic field

He = H
∞
(x1e1 − x2e2), H∞

= constant, x1 ∈ R, x2 ∈ R,

permeates the whole physical space and that the external electric field Ee is absent.

Remark 5.1.1. As it is easy to verify, the field lines of He have the following
parametric equations

x1 = A1e
H

∞
λ,

x2 = A2e
−H

∞
λ, λ ∈ R, (5.4)

where A1, A2 are arbitrary constants.
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These field lines degenerate if at least one of the two constants A1, A2 vanishes.
Otherwise they are the hyperbolas

x1x2 = A1A2.

These hyperbolas tend to x2 = 0 as |x1| → +∞.

We assume that the total magnetic fields in the fluid and in the solid have the
following form

H = H
∞
[x1h

′(x2)e1 − h(x2)e2], x2 ≥ 0, and

Hs = H
∞
[x1h

′

s(x2)e1 − hs(x2)e2], x2 ≤ 0, (5.5)

respectively, where h, hs are sufficiently regular unknown functions to be determined
(h, hs ∈ C2(R+)).

We ask that H tends to He as x2 → +∞ so that H is parallel to v at infinity
and

lim
x2→+∞

h′(x2) = 1, lim
x2→+∞

[h(x2)− x2] = 0. (5.6)

We then suppose that

(i) Hs is not uniform;

(ii) the non-degenerate field lines of Hs tend to x2 = 0 as |x1| → +∞;

as well as it happens for the external magnetic field He.

Now we would like to prove the following:

Theorem 5.1.2. If the solid which occupies S− is a rigid uncharged dielectric at
rest and Hs satisfies (i) and (ii), then the magnetic field Hs is given by

Hs = H
∞
h′(0)(x1e1 − x2e2), x2 ≤ 0, (5.7)

where h(x2) is the function in (5.5)1.

Proof. Since the solid is an uncharged dielectric, it holds

∇×Hs = 0, in S−,

from which we get

hs(x2) = C1x2 + C2, x2 ≤ 0, (5.8)

where C1, C2 ∈ R.
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By virtue of the continuity of the tangential components of the magnetic field
across the plane x2 = 0, since in S the total magnetic field is (5.5)1, we find

C1 = h′(0),

so that

Hs = H
∞
[h′(0)x1e1 − (h′(0)x2 + C2)e2]. (5.9)

If h′(0) = 0, then Hs is uniform which contradicts hypothesis (i).
Hence h′(0) 6= 0 and the magnetic field lines in the solid are

x1 = B1e
H

∞
h′(0)λ,

x2 = B2e
−H

∞
h′(0)λ − C2

h′(0)
, x2 ≤ 0, B1, B2 ∈ R. (5.10)

The non-degenerate field lines are the curves

x1x2 = B1B2 −
C2
h′(0)

x1, x2 ≤ 0, B1, B2 6= 0. (5.11)

The curves in (5.11) tend to x2 = 0 as |x1| → +∞ if, and only if,

C2 = 0,

from which we get the assertion.

Remark 5.1.3. Of course, Es = Es
i = 0 in S−.

Remark 5.1.4. Theorem 5.1.2 holds even if S is occupied by a viscous fluid for
which H has the form (5.5)1.

We now consider the inviscid fluid filling the half-space S. Since S is in contact
with the solid through the plane x2 = 0, by the hypothesis that the normal com-
ponent of the magnetic induction vector B is continuous across the boundary (see
(2.6)), from (5.5)1 and (5.7) we deduce

h(0) = 0. (5.12)

Our purpose is now to determine (p, H, E) solution of (2.2) in S with v given
by (5.3) such that H tends to He as x2 goes to infinity. Hence

v ×H = 0 at infinity (x2 → +∞). (5.13)
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Let the electric field E be in the form

E = Ei = E1e1 + E2e2 + E3e3.

The boundary conditions and the Remark 5.1.3 require that

E1 = 0, E3 = 0 at x2 = 0. (5.14)

From (2.2)4 follows that

E = −∇ψ,

where ψ is the electrostatic scalar potential.
Equation (2.2)3 provides E1 = E2 = 0, so that ψ = ψ(x3) and

dψ

dx3
(x3) =

H
∞

σe
x1[h

′′(x2) + σeµea(h
′(x2)x2 − h(x2))] = −E3. (5.15)

Further from (5.14)2, we get E = 0 and

h′′(x2) + σeµea[h
′(x2)x2 − h(x2)] = 0. (5.16)

The ordinary differential problem (5.16), (5.12) and (5.6)1 has the unique solution
h(x2) = x2, from which we have

H = He = H
∞
(x1e1 − x2e2).

We underline that E = 0 and H = He are compatible with the conditions at
infinity.

Since ∇×H = 0, from (2.2)1 follows that the pressure field is not modified by
the presence of the magnetic field.

We summarize the results obtained for the inviscid fluid in the following theorem.

Theorem 5.1.5. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the half-space S and be embedded in the external electromagnetic field
He = H

∞
(x1e1 − x2e2), Ee = 0. If the total magnetic field in the solid is given by

(5.7), then the steady MHD orthogonal stagnation-point flow of such a fluid has the
form

v = a[x1e1 − x2e2], E = 0, H = He,

p = −1
2
ρa2(x21 + x22) + p0, x1 ∈ R, x2 ∈ R

+. (5.17)
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Remark 5.1.6. In order to study the influence of He on the steady orthogonal
stagnation-point flow for viscous fluids, it is convenient to suppose that the inviscid
fluid orthogonally impinges on the flat plane x2 = A and

v = a[x1e1 − (x2 − A)e2], He = H
∞
[x1e1 − (x2 − A)e2], x1 ∈ R, x2 ≥ A,

H→ H
∞
[x1e1 − (x2 −A)e2], as x2 → +∞. (5.18)

with A constant.
In such a way the stagnation point is not (0, 0) but (0, A) and the streamlines

and the field lines are hyperbolas whose asymptotes are x1 = 0 and x2 = A.
Under these assumptions Theorem 5.1.5 continues to hold by replacing x2 with

x2 −A, more precisely:

H = H
∞
[x1e1 − (x2 − A)e2], p = −1

2
ρa2

[

x21 + (x2 −A)2
]

+ p0. (5.19)

5.2 Newtonian fluids CASE IV-N

Let us consider now the previous problem for a homogeneous, incompressible, elec-
trically conducting Newtonian fluid.
The equations governing such a flow in the absence of external mechanical body
forces and free electric charges are (2.22). As usual, boundary conditions (2.23),
(2.5), (2.6) have to be fulfilled.

We use the following similarity transformation to describe the velocity field (see
Chapter 1.1.2):

v1 = ax1f
′(x2), v2 = −af(x2), v3 = 0, x1 ∈ R, x2 ∈ R

+, (5.20)

with f sufficiently regular unknown function (f ∈ C3(R+)).
The condition (2.23) supplies

f(0) = 0, f ′(0) = 0. (5.21)

As for the inviscid fluid, we suppose that an external magnetic field

He = H
∞
(x1e1 − x2e2)

permeates the whole physical space and that the external electric field Ee = 0.
The total magnetic field in the fluid is taken in the following form

H = H
∞
[x1h

′(x2)e1 − h(x2)e2], x2 ≥ 0, (5.22)
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where h is a sufficiently regular unknown function (h ∈ C2(R+)) that by virtue of
(5.7) satisfies

h(0) = 0. (5.23)

Further, we impose the following

Condition P. At infinity, the MHD orthogonal stagnation-point flow of a viscous
fluid approaches the flow of an inviscid fluid whose velocity, magnetic field and
pressure are given by (5.18), (5.19)1 and (5.19)2, respectively.

Therefore to (5.20) we must also append the following conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

h′(x2) = 1. (5.24)

The asymptotic behaviour of f and h at infinity are related to the constant A
in (5.18) in the following way:

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[h(x2)− x2] = −A, (5.25)

so that

v×H = 0 at infinity. (5.26)

The constant A is not a priori assigned but its value can be computed as part of
the solution of the problem.

Our aim is now to determine (p, f, H, E) solution in S of (2.22) with v and H

given by (5.20) and (5.22), respectively such that Condition P holds.
As for the inviscid fluid, let the electric field E be in the form

E = Ei = E1e1 + E2e2 + E3e3,

with the boundary conditions

E1 = 0, E3 = 0 at x2 = 0. (5.27)

From (2.22)4 we have

E = −∇ψ.

Moreover, (2.22)3 provides E1 = E2 = 0 so that ψ = ψ(x3) and

dψ

dx3
(x3) =

H
∞

σe
x1[h

′′(x2) + σeµea(f(x2)h
′(x2)− h(x2)f

′(x2))] = −E3. (5.28)
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As in the inviscid case, we get E = 0 in S and

h′′(x2) + σeµea[f(x2)h
′(x2)− h(x2)f

′(x2)] = 0. (5.29)

Now we proceed in order to determine f and the pressure field.
If we substitute (5.20) into (2.22)1, then in components we obtain

ax1

(

νf ′′′ + aff ′′ − af ′
2 − µe

ρa
H2

∞
hh′′

)

=
1

ρ

∂p

∂x1
,

νaf ′′ + a2ff ′ +
µe

ρ
H2

∞
x21h

′h′′ = −1
ρ

∂p

∂x2
,

∂p

∂x3
= 0 ⇒ p = p(x1, x2). (5.30)

By integrating (5.30)2, we find

p =− ρ
a2

2
f 2(x2)− ρaνf ′(x2)− µe

H2
∞

2
x21h

′2(x2) + P (x1),

where the function P (x1) is determined supposing that, far from the wall, the pres-
sure p has the same behaviour of (5.19).
Therefore, by virtue of (5.24) and (5.25), we get

P (x1) = −ρ
a2

2
x21 + µe

H2
∞

2
x21 + p∗0,

where p∗0 is a suitable constant.
Finally, the pressure field assumes the form

p =− ρ
a2

2
[x21 + f 2(x2)]− ρaνf ′(x2)− µe

H2
∞

2
x21[h

′2(x2)− 1] + p0, (5.31)

where the constant p0 is the pressure at the origin.
In consideration of (5.31), from (5.30)1 we obtain the ordinary differential equa-

tion

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1− µe

ρ

H2
∞

a2
(hh′′ − h′

2
+ 1) = 0. (5.32)

We can now summarize our results in the following:

Theorem 5.2.1. Let a homogeneous, incompressible, electrically conducting Newto-
nian fluid occupy the half-space S and be embedded in the external electromagnetic
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field He = H
∞
(x1e1−x2e2), Ee = 0. If the total magnetic field in the solid is (5.7),

then the steady MHD orthogonal stagnation-point flow of such a fluid has the form

v =a[x1f
′(x2)e1 − f(x2)e2], E = 0, H = H

∞
[x1h

′(x2)e1 − h(x2)e2],

p =− ρ
a2

2
[x21 + f 2(x2)]− ρaνf ′(x2)− µe

H2
∞

2
x21[h

′2(x2)− 1] + p0,

x1 ∈ R, x2 ∈ R
+,

where (f, h) satisfies the problem (5.32), (5.29), together with the boundary condi-
tions (5.21), (5.23), (5.24).

From the numerical integration we will see that the solution of problem (5.32),
(5.29), (5.21), (5.23), (5.24) satisfies condition (5.25).

We now write the boundary value problem in Theorem 5.2.1 in dimensionless
form, putting

η =

√

a

ν
x2, ϕ(η) =

√

a

ν
f

(
√

ν

a
η

)

, Ψ(η) =

√

a

ν
h

(
√

ν

a
η

)

, (5.33)

we get

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1− βm(ΨΨ

′′ −Ψ′
2
+ 1) = 0,

Ψ′′ +Rm(ϕΨ
′ −Ψϕ′) = 0,

ϕ(0) = 0, ϕ′(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Ψ′(η) = 1, (5.34)

where βm =
µe

ρ

H2
∞

a2
, Rm =

ν

ηe
is the magnetic Reynolds number.

We solved numerically problem (5.34) using the bvp4c MATLAB routine. The
values of Rm and βm are chosen according to [17], where the Authors have already
computed the solution but they didn’t take into consideration the thickness of the
boundary layer, the behaviour of the solution and the influence of the parameters
on the motion.

As far as the value of βm is concerned, we have that βm has to be less than 1 in
order to preserve the parallelism of H and v at infinity, as it will be pointed out in
the sequel.

Further for small values of Rm, equation (5.34)2 reduces to Ψ
′′ ∼= 0, which leads

to the problem in the absence of the magnetic field. In order to remove this difficulty,
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it is convenient to use the following transformation ([23], [24])

ξ =
√

Rmη, ϕ∗(ξ) =
√

Rmϕ(
√

Rmξ), Ψ∗(η) =
√

RmΨ(
√

Rmξ), (5.35)

which furnishes the analogous problem

Rmϕ
′′′

∗
+ ϕ∗ϕ

′′

∗
− ϕ′

∗

2
+ 1− βm(Ψ∗Ψ

′′

∗
−Ψ′

∗

2
+ 1) = 0,

Ψ′′
∗
+ ϕ∗Ψ

′

∗
−Ψ∗ϕ

′

∗
= 0,

ϕ∗(0) = 0, ϕ′
∗
(0) = 0, Ψ∗(0) = 0,

lim
ξ→+∞

ϕ′
∗
(ξ) = 1, lim

ξ→+∞
Ψ′
∗
(ξ) = 1. (5.36)

Remark 5.2.2. As in the absence of the external magnetic field (Remark 1.1.6), we
will see that

lim
η→+∞

ϕ′′(η) = 0, lim
η→+∞

ϕ′(η) = 1.

Therefore we define:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99.

If η > ηϕ, then ϕ
∼= η−α, with α =

√

a

ν
A, so that the thickness of the layer affected

by the viscosity is ηϕ

√

ν

a
.

As well as ϕ, in this case we also have that

lim
η→+∞

Ψ′′(η) = 0, lim
η→+∞

Ψ′(η) = 1.

If we denote by ηΨ the value of η such that Ψ′(ηΨ) = 0.99, then we have that for
η > ηΨ, Ψ

∼= η − α.
The numerical results show that the values of α computed for ϕ and Ψ are in

good agreement, especially when βm is small or Rm is big. This fact can be well
observed displaying that the velocity and the magnetic field are parallel far from the
obstacle, as we will see in the next figures.

The numerical values of α, ϕ′′(0), Ψ′(0) in dependence on Rm and βm are listed
in Table 5.1.

This Table has been obtained for small values of Rm recomputing the correspond-
ing values of η, ϕ and Ψ. More precisely, for Rm = 0.01, 0.1 with transformation
(5.35) we get Table 5.2.

If βm increases, then α increases, while ϕ′′(0) and Ψ′(0) decrease. Further α,
ϕ′′(0) and Ψ′(0) decrease as Rm increases.
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Table 5.1: CASE IV-N: descriptive quantities of the motion for several values of Rm

and βm.

Rm βm ϕ′′(0) Ψ′(0) α ηϕ
0.01 0.00 1.2326 0.9273 0.6479 2.3881

0.20 1.2040 0.9191 0.8021 6.6017
0.50 1.1435 0.8991 1.2557 19.4174
0.70 1.0764 0.8733 2.0070 30.1200
0.90 0.9437 0.8162 4.2495 44.7362

0.1 0.00 1.2326 0.8110 0.6479 2.3802
0.20 1.1650 0.7922 0.7884 5.2230
0.50 1.0278 0.7486 1.1879 9.1610
0.70 0.8877 0.6969 1.8066 12.6325
0.90 0.6529 0.5994 3.4034 15.2579

1 0.00 1.2326 0.6080 0.6479 2.3806
0.20 1.1193 0.5812 0.7616 3.1533
0.50 0.9065 0.5258 1.0511 4.3173
0.70 0.7189 0.4727 1.4028 4.7799
0.90 0.4676 0.3976 2.0234 4.9350

100 0.00 1.2326 0.2027 0.6479 2.3806
0.20 1.1004 0.1895 0.7266 2.6669
0.50 0.8665 0.1641 0.9234 3.3783
0.70 0.6686 0.1401 1.1887 4.2186
0.90 0.3935 0.1010 1.8284 4.8675

1000 0.00 1.2326 0.1003 0.6479 2.3806
0.20 1.1019 0.0935 0.7247 2.6619
0.50 0.8704 0.0804 0.9167 3.3621
0.70 0.6740 0.0683 1.1762 4.1973
0.90 0.3993 0.0487 1.8071 4.8625
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Table 5.2: CASE IV-N: descriptive quantities of the motion for several values of βm
when Rm is less than 1.

Rm βm ϕ′′
∗
(0) Ψ′

∗
(0) α∗ ξϕ∗

0.01 0.00 12.3259 0.9273 0.0648 0.2388
0.20 12.0400 0.9191 0.0802 0.6602
0.50 11.4350 0.8991 0.1256 1.9417
0.70 10.7640 0.8733 0.2007 3.0120
0.90 9.4374 0.8162 0.4249 4.4736

0.10 0.00 3.8978 0.8110 0.2049 0.7527
0.20 3.6842 0.7922 0.2493 1.6517
0.50 3.2501 0.7486 0.3756 2.8970
0.70 2.8071 0.6969 0.5713 3.9947
0.90 2.0646 0.5994 1.0763 4.8250
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Figure 5.2: CASE IV-N: the first figure shows ϕ, ϕ′, ϕ′′ for Rm = 1 and βm = 0.5,
while the second shows Ψ,Ψ′ for Rm = 1 and βm = 0.5.
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Figure 5.3: CASE IV-N: plots showing ϕ′ for different βm and Rm, respectively.

We remark that Ψ′(0) 6= 0 according to hypothesis (i) of Theorem 5.1.2.

In Figure 5.21 we can see the profiles ϕ, ϕ
′, ϕ′′ for Rm = 1 and βm = 0.5, while

Figure 5.22 illustrates the behaviour of Ψ,Ψ
′ for the same values of Rm and βm.

We have plotted the profiles of ϕ, ϕ′, ϕ′′,Ψ,Ψ′ only for Rm = 1 and βm = 0.5
because they have an analogous behaviour for Rm 6= 1 and βm 6= 0.5.

Table 5.1 underlines that the thickness of the boundary layer depends on Rm

and βm. More precisely, it increases when βm increases (as is easy to see in Figure
5.31). This behaviour is not surprising because βm is a measure of the strength of
the applied magnetic field and as it is underlined in [17] when the magnetic field is
strong the disturbances are no longer contained within a boundary layer along the
wall. This means that boundary conditions can no longer be prescribed at infinity.
In particular, in [17] it is proved that in a perfectly conducting fluid the displacement
thickness becomes infinite as βm goes to 1−.

As far as the dependence of the thickness of the boundary layer on Rm is con-
cerned, it decreases when Rm increases (as is easy to see in Figure 5.32). This fact is
in agreement with the results obtained for the orthogonal stagnation-point flow in
Chapter 2, where we have shown that the thickness of the boundary layer decreases
as the Hartmann numberM2 increases. Actually, Rm andM2 are both proportional
to the electrical conductivity.

We stress that the more Rm is small and the more βm is close to 1 the more
the thickness of the boundary layer is larger than in the other cases of orthogonal
stagnation-point flow treated in this Thesis (Chapters 1.1 and 2).

Finally, we display the streamlines of the flow in Figure 5.4. As is easily seen
from the figures, the flow and the magnetic field are completely overlapped far from
the obstacle and the more Rm increases the more the two lines coincide.
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Figure 5.4: CASE IV-N: figures show the streamlines for βm = 0.1 and Rm = 1 or
Rm = 100, respectively.
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5.3 Micropolar fluids CASE IV-M

Let now take into exam the steady two-dimensional MHD orthogonal stagnation-
point flow of a homogeneous, incompressible, electrically conducting micropolar fluid
towards a flat surface coinciding with the plane x2 = 0, the flow being confined to
the half-space S, having equation (5.1).

In the absence of free electric charges and external mechanical body forces and
body couples, the MHD equations for such a fluid are (2.44).
As far as the boundary conditions are concerned, we prescribe the no-slip condition
to the velocity and the strict adherence condition to the microrotation (2.45) and
we ask that the electromagnetic field satisfies (2.5) and (2.6).

We recall that the orthogonal stagnation-point flow is determined by (see Chapter
1.1.3)

v1 = ax1f
′(x2), v2 = −af(x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F (x2), x1 ∈ R, x2 ∈ R
+, (5.37)

where f, F are sufficiently regular unknown functions (f ∈ C3(R+), F ∈ C2(R+)).
Conditions (2.45) imply

f(0) = 0, f ′(0) = 0, F (0) = 0. (5.38)

As for the previous two models of fluid, we suppose that an external magnetic
field

He = H
∞
(x1e1 − x2e2)

permeates the whole physical space and that the external electric field is absent.
We search the total magnetic field in the fluid in the following form

H = H
∞
[x1h

′(x2)e1 − h(x2)e2], (5.39)

where h is a sufficiently regular unknown function (h ∈ C2(R+)). We recall that
from Theorem 5.1.2 follows that in the solid the total magnetic field has the form
Hs = H

∞
h′(0)(x1e1 − x2e2), which gives the additional condition

h(0) = 0. (5.40)

We require that the MHD orthogonal stagnation-point flow satisfies the Condi-
tion P at infinity.

Therefore to (5.37) we also append

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

F (x2) = 0, lim
x2→+∞

h′(x2) = 1. (5.41)
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The asymptotic behaviour of f and h at infinity is related to x2 as for the
Newtonian case. So relation (5.25) continues to hold and we have

v ×H = 0 at infinity. (5.42)

Our aim is now to determine (p, f, F, H, E) solution in S of (2.44) with v,w
given by (5.37) such that Condition P holds.

Since (2.44)3,4,5,6 are the same as (2.22)4,5,6,7, H, E depend only on the form of
the velocity field, which is the same as that of the Newtonian fluid. Hence, following
the arguments of the previous section, we get

E = 0, h′′(x2) + σeµea[f(x2)h
′(x2)− h(x2)f

′(x2)] = 0. (5.43)

We substitute (5.37) and (5.39) into (2.44)1,3 to obtain

ax1

[

(ν + νr)f
′′′ + aff ′′ − af ′

2
+
2νr
a
F ′ − µe

ρa
H2

∞
hh′′

]

=
1

ρ

∂p

∂x1
,

a(ν + νr)f
′′ + a2ff ′ + 2νrF +

µe

ρ
H2

∞
x21h

′h′′ = −1
ρ

∂p

∂x2
,

∂p

∂x3
= 0 ⇒ p = p(x1, x2),

λF ′′ + Ia(F ′f − Ff ′)− 2νr(2F + af ′′) = 0. (5.44)

Then, by integrating (5.44)2, we find

p =− ρ
a2

2
f 2(x2)− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds− µe

H2
∞

2
x21h

′2(x2) + P (x1),

where the function P (x1) is determined supposing that, far from the wall, the pres-
sure p has the same behaviour as for an inviscid fluid, whose velocity is given by
(5.18) and the pressure is given by (5.19).

Therefore, by virtue of (5.41) and (5.25) we get

P (x1) = −ρ
a2

2
x21 + µe

H2
∞

2
x21 + p∗0.

Consequently, the pressure field assumes the form

p =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− µe

H2
∞

2
x21[h

′2(x2)− 1] + p0. (5.45)
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In consideration of (5.45), from (5.44)1 we obtain the ordinary differential equa-
tion

ν + νr
a

f ′′′ + ff ′′ − f ′
2
+ 1 +

2νr
a2
F ′ − µe

ρ

H2
∞

a2
[hh′′ − h′

2
+ 1] = 0, (5.46)

together with equations (5.44)4, (5.43)2 and the boundary conditions (5.38), (5.41)
and (5.40).

Hence we can state:

Theorem 5.3.1. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the half-space S and be embedded in the external magnetic field
He = H

∞
(x1e1− x2e2),Ee = 0. If the total magnetic field in the solid is (5.7), then

the steady MHD orthogonal stagnation-point flow of such a fluid has the form

v =ax1f
′(x2)e1 − af(x2)e2, w = x1F (x2)e3,

H =H
∞
[x1h

′(x2)e1 − h(x2)e2], E = 0,

p =− ρ
a2

2
[x21 + f 2(x2)]− ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds− µe

H2
∞

2
x21[h

′2(x2)− 1] + p0, x1 ∈ R, x2 ∈ R
+,

where (f, F, h) satisfies the problem (5.46), (5.44)4, (5.43)2 and the boundary condi-
tions (5.38), (5.41) and (5.40), provided F ∈ L1([0,+∞)).

It is convenient to rewrite the boundary value problem in Theorem 5.3.1 in
dimensionless form in order to reduce the number of the material parameters. To
this end we use

η =

√

a

ν + νr
x2, ϕ(η) =

√

a

ν + νr
f

(

√

ν + νr
a

η

)

,

Ψ(η) =

√

a

ν + νr
h

(

√

ν + νr
a

η

)

, Φ(η) =
2νr
a2

√

a

ν + νr
F

(

√

ν + νr
a

η

)

. (5.47)

So system (5.46), (5.44)4 and (5.43)2 can be written as

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 + Φ′ − βm(ΨΨ

′′ −Ψ′
2
+ 1) = 0,

Φ′′ + c3Φ
′ϕ− Φ(c3ϕ

′ + c2)− c1ϕ
′′ = 0,

Ψ′′ +Rm(ϕΨ
′ −Ψϕ′) = 0, (5.48)
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where c1, c2, c3 are given by (1.25) and

βm =
µe

ρ

H2
∞

a2
, Rm =

ν + νr
ηe

. (5.49)

The boundary conditions (5.38), (5.41) and (5.40) in dimensionless form become:

ϕ(0) = 0, ϕ′(0) = 0, Φ(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0, lim
η→+∞

Ψ′(η) = 1. (5.50)

To study the flow regime, we now provide the numerical solution of the nonlinear
differential problem (5.48), (5.50).
The values of c1, c2, c3 are chosen according to [27] and to the previous chapters,
while the values of Rm and βm according to [17] and to the previous section.

We recall that βm has to be less than 1 in order to preserve the parallelism of H
and v at infinity and that for small values of Rm equation (5.48)3 reduces to Ψ

′′ ∼= 0,
which leads to the problem in the absence of the magnetic field. In order to avoid
this difficulty, it is convenient to use the following transformation ([23], [24])

ξ =
√

Rmη, ϕ∗(ξ) =
√

Rmϕ(
√

Rmξ),

Ψ∗(η) =
√

RmΨ(
√

Rmξ), Φ∗(ξ) =
√

RmΦ(
√

Rmξ), (5.51)

which furnishes the analogous problem

Rmϕ
′′′

∗
+ ϕ∗ϕ

′′

∗
− ϕ′

∗

2
+ 1 + Φ′

∗
− βm(Ψ∗Ψ

′′

∗
−Ψ′

∗

2
+ 1) = 0,

RmΦ
′′

∗
+ c3Φ

′

∗
ϕ∗ − Φ∗(c3ϕ

′

∗
+ c2)− Rmc1ϕ

′′

∗
= 0,

Ψ′′
∗
+ ϕ∗Ψ

′

∗
−Ψ∗ϕ

′

∗
= 0,

ϕ∗(0) = 0, ϕ′
∗
(0) = 0, Φ∗(0) = 0, Ψ∗(0) = 0,

lim
ξ→+∞

ϕ′
∗
(ξ) = 1, lim

ξ→+∞
Φ∗(ξ) = 0, lim

ξ→+∞
Ψ′
∗
(ξ) = 1. (5.52)

Remark 5.3.2. The numerical integration reveals that the solution (ϕ,Φ,Ψ) of pro-
blem (5.48) satisfies the conditions (5.50)5,6,7; therefore we apply Remark 1.1.9,
where we denoted by:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99;

• ηΦ the value of η such that Φ(ηΦ) = −0.01.
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Hence if η > ηϕ then ϕ ∼= η − α, and if η > ηΦ, then Φ ∼= 0.
The influence of the viscosity on the velocity and on the microrotation appears

only in a layer lining the boundary whose thickness is ηϕ for the velocity and ηΦ for
the microrotation. The thickness δ of the boundary layer for the flow is defined as

δ = max(ηϕ, ηΦ).

As well as in the Newtonian case, we also have that

lim
η→+∞

Ψ′′(η) = 0, lim
η→+∞

Ψ′(η) = 1.

If we define as ηΨ the value of η such that Ψ′(ηΨ) = 0.99, then we have that for
η > ηΨ, Ψ

∼= η − α.
The numerical results show that the values of α computed for ϕ and Ψ are in good
agreement, especially when βm is small or Rm is big. This fact can be well observed
displaying that the velocity and the magnetic field are parallel far from the obstacle,
as we will see in the next figures.

Table 5.3 shows the numerical results of the descriptive quantities of problem
(5.48)-(5.50) in dependence on some values of c1, c2, c3, βm and Rm.

We notice that the first lines of Table 5.3 have been obtained for small values
of Rm recomputing the corresponding values of η, ϕ, Φ, and Ψ. More precisely, for
Rm = 0.01 with transformation (5.51) we get Table 5.4.

If we fix βm and Rm, we see that the considerations of the case in the absence
of the external magnetic field (Chapter 1.1.3) continue to hold (as easily seen in
Figures from 5.5 to 5.7).

As far as the dependence on Rm and βm is concerned, we can see from Table 5.3
that:

• if βm increases, then α and Φ′(0) increase, while ϕ′′(0) and Ψ′(0) decrease;

• if Rm increases, then α, ϕ′′(0), |Φ′(0)| and Ψ′(0) decrease.
In Figure 5.81 we furnish the profiles of ϕ, ϕ

′, ϕ′′ when c1 = 0.5, c2 = 3.0, c3 = 0.5,
Rm = 1 and βm = 0.5, while Figure 5.82 shows the behaviour of Φ,Φ

′ for the same
values of the parameters. The functions Ψ,Ψ′ are plotted in Figure 5.83.

For other choices of the parameters, the profiles of ϕ, ϕ′, ϕ′′, Φ, Φ′, Ψ, Ψ′ are
very similar.

Table 5.3 underlines that the thickness of the boundary layer depends on Rm and
βm. More precisely, it increases when βm increases. This behaviour is the same as in
the Newtonian case and it is not surprising because βm is a measure of the strength
of the applied magnetic field and as it is underlined in [17] when the magnetic field
is strong the disturbances are no longer contained within a boundary layer along the
wall. This means that boundary conditions can no longer be prescribed at infinity.
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Table 5.3: CASE IV-M: descriptive quantities of the motion for several values of c1,
c2, c3, Rm and βm.

Rm βm c1 c2 c3 ϕ′′(0) Ψ′(0) Φ′(0) α ηϕ ηΦ δ

0.01 0.00 0.10 1.50 0.10 1.2218 0.9275 -0.0532 0.6445 2.3341 0.7669 2.3341
0.50 1.2231 0.9275 -0.0510 0.6448 2.3508 0.7169 2.3508

3.00 0.10 1.2250 0.9275 -0.0444 0.6453 2.3508 0.6669 2.3508
0.50 1.2256 0.9275 -0.0434 0.6454 2.3675 0.6335 2.3675

0.50 1.50 0.10 1.1780 0.9287 -0.2659 0.6309 2.1340 0.7669 2.1340
0.50 1.1848 0.9287 -0.2553 0.6321 2.1841 0.7169 2.1841

3.00 0.10 1.1943 0.9284 -0.2220 0.6350 2.2174 0.6836 2.2174
0.50 1.1972 0.9284 -0.2173 0.6356 2.2508 0.6502 2.2508

0.50 0.10 1.50 0.10 1.1335 0.8995 -0.0500 1.2492 19.3731 0.7836 19.3731
0.50 1.1347 0.8995 -0.0481 1.2496 19.3731 0.7169 19.3731

3.00 0.10 1.1366 0.8994 -0.0417 1.2508 19.3898 0.6836 19.3898
0.50 1.1371 0.8994 -0.0408 1.2510 19.3898 0.6502 19.3898

0.50 1.50 0.10 1.0929 0.9012 -0.2505 1.2227 19.1731 0.7836 19.1731
0.50 1.0992 0.9011 -0.2409 1.2249 19.1897 0.7336 19.1897

3.00 0.10 1.1085 0.9007 -0.2085 1.2308 19.2397 0.6836 19.2397
0.50 1.1111 0.9007 -0.2043 1.2318 19.2564 0.6502 19.2564

1 0.00 0.10 1.50 0.10 1.2218 0.6081 -0.0532 0.6446 2.3258 1.6005 2.3258
0.50 1.2231 0.6082 -0.0510 0.6448 2.3374 1.3338 2.3374

3.00 0.10 1.2250 0.6082 -0.0444 0.6453 2.3474 1.0020 2.3474
0.50 1.2256 0.6083 -0.0434 0.6454 2.3525 0.8469 2.3525

0.50 1.50 0.10 1.1780 0.6087 -0.2659 0.6310 2.1274 2.9093 2.9093
0.50 1.1848 0.6093 -0.2553 0.6321 2.1691 2.4325 2.4325

3.00 0.10 1.1943 0.6092 -0.2220 0.6350 2.2157 2.3441 2.3441
0.50 1.1972 0.6095 -0.2173 0.6356 2.2391 2.1190 2.2391

0.50 0.10 1.50 0.10 0.8963 0.5258 -0.0429 1.0463 4.2864 1.8723 4.2864
0.50 0.8976 0.5260 -0.0413 1.0462 4.2964 1.5038 4.2964

3.00 0.10 0.8998 0.5260 -0.0350 1.0474 4.2998 0.7469 4.2998
0.50 0.9003 0.5261 -0.0343 1.0474 4.3031 0.7119 4.3031

0.50 1.50 0.10 0.8549 0.5255 -0.2141 1.0265 4.1464 3.8913 4.1464
0.50 0.8616 0.5267 -0.2066 1.0261 4.2031 3.3061 4.2031

3.00 0.10 0.8727 0.5267 -0.1746 1.0321 4.2281 3.1677 4.2281
0.50 0.8753 0.5271 -0.1715 1.0321 4.2464 2.8193 4.2464

100 0.00 0.10 1.50 0.10 1.2218 0.2021 -0.0532 0.6446 2.3258 1.6005 2.3258
0.50 1.2231 0.2023 -0.0510 0.6448 2.3374 1.3338 2.3374

3.00 0.10 1.2250 0.2024 -0.0444 0.6453 2.3474 1.0020 2.3474
0.50 1.2256 0.2024 -0.0434 0.6454 2.3525 0.8469 2.3525

0.50 1.50 0.10 1.1780 0.1999 -0.2659 0.6310 2.1274 2.9093 2.9093
0.50 1.1848 0.2005 -0.2553 0.6321 2.1691 2.4325 2.4325

3.00 0.10 1.1943 0.2011 -0.2220 0.6350 2.2157 2.3441 2.3441
0.50 1.1972 0.2013 -0.2173 0.6356 2.2391 2.1190 2.2391

0.50 0.10 1.50 0.10 0.8560 0.1635 -0.0439 0.9166 3.2928 1.9590 3.2928
0.50 0.8574 0.1636 -0.0421 0.9169 3.3178 1.6189 3.3178

3.00 0.10 0.8595 0.1638 -0.0354 0.9184 3.3311 1.0854 3.3311
0.50 0.8601 0.1638 -0.0347 0.9186 3.3411 0.7786 3.3411

0.50 1.50 0.10 0.8126 0.1609 -0.2196 0.8887 2.9460 3.4378 3.4378
0.50 0.8200 0.1617 -0.2112 0.8907 3.0527 2.9210 3.0527

3.00 0.10 0.8311 0.1624 -0.1772 0.8984 3.1327 2.8459 3.1327
0.50 0.8340 0.1627 -0.1738 0.8993 3.1794 2.5792 3.1794
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Table 5.4: CASE IV-M: descriptive quantities of the motion for several values of c1,
c2, c3, βm and Rm = 0.01.

Rm βm c1 c2 c3 ϕ′′
∗
(0) Ψ′

∗
(0) Φ′

∗
(0) α∗ ξϕ∗

ξΦ∗
δ∗

0.01 0.00 0.10 1.50 0.10 12.2182 0.9275 -0.0532 0.0645 0.2334 0.0767 0.2334
0.50 12.2313 0.9275 -0.0510 0.0645 0.2351 0.0717 0.2351

3.00 0.10 12.2501 0.9275 -0.0444 0.0645 0.2351 0.0667 0.2351
0.50 12.2558 0.9275 -0.0434 0.0645 0.2367 0.0634 0.2367

0.50 1.50 0.10 11.7801 0.9287 -0.2659 0.0631 0.2134 0.0767 0.2134
0.50 11.8476 0.9287 -0.2553 0.0632 0.2184 0.0717 0.2184

3.00 0.10 11.9433 0.9284 -0.2220 0.0635 0.2217 0.0684 0.2217
0.50 11.9723 0.9284 -0.2173 0.0636 0.2251 0.0650 0.2251

0.50 0.10 1.50 0.10 11.3354 0.8995 -0.0500 0.1249 1.9373 0.0784 1.9373
0.50 11.3475 0.8995 -0.0481 0.1250 1.9373 0.0717 1.9373

3.00 0.10 11.3657 0.8994 -0.0417 0.1251 1.9390 0.0684 1.9390
0.50 11.3708 0.8994 -0.0408 0.1251 1.9390 0.0650 1.9390

0.50 1.50 0.10 10.9294 0.9012 -0.2505 0.1223 1.9173 0.0784 1.9173
0.50 10.9917 0.9011 -0.2409 0.1225 1.9190 0.0734 1.9190

3.00 0.10 11.0847 0.9007 -0.2085 0.1231 1.9240 0.0684 1.9240
0.50 11.1109 0.9007 -0.2043 0.1232 1.9256 0.0650 1.9256
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Figure 5.5: CASE IV-M: ϕ′,Φ profiles for Rm = 1, βm = 0.5, c2 = 3, c3 = 0.5 when
c1 = 0.1 and c1 = 0.5.
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Figure 5.6: CASE IV-M: ϕ′,Φ profiles for Rm = 1, βm = 0.5, c1 = 0.5, c3 = 0.5
when c2 = 1.5 and c2 = 3.
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Figure 5.7: CASE IV-M: ϕ′,Φ profiles for Rm = 1, βm = 0.5, c1 = 0.5, c2 = 3 when
c3 = 0.1 and c3 = 0.5.
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Figure 5.8: CASE IV-M: the first figure shows ϕ, ϕ′, ϕ′′, the second Φ,Φ′, the third
Ψ,Ψ′, when c1 = 0.5, c2 = 3.0, c3 = 0.5, Rm = 1 and βm = 0.5.
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Figure 5.9: CASE IV-M: plots showing ϕ′ and Φ for different βm and Rm, respec-
tively.

As far as the dependence of the thickness of the boundary layer on Rm is con-
cerned, it decreases when Rm increases. This fact is in agreement with the results
obtained for the orthogonal stagnation-point flow in Chapter 2, where we have shown
that the thickness of the boundary layer decreases as the Hartmann number M2 in-
creases. Actually, Rm and M2 are both proportional to the electrical conductivity.

The functions ϕ′ and Φ are plotted against η for various values of βm and Rm in
Figure 5.9.

We underline that, as in the previous chapters, the micropolar nature of the fluid
reduces all the descriptive quantities of the motion in comparison to those of the
Newtonian fluid, especially the thickness of the boundary layer for the velocity.

Finally, in Figure 5.10, we can easily see that the flow and the magnetic field are
completely overlapped far from the obstacle.
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Figure 5.10: CASE IV-M: figures show the streamlines for c1 = 0.5, c2 = 3.0,
c3 = 0.5, βm = 0.5 and Rm = 1 or Rm = 100, respectively.
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Chapter 6

MHD oblique stagnation-point

flow with H and v parallel at

infinity

We now examine the MHD oblique stagnation-point flow under a hypothesis which
provides that the magnetic field is parallel to the flow at infinity.
The geometrical situation is the same as in Chapter 5.

The results here presented for the micropolar fluids are completely new ([10]),
while the Newtonian case has been partially studied in [17].

6.1 Inviscid fluids CASE IV

Consider the steady plane MHD flow of a homogeneous, incompressible, electrically
conducting inviscid fluid near a stagnation point filling the half-space S (Figure 6.1).

∂S is the boundary of a solid which is a rigid uncharged dielectric at rest occu-
pying S−.

The velocity of such motion has the form

v1 = a(x1 + cx2), v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (6.1)

with a, c constants (a > 0). We observe that the constant c depends on the constant

b of the previous chapters as c =
b

a
(see Chapter 1.2 and 3, for example (3.1)).

The equations governing such a flow in the absence of external mechanical body
forces and free electric charges are (2.2) and we impose the usual boundary condi-
tions (see (2.4), (2.5), (2.6)).

249
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x1
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O

H

E

Figure 6.1: Description flow in CASE IV.

As far as the external electromagnetic field is concerned, we suppose that an
external magnetic field

He = H
∞
[(x1 + cx2)e1 − x2e2], H∞

= constant, x1 ∈ R, x2 ∈ R,

and an external electric field

Ee = E0e3, E0 = constant, x1 ∈ R, x2 ∈ R,

permeate the whole physical space.

Remark 6.1.1. The field lines of He have the following parametric equations

x1 = A1e
H

∞
λ − c

2
A2e

−H
∞

λ,

x2 = A2e
−H

∞
λ, λ ∈ R, (6.2)

where A1, A2 are arbitrary constants.
These field lines degenerate if at least one of the two constants A1, A2 vanishes.

Otherwise they are the hyperbolas of equation

x1x2 = A1A2 −
c

2
x22.

The centre of these hyperbolas is the origin and these curves tend to x2 = 0 as
|x1| → +∞.
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We assume that the total magnetic fields in the fluid and in the solid have the
following form

H = H
∞
[(x1h

′(x2) + ck(x2))e1 − h(x2)e2], x2 ≥ 0, and

Hs = H
∞
[(x1h

′

s(x2) + cks(x2))e1 − hs(x2)e2], x2 ≤ 0, (6.3)

respectively, where h, k, hs, ks are sufficiently regular unknown functions to be de-
termined (h, k, hs, ks ∈ C2(R+)).

Precisely, we ask that H tends to He as x2 → +∞ so that H is parallel to v at
infinity. Therefore we require

lim
x2→+∞

h′(x2) = 1, lim
x2→+∞

[h(x2)− x2] = 0, lim
x2→+∞

[k(x2)− x2] = 0. (6.4)

We also make the following assumptions:

(i) Hs is not uniform;

(ii) the centre of its non-degenerate field lines, which as we will see are hyperbolas,
is the origin;

(ii) these lines tend to x2 = 0 as |x1| → +∞.

Now our aim is to prove the following theorem:

Theorem 6.1.2. If the solid which occupies S− is a rigid uncharged dielectric at
rest and Hs satisfies (i), (ii) and (iii), then

Hs = H
∞
h′(0)(x1e1 − x2e2), (6.5)

where h(x2) is the function in (6.3)1.

Proof. We begin by recalling that the solid is an uncharged dielectric so that

∇×Hs = 0, in S−,

from which we get

x1h
′′

s(x2) + ck′s(x2) = 0, ∀x1 ∈ R. (6.6)

Equation (6.6) implies

hs(x2) = C1x2 + C2, ks(x2) = C3, x2 ≤ 0, (6.7)

where C1, C2, C3 ∈ R.
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By virtue of the continuity of the tangential components of the magnetic field
across the plane x2 = 0, since in S the total magnetic field is (6.3)1, we find

C1 = h′(0), C3 = k(0), (6.8)

so that

Hs = H
∞
[(h′(0)x1 + ck(0))e1 − (h′(0)x2 + C2)e2]. (6.9)

We remark that Hs is uniform if h′(0) = 0. Hence in order to satisfy hypothesis
(i), we proceed with h′(0) 6= 0.

As it is easy to verify, the non-degenerate field lines are the hyperbolas

(

x1 + c
k(0)

h′(0)

)

x2 = C4 −
cC2k(0)

[h′(0)]2
− C2
h′(0)

x1, x2 ≤ 0, C4 = constant ∈ R \ 0.
(6.10)

The centre of these hyperbolas is the origin if, and only if,

k(0) = 0,

and these curves tend to x2 = 0 as |x1| → +∞ if, and only if,

C2 = 0,

from which we get the assertion.

Remark 6.1.3. Since the solid is an uncharged dielectric Es = Ee.

We now consider the inviscid fluid filling the half-space S.
By virtue of the usual boundary conditions in electromagnetism, we deduce

h(0) = 0, k(0) = 0. (6.11)

We now determine (p, H, E) solution of (2.2) in S with v given by (6.1) such
that H tends to He as x2 goes to infinity. Hence

v ×H = 0 at infinity. (6.12)

Let E be the total electric field in the fluid.
The boundary conditions require that

E1 = 0, E3 = E0 at x2 = 0. (6.13)
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Equation (2.2)4 implies

E = −∇ψ.

Further from (2.2)3 and the form of H and v, it follows

E =
1

σe
(∇×H− σeµev ×H) ⇒ E is parallel to e3. (6.14)

Hence E1 = E2 = 0 and E3 = E0.
On the other hand,

lim
x2→+∞

∇×H = −cH
∞
e3 and lim

x2→+∞
v ×H = 0,

so that

E0 = −
cH

∞

σe
.

Remark 6.1.4. Differently from the orthogonal flow, now, a nonzero current density
is present, which requires the existence of an electric field in e3 direction.

Equation (2.2)3 provides

x1

[

h′′(x2) +
a

ηe
(x2h

′(x2)− h(x2))

]

+ c

[

k′(x2) +
a

ηe
(k(x2)− h(x2))x2 − 1

]

= 0,

∀x1 ∈ R, x2 ∈ R
+. (6.15)

The previous relation together with conditions (6.4), (6.11) gives rise to the following
two ordinary differential boundary value problem

h′′(x2) +
a

ηe
[x2h

′(x2)− h(x2)] = 0,

h(0) = 0, lim
x2→+∞

h′(x2) = 1; (6.16)

k′(x2) +
a

ηe
[k(x2)− h(x2)]x2 − 1 = 0,

k(0) = 0. (6.17)

Problem (6.16) has the unique solution h(x2) = x2.
If we substitute h(x2) = x2 into (6.17), then we find that this problem also has the
unique solution k(x2) = x2. The solution satisfies the condition (6.4)3 at infinity.

Finally, the total magnetic field has the form

H = He = H
∞
[(x1 + cx2)e1 − x2e2]. (6.18)



254 6. MHD oblique stagnation-point flow with H and v parallel at infinity

We remark that unlike the previous chapter, ∇ × H = −cH
∞
e3, hence the

pressure field is modified by the presence of H and from (2.2)1 we get

p = −ρa
2

2
(x21 + x22)− µeH

2
∞
c

(

x1x2 + c
x22
2

)

+ p0, x1 ∈ R, x2 ∈ R
+. (6.19)

Our results can be summarized in the following:

Theorem 6.1.5. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the half-space S and is embedded in the external electromagnetic field
He = H

∞
[(x1 + cx2)e1 − x2e2], Ee = E0e3. If the total magnetic field in the solid

is taken in the form (6.5), then the steady plane MHD oblique stagnation-point flow
of such a fluid has the form

v = a(x1 + cx2)e1 − ax2e2, E = Ee = −
cH

∞

σe
e3, H = He,

p = −ρa
2

2
(x21 + x22)− µeH

2
∞
c

(

x1x2 + c
x22
2

)

+ p0, x1 ∈ R, x2 ∈ R
+. (6.20)

Remark 6.1.6. In order to study the same problem for other models of fluids, it is
convenient to suppose that the inviscid obliquely impinges on the flat plane x2 = A
and

v = a[x1 + c(x2 − B)]e1 − a(x2 − A)e2,

He = H
∞
[x1 + c(x2 −B)]e1 −H

∞
(x2 −A)e2, x1 ∈ R, x2 ≥ A,

H→ H
∞
[x1 + c(x2 − B)]e1 −H

∞
(x2 −A)e2 as x2 → +∞. (6.21)

with A,B = constants (Remark 1.2.2).
In this case, the stagnation point is (c(B − A), A) and the streamlines and the

magnetic field lines are hyperbolas whose asymptotes are

x2 = −
2

c
x1 + 2B −A and x2 = A.

Under these assumptions Theorem 6.1.5 continues to hold by replacing the ve-
locity with (6.21)1 and the pressure field and the total magnetic field by

p =− ρ
a2

2
[x21 + (x2 − A)2] + ρa2c(B − A)x1

− µeH
2
∞
c

[

x1x2 − Ax1 + c
(x2 −B)2

2

]

+ p0,

H = H
∞
[x1 + c(x2 − B)]e1 −H

∞
(x2 − A)e2, (6.22)

respectively.
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6.2 Newtonian fluids CASE IV-N

Consider now the steady oblique MHD flow of a homogeneous, incompressible, elec-
trically conducting Newtonian fluid near a stagnation point filling the half-space S.
The equations governing such a flow in the absence of external mechanical body
forces and free electric charges are equations (2.22) and we impose conditions (2.23),
(2.5) and (2.6).

Since we are interested in the oblique plane stagnation-point flow, similar to the
previous chapters, we suppose

v1 = a[x1f
′(x2) + cg(x2)], v2 = −af(x2), v3 = 0, x1 ∈ R, x2 ∈ R

+, (6.23)

with f, g sufficiently regular unknown functions (f ∈ C3(R+), g ∈ C2(R+)).
The condition (2.23) supplies

f(0) = 0, f ′(0) = 0, g(0) = 0. (6.24)

We assume that an external magnetic field

He = H
∞
[(x1 + cx2)e1 − x2e2]

and an external electric field
Ee = E0e3

permeate the whole physical space.
Moreover, the total magnetic field in the fluid is taken in the following form

H = H
∞
[(x1h

′(x2) + ck(x2))e1 − h(x2)e2], (6.25)

where h, k are sufficiently regular unknown functions (h, k ∈ C2(R+)) to be deter-
mined.

Theorem 6.1.2 implies that in the solid the total magnetic field has the form
Hs = H

∞
h′(0)(x1e1 − x2e2), so that h and k must satisfy

h(0) = 0, k(0) = 0. (6.26)

We impose

Condition P. At infinity, the MHD oblique stagnation-point flow of a viscous
fluid approaches the flow of an inviscid fluid whose velocity, pressure and magnetic
field are given by (6.21)1, (6.22)1 and (6.22)2, respectively.

Therefore we ask

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1, lim
x2→+∞

h′(x2) = 1, (6.27)
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so that

v ×H = 0 at infinity. (6.28)

We remark that in the sequel, when we will refer to an inviscid fluid, all results
obtained in Chapter 6.1 have to be modified as in the Remark 6.1.6.
In particular, the asymptotic behaviour of f , g, h, k at infinity is related to the
constants A,B in the following way:

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B, (6.29)

lim
x2→+∞

[h(x2)− x2] = −A, lim
x2→+∞

[k(x2)− x2] = −B. (6.30)

As we have already said, A is determined as part of the solution of the orthogonal
flow ([47]), instead B is a free parameter ([19]).

Let E be the total electric field in the fluid.
Since Es = Ee, the boundary conditions require

E1 = 0, E3 = E0, at x2 = 0.

From (2.22)3 follows E = E0e3.
As in the inviscid case, the boundary condition at infinity furnishes

E0 = −
cH

∞

σe
. (6.31)

We now want to find (p, f, g, h, k) solution in S of (2.22) with v given by
(6.23) such that Condition P is satisfied.

Taking into account the expression of the total electromagnetic field, (2.22)3
provides

x1

[

h′′(x2) +
a

ηe
[f(x2)h

′(x2)− f ′(x2)h(x2)]

]

+c

[

k′(x2) +
a

ηe
[f(x2)k(x2)− g(x2)h(x2)]− 1

]

= 0, ∀x1 ∈ R, x2 ∈ R
+. (6.32)

Relation (6.32) together with the conditions (6.27)3 and (6.26) gives rise to the
following two ordinary differential boundary value problem

h′′(x2) +
a

ηe
[f(x2)h

′(x2)− f ′(x2)h(x2)] = 0,

h(0) = 0, lim
x2→+∞

h′(x2) = 1; (6.33)

k′(x2) +
a

ηe
[f(x2)k(x2)− g(x2)h(x2)]− 1 = 0,

k(0) = 0. (6.34)
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If we regard f, g, h as known functions, the solution of the differential problem
(6.34) is formally obtained as

k(x2) = e−
a
ηe

∫ x2
0

f(t)dt

[
∫ x2

0

((

a

ηe
g(t)h(t) + 1

)

e
a
ηe

∫ t

0
f(s)dsdt

)]

. (6.35)

If f, g, h satisfy conditions (6.27), (6.29), (6.30)1, then from (6.35) it follows
that k satisfies condition (6.30)2.

Now we proceed in order to determine p, f, g.
The substituting of (6.23), and (6.25) into (2.22)1 provides p = p(x1, x2) and

ax1(νf
′′′ + aff ′′ − af ′

2 − µe

ρa
H2

∞
hh′′)

+ac

[

νg′′ + a(fg′ − f ′g)− µe

ρa
H2

∞
hk′
]

=
1

ρ

∂p

∂x1
,

νaf ′′ + a2f ′f +
µe

ρ

H2
∞

2

∂

∂x2

[

(x1h
′ + ck)2

]

= −1
ρ

∂p

∂x2
. (6.36)

Then, by integrating (6.36)2, we find

p = −ρa
2

2
f 2(x2)− ρaνf ′(x2)− µe

H2
∞

2
[x1h

′(x2) + ck(x2)]
2
+ P (x1),

where the function P (x1) is determined supposing that, far from the wall, the pres-
sure p has the behaviour given by (6.22).
Therefore, taking into account (6.27), (6.29), (6.30), we get

P (x1) =− ρ
a2

2
x21 + ρa2c(B −A)x1 + µe

H2
∞

2
x21 + µeH

2
∞
c(A−B)x1 + p∗0,

so that the pressure field assumes the form

p =− ρ
a2

2

[

x21 + f 2(x2)
]

− ρaνf ′(x2) + ρa2c(B − A)x1

− µe

H2
∞

2
[x1h

′(x2) + ck(x2)]
2
+ µe

H2
∞

2
x21 + µeH

2
∞
c(A− B)x1 + p0. (6.37)

We remark that ∇p has a constant component in the x1 direction proportional
to B − A, which does not appear in the orthogonal stagnation-point flow. This
component determines the displacement of the uniform shear flow parallel to the
wall x2 = 0. Differently from the previous chapters (see Chapters 1.2.2 and 3), this
component now depends on H2

∞
.
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In consideration of (6.37), from (6.36)1 we obtain the ordinary differential equa-
tions

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1− µe

ρ

H2
∞

a2

(

hh′′ − h′
2
+ 1
)

= 0,

ν

a
g′′ + fg′ − f ′g − µe

ρ

H2
∞

a2
(hk′ − h′k) =

(

1− µe

ρ

H2
∞

a2

)

(B −A). (6.38)

We have thus proved:

Theorem 6.2.1. Let a homogeneous, incompressible, electrically conducting Newto-
nian fluid occupy the half-space S and is embedded in the external electromagnetic
field He = H

∞
[(x1 + cx2)e1 − x2e2], Ee = E0e3. If the total magnetic field in the

solid is (6.5), then the steady plane MHD oblique stagnation-point flow of such a
fluid has the following form

v =a[x1f
′(x2) + cg(x2)]e1 − af(x2)e2, E = Ee = −

cH
∞

σe
e3,

H =H
∞
[x1h

′(x2) + ck(x2)]e1 −H
∞
h(x2)e2,

p =− ρ
a2

2

[

x21 + f 2(x2)
]

− ρaνf ′(x2) + ρa2c(B − A)x1 + µe

H2
∞

2
x21

− µe

H2
∞

2
[x1h

′(x2) + ck(x2)]
2
+ µeH

2
∞
c(A−B)x1 + p0, x1 ∈ R, x2 ∈ R

+,

where (f, g, h, k) satisfies problem (6.38), (6.33), (6.34), (6.24), (6.27)1,2.

If we use (1.35) and we put

Ψ(η) =

√

a

ν
h

(
√

ν

a
η

)

, K(η) =

√

a

ν
k

(
√

ν

a
η

)

,

then we can rewrite problem (6.38), (6.33), (6.34), (6.24), (6.27)1,2 as:

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1− βm(ΨΨ

′′ −Ψ′
2
+ 1) = 0,

γ′′ + ϕγ′ − ϕ′γ − βm(ΨK
′ −Ψ′K) = (1− βm)(β − α),

Ψ′′ +Rm(ϕΨ
′ − ϕ′Ψ) = 0,

K ′ +Rm(ϕK − γΨ)− 1 = 0,

ϕ(0) = 0, ϕ′(0) = 0, γ(0) = 0, γ′(0) = 0,

Ψ(0) = 0, K(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1, lim
η→+∞

Ψ′(η) = 1, (6.39)
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where

α =

√

a

ν
A, β =

√

a

ν
B, βm =

µe

ρ

H2
∞

a2
, Rm =

ν

ηe
.

Notice that the functions ϕ,Ψ influence the functions γ,K, but not viceversa.
The functions ϕ and Ψ satisfy the corresponding problem of the orthogonal stagnation-
point flow (see Chapter 5.2), which can be solved numerically.

Remark 6.2.2. As in the case in the absence of the external electromagnetic field
(see Remark 1.2.4), along the wall x2 = 0 there are three important coordinates: the
origin x1 = 0, which is the stagnation point, the point x1 = xp of maximum pressure
and the point x1 = xs of zero tangential stress (zero skin friction) where the dividing
streamline of equation

ξϕ(η) +
b

a

∫ η

0

γ(s)ds = 0, ξ =

√

ν

a
x1 (6.40)

meets the boundary.
In consideration of (6.37) and (6.23), one shows that xs is of course the same

as in the absence of the external electromagnetic field (see (1.41)2)

xs = −c
√

ν

a

γ′(0)

ϕ′′(0)
. (6.41)

We underline that ϕ′′(0) and γ′(0) now depend on βm and Rm.
As far as xp is concerned, the pressure has a stationary point in

xp = c

√

ν

a

(β − α)(1− βm)

1− βm[1− (Ψ′(0))2]
, (6.42)

which is a point of maximum if βm < 1.
We note that the ratio

xp
xs

=
(α− β)(1− βm)

1− βm[1− (Ψ′(0))2]

ϕ′′(0)

γ′(0)

is the same for all angles of incidence.
Finally, the slope of the dividing streamline at the wall is given by ([17]):

ms = −
3[ϕ′′(0)]2

c[(1− βm)[(β − α)ϕ′′(0) + γ′(0)] + βm(Ψ′(0))2γ′(0)]

and does not depend on the kinematic viscosity. Thus, the ratio of this slope to

that of the dividing streamline at infinity

(

mi = −
2

c

)

is the same for all oblique

stagnation-point flows and it is given by

ms

mi
=
3

2

[ϕ′′(0)]2

[(1− βm)[(β − α)ϕ′′(0) + γ′(0)] + βm(Ψ′(0))2γ′(0)]
. (6.43)



260 6. MHD oblique stagnation-point flow with H and v parallel at infinity

This ratio is independent of c, depending on the constant pressure gradient parallel
to the boundary through B − A and H.

As usual, problem (6.39) was solved using the bvp4c MATLAB routine.
The values of Rm and βm are chosen according to [17] and the previous chapter,

while we have taken β − α = −5− α, −α, 0, α, 5− α as in Chapters 1.2 and 3.
As far as the value of βm is concerned, we have that βm has to be less than 1

in order to preserve the parallelism of H and v at infinity, as it happened in the
orthogonal flow (see Chapter 5).

For small values of Rm, equation (6.39)3 reduces to Ψ
′′ ∼= 0, which leads to the

problem in the absence of the magnetic field. In order to remove this difficulty, it is
convenient to use the following transformation ([23], [24])

ξ =
√

Rmη, ϕ∗(ξ) =
√

Rmϕ(
√

Rmξ), γ∗(ξ) =
√

Rmγ(
√

Rmξ),

Ψ∗(η) =
√

RmΨ(
√

Rmξ), K∗(η) =
√

RmK(
√

Rmξ), (6.44)

which furnishes the analogous problem:

Rmϕ
′′′

∗
+ ϕ∗ϕ

′′

∗
− ϕ′

∗

2
+ 1− βm(Ψ∗Ψ

′′

∗
−Ψ′

∗

2
+ 1) = 0,

Rmγ
′′

∗
+ ϕ∗γ

′

∗
− ϕ′

∗
γ∗ − βm(Ψ∗K

′

∗
−Ψ′

∗
K∗) =

√

Rm(1− βm)(β − α),

Ψ′′
∗
+ ϕ∗Ψ

′

∗
− ϕ′

∗
Ψ∗ = 0,

K ′

∗
+ ϕ∗K∗ − γ∗Ψ∗ − 1 = 0,

ϕ∗(0) = 0, ϕ′
∗
(0) = 0, γ∗(0) = 0, γ′

∗
(0) = 0, Ψ∗(0) = 0, K∗(0) = 0,

lim
ξ→+∞

ϕ′
∗
(ξ) = 1, lim

ξ→+∞
γ′
∗
(ξ) = 1,

lim
ξ→+∞

Ψ′
∗
(ξ) = 1. (6.45)

Remark 6.2.3. As we will see, ϕ and γ satisfy conditions (6.39)11,12. In particular,

lim
η→+∞

[ϕ(η)− η] = −α, lim
η→+∞

[γ(η)− η] = −β.

Hence it is convenient to recall Remark 1.2.5, where we defined:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99, if β − α ≥ 0, or
γ′ = 1.01, if β − α < 0).

If η > ηϕ (η > ηγ), then ϕ
∼= η − α (γ ∼= η − β).

As in the previous chapters, we define by

δ := max(ηϕ, ηγ)
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the thickness of the layer lining the boundary where the influence of the viscosity
appears.

As well as ϕ and γ, in this case we also have that

lim
η→+∞

Ψ′(η) = 1, lim
η→+∞

K ′(η) = 1, lim
η→+∞

[Ψ(η)− η] = −α, lim
η→+∞

[K(η)− η] = −β.

The numerical results show that the values computed of α (β) for ϕ and Ψ (γ
and K) are in good agreement, especially when βm is small or Rm is big. This fact
can be well observed displaying that the velocity and the magnetic field are parallel
far from the obstacle, as we will see in the next figures.

The values of α, ϕ′′(0), γ′(0), Ψ′(0) depend on Rm and βm, as we can see from
Table 6.1. Of course the value of γ′(0) depends also on β − α.

Table 6.1 has been obtained for small values of Rm recomputing the correspond-
ing values of η, ϕ, γ, Ψ and K. More precisely, for Rm = 0.01 with transformation
(6.44) we get Table 6.2.

We underline that

• if Rm increases, then α, ϕ′′(0) and Ψ′(0) decrease;

• if βm increases, then α increases, while ϕ′′(0) and Ψ′(0) decrease;

• γ′(0) is more influenced by β − α rather then Rm and βm: more precisely, it
decreases as β − α increases.

In Figure 6.21 we can see the profiles ϕ, ϕ
′, ϕ′′ for Rm = 1 and βm = 0.5, while

Figure 6.22 shows the behaviour of Ψ,Ψ
′ for the same values of Rm and βm.

Figures 6.31, 6.32 show the profiles of γ(η), γ′(η), for Rm = 1, βm = 0.5 and
some values of β − α, i.e. β − α = −5− α, −α, 0, α, 5− α.

In Figure 6.4 we display the variation of K(η) with η when β − α varies and
Rm = 1, βm = 0.5.

We have plotted the profiles of ϕ, ϕ′, ϕ′′, γ, γ′,Ψ,Ψ′, K only for Rm = 1 and
βm = 0.5 because they have an analogous behaviour for Rm 6= 1 and βm 6= 0.5.

Table 6.1 underlines that the thickness of the boundary layer depends on Rm

and βm. More precisely, it increases when βm increases (as is easy to see in Figures
6.51, 6.61, 6.71, 6.81, 6.91, 6.101).

Moreover, the thickness of the boundary layer decreases when Rm increases (as
is easy to see in Figure 6.52, 6.62, 6.72, 6.82, 6.92, 6.102).
This behaviour is in agreement with the previous chapter.

From Table 6.1 we have that ηγ is always greater than ηϕ. Hence as it happened
in the absence of the electromagnetic field (see Chapters 1.2.2 and 3.2), the influence
of the viscosity appears only in a layer lining the boundary whose thickness is ηγ,
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Table 6.1: CASE IV-N: descriptive quantities of the motion for several values of
β − α, Rm and βm.

Rm βm β − α α ϕ′′(0) γ′(0) Ψ′(0) xp

xs

ms

mi
ηϕ ηγ δ

0.01 0.00 -5.6479 0.6479 1.2326 6.8507 0.9273 0.9113 3.7485 2.3841 23.0077 23.0077
-0.6479 0.6479 1.2326 0.6878 0.9273 0.1161 3.7485 2.3841 23.0077 23.0077

0 0.6479 1.2326 0.6079 0.9273 0 3.7485 2.3841 23.0077 23.0077
0.6479 0.6479 1.2326 0.5281 0.9273 -0.1512 3.7485 2.3841 23.0077 23.0077
4.3521 0.6479 1.2326 -5.4751 0.9273 1.1110 3.7485 2.3841 23.0077 23.0077

0.50 -6.2557 1.2557 1.1435 3.8406 0.8991 0.8439 3.6182 19.4231 36.6789 36.6789
-1.2557 1.2557 1.1435 0.6916 0.8991 0.1148 3.5433 19.4231 33.2944 33.2944

0 1.2557 1.1435 0.6125 0.8991 0 3.5415 19.4231 33.8279 33.8279
1.2557 1.2557 1.1435 0.5334 0.8991 -0.1489 3.5397 19.4231 34.3114 34.3114
3.7443 1.2557 1.1435 -2.4574 0.8991 1.2543 3.4716 19.4231 41.2137 41.2137

1 0.00 -5.6479 0.6479 1.2326 7.5695 0.6080 0.9197 3.7485 2.3808 3.0577 3.0577
-0.6479 0.6479 1.2326 1.4066 0.6080 0.5678 3.7485 2.3808 3.1110 3.1110

0 0.6479 1.2326 0.6080 0.6080 0 3.7485 2.3808 3.1927 3.1927
0.6479 0.6479 1.2326 -0.1906 0.6080 4.1892 3.7484 2.3808 3.2528 3.2528
4.3521 0.6479 1.2326 -4.7564 0.6080 1.1278 3.7484 2.3808 3.4562 3.4562

0.50 -6.0511 1.0511 0.9065 4.9092 0.5258 0.8753 3.1548 4.3164 4.9166 4.9166
-1.0511 1.0511 0.9065 1.4085 0.5258 0.5300 2.9170 4.3164 2.3008 4.3164

0 1.0511 0.9065 0.6725 0.5258 0 2.8715 4.3164 2.4025 4.3164
1.0511 1.0511 0.9065 -0.0634 0.5258 11.7713 2.8274 4.3164 4.9000 4.9000
3.9489 1.0511 0.9065 -2.0923 0.5258 1.3403 2.7125 4.3164 4.9466 4.9466

100 0.00 -5.6479 0.6479 1.2326 7.5695 0.2027 0.9197 3.7485 2.3808 3.0577 3.0577
-0.6479 0.6479 1.2326 1.4066 0.2027 0.5678 3.7485 2.3808 3.1110 3.1110

0 0.6479 1.2326 0.6080 0.2027 0 3.7485 2.3808 3.1927 3.1927
0.6479 0.6479 1.2326 -0.1906 0.2027 4.1892 3.7484 2.3808 3.2528 3.2528
4.3521 0.6479 1.2326 -4.7564 0.2027 1.1278 3.7484 2.3808 3.4562 3.4562

0.50 -5.9234 0.9234 0.8665 5.6892 0.1641 0.8785 3.1736 3.3795 4.0263 4.0263
-0.9234 0.9234 0.8665 1.4096 0.1641 0.5527 3.4792 3.3795 4.2598 4.2598

0 0.9234 0.8665 0.6192 0.1641 0 3.5422 3.3795 4.3615 4.3615
0.9234 0.9234 0.8665 -0.1711 0.1641 4.5538 3.6075 3.3795 4.4331 4.4331
4.0766 0.9234 0.8665 -2.8701 0.1641 1.1985 3.8499 3.3795 4.5799 4.5799

Table 6.2: CASE IV-N: descriptive quantities of the motion for several values of
β − α and βm when Rm = 0.01.

Rm βm β − α α ϕ′′
∗
(0) γ′

∗
(0) Ψ′

∗
(0)

xp∗

xs∗

ms∗

mi
ξϕ∗

ξγ∗ δ∗

0.01 0.00 -5.0648 0.0648 12.3259 6.8507 0.9273 9.1126 -4.1004 0.2384 2.3008 2.3008
-0.0648 0.0648 12.3259 0.6878 0.9273 1.1611 -2057.0603 0.2384 2.3008 2.3008

0 0.0648 12.3259 0.6079 0.9273 0 374.8513 0.2384 2.3008 2.3008
0.0648 0.0648 12.3259 0.5281 0.9273 -1.5122 171.7747 0.2384 2.3008 2.3008
4.9352 0.0648 12.3259 -5.4751 0.9273 11.1104 4.1168 0.2384 2.3008 2.3008

0.50 -5.1256 0.1256 11.4350 3.8406 0.8991 8.4390 -7.5926 1.9423 3.6679 3.6679
-0.1256 0.1256 11.4350 0.6916 0.8991 1.1481 -2117.5339 1.9423 3.3294 3.3294

0 0.1256 11.4350 0.6125 0.8991 0 354.1502 1.9423 3.3828 3.3828
0.1256 0.1256 11.4350 0.5334 0.8991 -1.4886 163.4102 1.9423 3.4311 3.4311
4.8744 0.1256 11.4350 -2.4574 0.8991 12.5427 7.6475 1.9423 4.1214 4.1214
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Figure 6.2: CASE IV-N: the first figure shows ϕ, ϕ′, ϕ′′ for Rm = 1 and βm = 0.5,
while the second shows Ψ,Ψ′ for Rm = 1 and βm = 0.5.
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Figure 6.3: CASE IV-N: figures showing the behaviour of γ, and γ′ for Rm = 1 and
βm = 0.5 with, from above, β − α = −5 − α, −α, 0, α, 5− α.



264 6. MHD oblique stagnation-point flow with H and v parallel at infinity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

η

K

Rm =1, βm =0.5.

β − α =-6.051

β − α =-1.051

β − α =0

β − α =1.051

β − α =3.949

Figure 6.4: CASE IV-N: plot showing the behaviour of K for Rm = 1 and βm = 0.5
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Figure 6.5: CASE IV-N: plots showing ϕ′ for different βm and Rm, respectively.



6.2 Newtonian fluids CASE IV-N 265

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

η

γ′

← βm =0

← βm =0.2

← βm =0.3

← βm =0.5

← βm =0.7

← βm =0.8

← βm =0.9

β − α = −5 − α, Rm =1.

3 3.5 4 4.5 5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

η

γ′

← Rm =0.01

← Rm =0.1

← Rm =1

← Rm =10

← Rm =100

← Rm =1000

β − α = −5 − α, βm =0.5.

Figure 6.6: CASE IV-N: plots showing γ′ for different βm and Rm, respectively,
when β − α = −5− α.
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Figure 6.7: CASE IV-N: plots showing γ′ for different βm and Rm, respectively,
when β − α = −α.
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Figure 6.8: CASE IV-N: plots showing γ′ for different βm and Rm, respectively,
when β − α = 0.
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Figure 6.9: CASE IV-N: plots showing γ′ for different βm and Rm, respectively,
when β − α = α.
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Figure 6.10: CASE IV-N: plots showing γ′ for different βm and Rm, respectively,
when β − α = 5− α.

which is larger than that in the orthogonal case (see Chapter 5.2).
The more Rm is small and the more βm is close to 1 the more the thickness of the
boundary layer is larger than in the other cases of oblique stagnation-point flow
treated in this Thesis (Chapters 1.2 and 3).

Finally, we display the streamlines of the flow in Figures 6.11, 6.12, 6.13. As it is
easy to see from the figures, the flow and the magnetic field are completely parallel
far from the obstacle and the more Rm increases the more the two lines coincide.
In these Figures we can also see the points ξp, ξs, which are related to xp and xs in
(6.41) in the following way

ξp =

√

a

ν
xp, ξs =

√

a

ν
xs

Their location depends on βm, Rm and β − α as it is explained in Table 6.1.

6.3 Micropolar fluids CASE IV-M

Let us analyze the previous problem for a homogeneous, incompressible, electrically
conducting micropolar fluid.
In the absence of external mechanical body forces and body couples and free electric
charges, the MHD equations for such a fluid are (2.44).
As far as the boundary conditions are concerned, we prescribe conditions (2.45),
(2.5), (2.6).
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Figure 6.11: CASE IV-N: figures show the streamlines and the points ξp, ξs for
βm = 0.8, c = 0.5, β − α = −α and Rm = 1 or Rm = 100, respectively.
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Figure 6.12: CASE IV-N: figures show the streamlines and the points ξp, ξs for
βm = 0.8, c = 0.5, β − α = 0 and Rm = 1 or Rm = 100, respectively.
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Figure 6.13: CASE IV-N: figures show the streamlines and the points ξp, ξs for
βm = 0.8, c = 0.5, β − α = α and Rm = 1 or Rm = 100, respectively.
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The following similarity transformations are used:

v1 = a[x1f
′(x2) + cg(x2)], v2 = −af(x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F (x2) +G(x2), x1 ∈ R, x2 ∈ R
+, (6.46)

where f, g, F,G are sufficiently regular unknown functions (f ∈ C3(R+), g, F,G ∈
C2(R+)).

The conditions (2.45) require that

f(0) = 0, f ′(0) = 0, g(0) = 0,

F (0) = 0, G(0) = 0. (6.47)

We suppose that the whole physical space is permeated by the external fields

He = H
∞
[(x1 + cx2)e1 − x2e2], E = E0e3,

and that the total magnetic field in the fluid have the form

H = H
∞
[(x1h

′(x2) + ck(x2))e1 − h(x2)e2], (6.48)

where h, k are sufficiently regular unknown functions (h, k ∈ C2(R+)) to be deter-
mined such that

h(0) = 0, k(0) = 0. (6.49)

The previous conditions follow from (2.6) and Theorem 6.1.2.
We assume that at infinity the MHD oblique stagnation-point flow satisfies the

Condition P at infinity. Hence we require

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = −
ac

2
,

lim
x2→+∞

h′(x2) = 1. (6.50)

The asymptotic behaviour of f and g at infinity is related to the constants A,B,
in the same way as the Newtonian fluids:

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B, (6.51)

lim
x2→+∞

[h(x2)− x2] = −A, lim
x2→+∞

[k(x2)− x2] = −B, (6.52)
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so that H and v are parallel at infinity.

Let E be the total electric field in the fluid.
We now want to determine (p, f, g, F, G, H, E) solution in S of (2.44) with v

and w given by (6.46) such that Condition P holds.
Since (2.44)4,5,6,7 are the same as (2.22)3,4,5,6,H and E depend only on the form of

the velocity field, which is the same as that of the Newtonian fluid. Hence proceeding
as in the previous section, we get

E = Ee = −
cH

∞

σe
e3,

and

h′′(x2) +
a

ηe
[f(x2)h

′(x2)− f ′(x2)h(x2)] = 0,

h(0) = 0, lim
x2→+∞

h′(x2) = 1; (6.53)

k′(x2) +
a

ηe
[f(x2)k(x2)− g(x2)h(x2)]− 1 = 0,

k(0) = 0. (6.54)

Of course, k is formally given by (6.35) and satisfies (6.52)2.
Now we proceed in order to determine p, f, g, F, G.

Substituting (6.46), and (6.48) into (2.44)1,3, it provides p = p(x1, x2) and

ax1

[

(ν + νr)f
′′′ + aff ′′ − af ′

2
+
2νr
a
F ′ − µe

ρa
H2

∞
hh′′
]

+ac

[

(ν + νr)g
′′ + a(fg′ − f ′g) +

2νr
b
G′ − µe

ρa
H2

∞
hk′
]

=
1

ρ

∂p

∂x1
,

(ν + νr)af
′′ + a2f ′f + 2νrF +

µe

ρ

H2
∞

2

∂

∂x2
[(x1h

′ + ck)2] = −1
ρ

∂p

∂x2
,

x1[λF
′′ + Ia(F ′f − Ff ′)− 2νr(2F + af ′′)]

+λG′′ + I(aG′f − bFg)− 2νr(2G+ bg′) = 0. (6.55)

Then, by integrating (6.55)2, we find

p =− ρ
a2

2
f 2(x2)− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F (s)ds

− µe

H2
∞

2
[x1h

′(x2) + ck(x2)]
2 + P (x1),
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where the function P (x1) is determined supposing that, far from the wall, the pres-
sure p has the behaviour given by (6.21).
Therefore, by virtue of (6.50), (6.51), (6.52), we get

P (x1) =− ρ
a2

2
x21 + ρa2c(B −A)x1 + µe

H2
∞

2
x21 + µeH

2
∞
c(A−B)x1 + p∗0,

where p∗0 is a suitable constant.
Finally, the pressure field assumes the form

p =− ρ
a2

2
[x21 + f 2(x2)]− ρaνf ′(x2) + ρa2c(B −A)x1 − 2νrρ

∫ x2

0

F (s)ds

− µe

H2
∞

2
[x1h

′(x2) + ck(x2)]
2 + µe

H2
∞

2
x21 + µeH

2
∞
c(A−B)x1 + p0. (6.56)

We remark that ∇p has a constant component in the x1 direction proportional to
B −A, which determines the displacement of the uniform shear flow parallel to the
wall x2 = 0 and which now depends on H2

∞
.

In consideration of (6.56), we obtain

ν

a
f ′′′ + ff ′′ − f ′

2
+ 1 +

2νr
a2
F ′ − µe

ρ

H2
∞

a2

(

hh′′ − h′
2
+ 1
)

= 0,

ν

a
g′′ + fg′ − f ′g +

2νr
a2c

G′ − µe

ρ

H2
∞

a2
(hk′ − h′k) =

(

1− µe

ρ

H2
∞

a2

)

(B − A),

λF ′′ + Ia(F ′f − Ff ′)− 2νr(2F + af ′′) = 0,

λG′′ + I(aG′f − bFg)− 2νr(2G+ bg′) = 0. (6.57)

Therefore we have proved the following:

Theorem 6.3.1. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the half-space S and be embedded in the external magnetic field
He = H

∞
[(x1+ cx2)e1− x2e2], Ee = E0e3. If the total magnetic field in the solid is

(6.5), then the steady plane MHD oblique stagnation-point flow of such a fluid has
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the following form

v =a[x1f
′(x2) + cg(x2)]e1 − af(x2)e2, w = [x1F (x2) +G(x2)]e3,

H =H
∞
[(x1h

′(x2) + ck(x2))e1 − h(x2)e2], E = Ee = −
cH

∞

σe
e3,

p =− ρ
a2

2
[x21 + f 2(x2)]− ρaνf ′(x2) + ρa2c(B − A)x1 − 2νrρ

∫ x2

0

F (s)ds

− µe

H2
∞

2
[x1h

′(x2) + ck(x2)]
2 + µe

H2
∞

2
x21 + µeH

2
∞
c(A−B)x1 + p0,

x1 ∈ R, x2 ∈ R
+,

where (f, g, F,G, h, k) satisfies problem (6.57), (6.53), (6.54), (6.47) and (6.50),
provided F ∈ L1([0,+∞)).

Now if we use (1.49) and we put

Ψ(η) =

√

a

ν + νr
h

(

√

ν + νr
a

η

)

, K(η) =

√

a

ν + νr
k

(

√

ν + νr
a

η

)

,

then we can rewrite problem (6.57), (6.55)3,4, (6.53), (6.54), (6.50) and (6.47) as:

ϕ′′′ + ϕϕ′′ − ϕ′
2
+ 1 + Φ′ − βm(ΨΨ

′′ −Ψ′
2
+ 1) = 0,

γ′′ + ϕγ′ − ϕ′γ + Γ′ − βm(ΨK
′ −Ψ′K) = (1− βm) (β − α),

Φ′′ + c3(ϕΦ
′ − ϕ′Φ)− c2Φ− c1ϕ

′′ = 0,

Γ′′ + c3(ϕΓ
′ − Φγ)− c2Γ− c1γ

′ = 0,

Ψ′′ +Rm(ϕΨ
′ − ϕ′Ψ) = 0,

K ′ +Rm(ϕK − γΨ)− 1 = 0,

ϕ(0) = 0, ϕ′(0) = 0, γ(0) = 0, γ′(0) = 0,

Φ(0) = 0, Γ(0) = 0, Ψ(0) = 0, K(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

γ′(η) = 1,

lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = −c1
c2
,

lim
η→+∞

Ψ′(η) = 1, (6.58)
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where α, β, c1, c2, c3 are given by (1.51) and

βm =
µe

ρ

H2
∞

a2
, Rm =

ν + νr
ηe

. (6.59)

The functions ϕ, Φ and Ψ satisfy the corresponding problem of the orthogonal
stagnation-point flow (see Chapter 5.3). These functions influence γ, Γ, K, but not
viceversa.

Remark 6.3.2. The three important points on the wall x2 = 0 (see Remark 1.2.8)
are formally the same as in the Newtonian case ( (6.41)-(6.42)).

The slope of the dividing streamline at the wall is given by

ms = −
3[ϕ′′(0)]2

c[(1 − βm)[(β − α)ϕ′′(0) + γ′(0)]− ϕ′′(0)Γ′(0) + [βm[Ψ′(0)]2 + Φ′(0)]γ′(0)]

and does not depend on the kinematic viscosity. Thus, the ratio of this slope to

that of the dividing streamline at infinity

(

mi = −
2

c

)

is the same for all oblique

stagnation-point flows and it is given by

ms

mi
=
3

2

[ϕ′′(0)]2

[(1− βm)[(β − α)ϕ′′(0) + γ′(0)]− ϕ′′(0)Γ′(0) + [βm[Ψ′(0)]2 + Φ′(0)]γ′(0)]
.

(6.60)
This ratio is independent of c, depending on the constant pressure gradient parallel
to the boundary through B −A and H.

We have solved numerically problem (6.58).
The values of Rm, βm, c1, c2, c3 and β − α are chosen according to the previous
chapters.
We recall that βm has to be less than 1 in order to preserve the parallelism of H and
v at infinity and that for small values of Rm, equation (6.58)5 reduces to Ψ

′′ ∼= 0. In
order to remove this difficulty, it is convenient to use the transformation ([23], [24]):

ξ =
√

Rmη, ϕ∗(ξ) =
√

Rmϕ(
√

Rmξ), γ∗(ξ) =
√

Rmγ(
√

Rmξ),

Φ∗(ξ) =
√

RmΦ(
√

Rmξ), Γ∗(ξ) =
√

RmΓ(
√

Rmξ),

Ψ∗(η) =
√

RmΨ(
√

Rmξ), K∗(η) =
√

RmK(
√

Rmξ), (6.61)
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which furnishes the following analogous problem

Rmϕ
′′′

∗
+ ϕ∗ϕ

′′

∗
− ϕ′

∗

2
+ 1 + Φ′

∗
− βm(Ψ∗Ψ

′′

∗
−Ψ′

∗

2
+ 1) = 0,

Rmγ
′′

∗
+ ϕ∗γ

′

∗
− ϕ′

∗
γ∗ +

√

RmΓ
′

∗
− βm(Ψ∗K

′

∗
−Ψ′

∗
K∗) =

√

Rm (1− βm) (β − α),

RmΦ
′′

∗
+ c3(ϕ∗Φ

′

∗
− ϕ′

∗
Φ∗)− c2Φ∗ − c1Rmϕ

′′

∗
= 0,

RmΓ
′′

∗
+ c3

(

ϕ∗Γ
′

∗
− 1√

Rm

Φ∗γ∗

)

− c2Γ∗ − c1
√

Rmγ
′

∗
= 0,

Ψ′′
∗
+ ϕ∗Ψ

′

∗
− ϕ′

∗
Ψ∗ = 0,

K ′

∗
+ ϕ∗K∗ − γ∗Ψ∗ − 1 = 0,

ϕ∗(0) = 0, ϕ′
∗
(0) = 0, γ∗(0) = 0, γ′

∗
(0) = 0,

Φ∗(0) = 0, Γ∗(0) = 0, Ψ∗(0) = 0, K∗(0) = 0,

lim
ξ→+∞

ϕ′
∗
(ξ) = 1, lim

ξ→+∞
γ′
∗
(ξ) = 1,

lim
ξ→+∞

Φ∗(ξ) = 0, lim
ξ→+∞

Γ∗(ξ) = −
c1
c2
,

lim
ξ→+∞

Ψ′
∗
(ξ) = 1. (6.62)

Remark 6.3.3. As we will see, ϕ, γ, Φ, Γ satisfy condition (6.62)15,16,17,18, therefore
we recall Remark 1.2.9, where we defined:

• ηϕ (ηγ) the value of η such that ϕ′(ηϕ) = 0.99 (γ′(ηγ) = 0.99, if β − α ≥ 0, or
γ′ = 1.01, if β − α < 0);

• ηΦ (ηΓ) the value of η such that Φ(ηΦ) = −0.01
(

Γ(ηΓ) = −
c1
c2
+ 0.01

)

.

Hence if η > ηϕ (η > ηγ), then ϕ
∼= η−α (γ ∼= η− β), and if η > ηΦ (η > ηΓ), then

Φ ∼= 0

(

Γ ∼= −c1
c2

)

.

From the numerical integration we will see that the influence of the viscosity on
the velocity and on the microrotation appears only in a layer lining the boundary
whose thickness is δv = max(ηϕ, ηγ) for the velocity and δw = max(ηΦ, ηΓ) for the
microrotation. The thickness δ of the boundary layer for the flow is defined as

δ := max(δv, δw).

In this case we also have that

lim
η→+∞

Ψ′(η) = 1, lim
η→+∞

K ′(η) = 1, lim
η→+∞

[Ψ(η)− η] = −α, lim
η→+∞

[K(η)− η] = −β.
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The numerical results show that the values computed of α (β) for ϕ and Ψ (γ
and K) are in good agreement, especially when βm is small or Rm is big. This fact
can be well observed displaying that the velocity and the magnetic field are parallel
far from the obstacle, as we will see in the next figures.

The values of the parameters c1, c2, c3, βm and Rm are given in Tables 6.3,
6.4 and 6.5, where we also assign some values to β (i.e. β − α = −α, 0, α). The
consequent values of α, ϕ′′(0), γ′(0), Φ′(0), Γ′(0), Ψ′(0), xp

xs
, ms

mi
are reported in

these tables.
Tables 6.3, 6.4 and 6.5 have been obtained for Rm = 0.01 recomputing the

corresponding values of η, ϕ, γ, Φ, Γ, Ψ and K. More precisely, for Rm = 0.01 with
transformation (6.61) we get Table 6.6.

From these Tables it appears that if we fix two among c1, c2, c3 when the other
parameters are fixed, then the values of the descriptive quantities of the motion
behave likewise the case in the absence of the external electromagnetic field, as
easily seen in Figures 6.14, 6.15, 6.16.

It is further interesting to see that

• if Rm increases, then α, ϕ′′(0), |Φ′(0)| and Ψ′(0) decrease;

• if βm increases, then α increases, while ϕ′′(0) and Ψ′(0) decrease;

• γ′(0) and |Γ′(0)| are more influenced by β instead by Rm and βm: more pre-
cisely, they decrease as β − α increases.

We have displayed some representative graphs to elucidate the trends of the
functions describing the velocity, the microrotation and the magnetic field.
In particular, Figures 6.17, 6.18, 6.19, and 6.20 show ϕ, ϕ′, ϕ′′, Φ, Φ′, γ, γ′,
Γ, Γ′, Ψ, Ψ′, K for Rm = 1, βm = 0.5, c1 = 0.5, c2 = 3.0, c3 = 0.5. The other
choices of these parameters modify the trends of these functions very slightly.

In Tables 6.7, 6.8 and 6.9 we list the values of ηϕ, ηγ , ηΦ, ηΓ when Rm, βm, c1,
c2, c3 and β − α change.

Tables 6.7, 6.8 and 6.9 have been obtained for Rm = 0.01 recomputing the
corresponding values of ηϕ, ηγ, ηΦ and ηΓ. More precisely, for Rm = 0.01 with
transformation (6.61) we get Table 6.10.

We see that ηγ is always greater than ηϕ, as in the Newtonian case (see previous
section). Hence the influence of the viscosity on the velocity appears only in a
layer of thickness ηγ lining the boundary and its thickness is larger than that of the
orthogonal stagnation-point flow.

The presence of the microrotation modifies ηϕ and ηγ , which are smaller than
those for the Newtonian fluids.

As far as the microrotation is concerned, ηΓ is almost always bigger than ηΦ. So
the influence of the viscosity on the microrotation appears usually only in a layer of
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Table 6.3: CASE IV-M: descriptive quantities of motion for some values of Rm, βm,
c1, c2, c3 and β − α.

Rm βm c1 c2 c3 β − α α ϕ′′(0) γ′(0) Φ′(0) Γ′(0) Ψ′(0) xp

xs

ms

mi

0.01 0.00 0.10 1.50 0.10 -0.0645 0.6445 1.2218 0.6539 -0.0532 -0.0582 0.9275 0.1204 3.6621
0 0.6445 1.2218 0.5751 -0.0532 -0.0548 0.9275 0 3.6621

0.0645 0.6445 1.2218 0.4964 -0.0532 -0.0513 0.9275 -0.1586 3.6621
0.50 -0.0645 0.6448 1.2231 0.6545 -0.0510 -0.0592 0.9275 0.1205 3.6507

0 0.6448 1.2231 0.5757 -0.0510 -0.0559 0.9275 0 3.6507
0.0645 0.6448 1.2231 0.4968 -0.0510 -0.0526 0.9275 -0.1587 3.6507

3.00 0.10 -0.0645 0.6453 1.2250 0.6683 -0.0444 -0.0399 0.9275 0.1183 3.6998
0 0.6453 1.2250 0.5892 -0.0444 -0.0370 0.9275 0 3.6998

0.0645 0.6453 1.2250 0.5101 -0.0444 -0.0342 0.9275 -0.1550 3.6998
0.50 -0.0645 0.6454 1.2256 0.6697 -0.0434 -0.0400 0.9275 0.1181 3.6906

0 0.6454 1.2256 0.5906 -0.0434 -0.0371 0.9275 0 3.6906
0.0645 0.6454 1.2256 0.5115 -0.0434 -0.0343 0.9275 -0.1547 3.6906

0.50 1.50 0.10 -0.0631 0.6309 1.1780 0.5199 -0.2659 -0.2724 0.9287 0.1430 3.3133
0 0.6309 1.1780 0.4456 -0.2659 -0.2556 0.9287 0 3.3133

0.0631 0.6309 1.1780 0.3712 -0.2659 -0.2389 0.9287 -0.2002 3.3133
0.50 -0.0632 0.6321 1.1848 0.5215 -0.2553 -0.2804 0.9287 0.1436 3.2609

0 0.6321 1.1848 0.4466 -0.2553 -0.2643 0.9287 0 3.2609
0.0632 0.6321 1.1848 0.3717 -0.2553 -0.2482 0.9287 -0.2015 3.2609

3.00 0.10 -0.0635 0.6350 1.1943 0.5910 -0.2220 -0.1901 0.9284 0.1283 3.5019
0 0.6350 1.1943 0.5152 -0.2220 -0.1760 0.9284 0 3.5019

0.0635 0.6350 1.1943 0.4394 -0.2220 -0.1619 0.9284 -0.1726 3.5019
0.50 -0.0636 0.6356 1.1972 0.5974 -0.2173 -0.1923 0.9284 0.1274 3.4582

0 0.6356 1.1972 0.5213 -0.2173 -0.1785 0.9284 0 3.4582
0.0636 0.6356 1.1972 0.4452 -0.2173 -0.1647 0.9284 -0.1709 3.4582

0.50 0.10 1.50 0.10 -0.1249 1.2492 1.1335 0.6580 -0.0500 -0.0584 0.8995 0.1190 3.4564
0 1.2492 1.1335 0.5800 -0.0500 -0.0550 0.8995 0 3.4546

0.1249 1.2492 1.1335 0.5020 -0.0500 -0.0515 0.8995 -0.1559 3.4527
0.50 -0.1250 1.2496 1.1347 0.6581 -0.0481 -0.0592 0.8995 0.1191 3.4495

0 1.2496 1.1347 0.5801 -0.0481 -0.0559 0.8995 0 3.4476
0.1250 1.2496 1.1347 0.5020 -0.0481 -0.0526 0.8995 -0.1561 3.4458

3.00 0.10 -0.1251 1.2508 1.1366 0.6726 -0.0417 -0.0401 0.8994 0.1168 3.4922
0 1.2508 1.1366 0.5944 -0.0417 -0.0372 0.8994 0 3.4903

0.1251 1.2508 1.1366 0.5161 -0.0417 -0.0344 0.8994 -0.1523 3.4885
0.50 -0.1251 1.2510 1.1371 0.6734 -0.0408 -0.0401 0.8994 0.1168 3.4877

0 1.2510 1.1371 0.5951 -0.0408 -0.0373 0.8994 0 3.4859
0.1251 1.2510 1.1371 0.5168 -0.0408 -0.0345 0.8994 -0.1522 3.4841

0.50 1.50 0.10 -0.1223 1.2227 1.0929 0.5244 -0.2505 -0.2743 0.9012 0.1406 3.1070
0 1.2227 1.0929 0.4509 -0.2505 -0.2575 0.9012 0 3.1053

0.1223 1.2227 1.0929 0.3775 -0.2505 -0.2407 0.9012 -0.1954 3.1035
0.50 -0.1225 1.2249 1.0992 0.5241 -0.2409 -0.2802 0.9011 0.1418 3.0754

0 1.2249 1.0992 0.4502 -0.2409 -0.2640 0.9011 0 3.0736
0.1225 1.2249 1.0992 0.3762 -0.2409 -0.2479 0.9011 -0.1975 3.0719

3.00 0.10 -0.1231 1.2308 1.1085 0.5973 -0.2085 -0.1919 0.9007 0.1261 3.2855
0 1.2308 1.1085 0.5223 -0.2085 -0.1778 0.9007 0 3.2837

0.1231 1.2308 1.1085 0.4473 -0.2085 -0.1638 0.9007 -0.1684 3.2819
0.50 -0.1232 1.2318 1.1111 0.6007 -0.2043 -0.1929 0.9007 0.1258 3.2645

0 1.2318 1.1111 0.5254 -0.2043 -0.1791 0.9007 0 3.2627
0.1232 1.2318 1.1111 0.4502 -0.2043 -0.1653 0.9007 -0.1678 3.2609
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Table 6.4: CASE IV-M: continuum of Table 6.3.

Rm βm c1 c2 c3 β − α α ϕ′′(0) γ′(0) Φ′(0) Γ′(0) Ψ′(0) xp

xs

ms

mi

1 0.00 0.10 1.50 0.10 -0.6446 0.6446 1.2218 1.3648 -0.0532 -0.0892 0.6081 0.5770 3.6488
0 0.6446 1.2218 0.5772 -0.0532 -0.0550 0.6081 0 3.6490

0.6446 0.6446 1.2218 -0.2104 -0.0532 -0.0207 0.6081 3.7439 3.6492
0.50 -0.6448 0.6448 1.2231 1.3652 -0.0510 -0.0889 0.6082 0.5777 3.6454

0 0.6448 1.2231 0.5765 -0.0510 -0.0560 0.6082 0 3.6454
0.6448 0.6448 1.2231 -0.2121 -0.0510 -0.0231 0.6082 3.7180 3.6455

3.00 0.10 -0.6453 0.6453 1.2250 1.3818 -0.0444 -0.0658 0.6082 0.5721 3.6872
0 0.6453 1.2250 0.5912 -0.0444 -0.0372 0.6082 0 3.6872

0.6453 0.6453 1.2250 -0.1993 -0.0444 -0.0085 0.6082 3.9657 3.6872
0.50 -0.6454 0.6454 1.2256 1.3822 -0.0434 -0.0652 0.6083 0.5723 3.6872

0 0.6454 1.2256 0.5911 -0.0434 -0.0372 0.6083 0 3.6872
0.6454 0.6454 1.2256 -0.1999 -0.0434 -0.0092 0.6083 3.9572 3.6872

0.50 1.50 0.10 -0.6310 0.6310 1.1780 1.1972 -0.2659 -0.4282 0.6087 0.6209 3.2527
0 0.6310 1.1780 0.4538 -0.2659 -0.2604 0.6087 0 3.2534

0.6310 0.6310 1.1780 -0.2897 -0.2659 -0.0925 0.6087 2.5661 3.2540
0.50 -0.6321 0.6321 1.1848 1.1988 -0.2553 -0.4275 0.6093 0.6247 3.2374

0 0.6321 1.1848 0.4499 -0.2553 -0.2661 0.6093 0 3.2375
0.6321 0.6321 1.1848 -0.2990 -0.2553 -0.1047 0.6093 2.5048 3.2375

3.00 0.10 -0.6350 0.6350 1.1943 1.2826 -0.2220 -0.3200 0.6092 0.5913 3.4421
0 0.6350 1.1943 0.5241 -0.2220 -0.1790 0.6092 0 3.4423

0.6350 0.6350 1.1943 -0.2343 -0.2220 -0.0380 0.6092 3.2365 3.4424
0.50 -0.6356 0.6356 1.1972 1.2846 -0.2173 -0.3174 0.6095 0.5923 3.4424

0 0.6356 1.1972 0.5237 -0.2173 -0.1793 0.6095 0 3.4424
0.6356 0.6356 1.1972 -0.2372 -0.2173 -0.0412 0.6095 3.2081 3.4424

0.50 0.10 1.50 0.10 -1.0463 1.0463 0.8963 1.3625 -0.0429 -0.0932 0.5258 0.5393 2.8305
0 1.0463 0.8963 0.6387 -0.0429 -0.0580 0.5258 0 2.7885

1.0463 1.0463 0.8963 -0.0852 -0.0429 -0.0227 0.5258 8.6275 2.7476
0.50 -1.0462 1.0462 0.8976 1.3634 -0.0413 -0.0921 0.5260 0.5395 2.8303

0 1.0462 0.8976 0.6388 -0.0413 -0.0581 0.5260 0 2.7882
1.0462 1.0462 0.8976 -0.0858 -0.0413 -0.0241 0.5260 8.5730 2.7473

3.00 0.10 -1.0474 1.0474 0.8998 1.3815 -0.0350 -0.0686 0.5260 0.5344 2.8641
0 1.0474 0.8998 0.6539 -0.0350 -0.0401 0.5260 0 2.8199

1.0474 1.0474 0.8998 -0.0736 -0.0350 -0.0117 0.5260 10.0256 2.7771
0.50 -1.0474 1.0474 0.9003 1.3820 -0.0343 -0.0678 0.5261 0.5344 2.8647

0 1.0474 0.9003 0.6541 -0.0343 -0.0399 0.5261 0 2.8204
1.0474 1.0474 0.9003 -0.0737 -0.0343 -0.0120 0.5261 10.0194 2.7775

0.50 1.50 0.10 -1.0265 1.0265 0.8549 1.1793 -0.2141 -0.4437 0.5255 0.5831 2.4884
0 1.0265 0.8549 0.5046 -0.2141 -0.2711 0.5255 0 2.4595

1.0265 1.0265 0.8549 -0.1701 -0.2141 -0.0985 0.5255 4.0422 2.4313
0.50 -1.0261 1.0261 0.8616 1.1832 -0.2066 -0.4392 0.5267 0.5850 2.4879

0 1.0261 0.8616 0.5045 -0.2066 -0.2726 0.5267 0 2.4588
1.0261 1.0261 0.8616 -0.1742 -0.2066 -0.1061 0.5267 3.9733 2.4303

3.00 0.10 -1.0321 1.0321 0.8727 1.2736 -0.1746 -0.3321 0.5267 0.5536 2.6534
0 1.0321 0.8727 0.5799 -0.1746 -0.1923 0.5267 0 2.6143

1.0321 1.0321 0.8727 -0.1139 -0.1746 -0.0526 0.5267 6.1919 2.5762
0.50 -1.0321 1.0321 0.8753 1.2762 -0.1715 -0.3289 0.5271 0.5540 2.6561

0 1.0321 0.8753 0.5809 -0.1715 -0.1916 0.5271 0 2.6167
1.0321 1.0321 0.8753 -0.1144 -0.1715 -0.0542 0.5271 6.1776 2.5785
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Table 6.5: CASE IV-M: continuum of Table 6.3.

Rm βm c1 c2 c3 β − α α ϕ′′(0) γ′(0) Φ′(0) Γ′(0) Ψ′(0) xp

xs

ms

mi

100 0.00 0.10 1.50 0.10 -0.6446 0.6446 1.2218 1.3648 -0.0532 -0.0892 0.2021 0.5770 3.6488
0 0.6446 1.2218 0.5772 -0.0532 -0.0550 0.2021 0 3.6490

0.6446 0.6446 1.2218 -0.2104 -0.0532 -0.0207 0.2021 3.7439 3.6492
0.50 -0.6448 0.6448 1.2231 1.3652 -0.0510 -0.0889 0.2023 0.5777 3.6454

0 0.6448 1.2231 0.5765 -0.0510 -0.0560 0.2023 0 3.6454
0.6448 0.6448 1.2231 -0.2121 -0.0510 -0.0231 0.2023 3.7180 3.6455

3.00 0.10 -0.6453 0.6453 1.2250 1.3818 -0.0444 -0.0658 0.2024 0.5721 3.6872
0 0.6453 1.2250 0.5912 -0.0444 -0.0372 0.2024 0 3.6872

0.6453 0.6453 1.2250 -0.1993 -0.0444 -0.0085 0.2024 3.9657 3.6872
0.50 -0.6454 0.6454 1.2256 1.3822 -0.0434 -0.0652 0.2024 0.5723 3.6872

0 0.6454 1.2256 0.5911 -0.0434 -0.0372 0.2024 0 3.6872
0.6454 0.6454 1.2256 -0.1999 -0.0434 -0.0092 0.2024 3.9572 3.6872

0.50 1.50 0.10 -0.6310 0.6310 1.1780 1.1972 -0.2659 -0.4282 0.1999 0.6209 3.2527
0 0.6310 1.1780 0.4538 -0.2659 -0.2604 0.1999 0 3.2534

0.6310 0.6310 1.1780 -0.2897 -0.2659 -0.0925 0.1999 2.5661 3.2540
0.50 -0.6321 0.6321 1.1848 1.1988 -0.2553 -0.4275 0.2005 0.6247 3.2374

0 0.6321 1.1848 0.4499 -0.2553 -0.2661 0.2005 0 3.2375
0.6321 0.6321 1.1848 -0.2990 -0.2553 -0.1047 0.2005 2.5048 3.2375

3.00 0.10 -0.6350 0.6350 1.1943 1.2826 -0.2220 -0.3200 0.2011 0.5913 3.4421
0 0.6350 1.1943 0.5241 -0.2220 -0.1790 0.2011 0 3.4423

0.6350 0.6350 1.1943 -0.2343 -0.2220 -0.0380 0.2011 3.2365 3.4424
0.50 -0.6356 0.6356 1.1972 1.2846 -0.2173 -0.3174 0.2013 0.5923 3.4424

0 0.6356 1.1972 0.5237 -0.2173 -0.1793 0.2013 0 3.4424
0.6356 0.6356 1.1972 -0.2372 -0.2173 -0.0412 0.2013 3.2081 3.4424

0.50 0.10 1.50 0.10 -0.9166 0.9166 0.8560 1.3602 -0.0439 -0.0925 0.1635 0.5618 3.3765
0 0.9166 0.8560 0.5851 -0.0439 -0.0524 0.1635 0 3.4391

0.9166 0.9166 0.8560 -0.1901 -0.0439 -0.0124 0.1635 4.0198 3.5041
0.50 -0.9169 0.9169 0.8574 1.3615 -0.0421 -0.0912 0.1636 0.5624 3.3745

0 0.9169 0.8574 0.5849 -0.0421 -0.0528 0.1636 0 3.4360
0.9169 0.9169 0.8574 -0.1916 -0.0421 -0.0143 0.1636 3.9952 3.4999

3.00 0.10 -0.9184 0.9184 0.8595 1.3809 -0.0354 -0.0686 0.1638 0.5567 3.4170
0 0.9184 0.8595 0.6011 -0.0354 -0.0363 0.1638 0 3.4797

0.9184 0.9184 0.8595 -0.1788 -0.0354 -0.0039 0.1638 4.3007 3.5447
0.50 -0.9186 0.9186 0.8601 1.3816 -0.0347 -0.0678 0.1638 0.5569 3.4178

0 0.9186 0.8601 0.6012 -0.0347 -0.0361 0.1638 0 3.4803
0.9186 0.9186 0.8601 -0.1792 -0.0347 -0.0044 0.1638 4.2930 3.5451

0.50 1.50 0.10 -0.8887 0.8887 0.8126 1.1636 -0.2196 -0.4363 0.1609 0.6050 2.9591
0 0.8887 0.8126 0.4496 -0.2196 -0.2416 0.1609 0 3.0180

0.8887 0.8887 0.8126 -0.2643 -0.2196 -0.0469 0.1609 2.6636 3.0794
0.50 -0.8907 0.8907 0.8200 1.1693 -0.2112 -0.4319 0.1617 0.6087 2.9494

0 0.8907 0.8200 0.4478 -0.2112 -0.2445 0.1617 0 3.0041
0.8907 0.8907 0.8200 -0.2736 -0.2112 -0.0572 0.1617 2.6013 3.0609

3.00 0.10 -0.8984 0.8984 0.8311 1.2666 -0.1772 -0.3309 0.1624 0.5744 3.1663
0 0.8984 0.8311 0.5289 -0.1772 -0.1725 0.1624 0 3.2270

0.8984 0.8984 0.8311 -0.2088 -0.1772 -0.0141 0.1624 3.4836 3.2902
0.50 -0.8993 0.8993 0.8340 1.2702 -0.1738 -0.3273 0.1627 0.5753 3.1703

0 0.8993 0.8340 0.5293 -0.1738 -0.1718 0.1627 0 3.2300
0.8993 0.8993 0.8340 -0.2115 -0.1738 -0.0164 0.1627 3.4548 3.2921
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Table 6.6: CASE IV-M: descriptive quantities of motion for some values of c1, c2,
c3, β − α and Rm = 0.01.

Rm βm c1 c2 c3 β − α α ϕ′′
∗
(0) γ′

∗
(0) Φ′

∗
(0) Γ′

∗
(0) Ψ′

∗
(0)

xp∗

xs∗

ms∗

mi

0.01 0.00 0.10 1.50 0.10 -0.0645 0.0645 12.2182 0.6539 -0.0532 -0.0582 0.9275 1.2043 412.7629
0 0.0645 12.2182 0.5751 -0.0532 -0.0548 0.9275 0 184.5172

0.0645 0.0645 12.2182 0.4964 -0.0532 -0.0513 0.9275 -1.5864 118.8157
0.50 -0.0645 0.0645 12.2313 0.6545 -0.0510 -0.0592 0.9275 1.2048 403.1757

0 0.0645 12.2313 0.5757 -0.0510 -0.0559 0.9275 0 182.4208
0.0645 0.0645 12.2313 0.4968 -0.0510 -0.0526 0.9275 -1.5874 117.8779

3.00 0.10 -0.0645 0.0645 12.2501 0.6683 -0.0444 -0.0399 0.9275 1.1830 668.3354
0 0.0645 12.2501 0.5892 -0.0444 -0.0370 0.9275 0 221.3982

0.0645 0.0645 12.2501 0.5101 -0.0444 -0.0342 0.9275 -1.5497 132.6745
0.50 -0.0645 0.0645 12.2558 0.6697 -0.0434 -0.0400 0.9275 1.1812 664.2090

0 0.0645 12.2558 0.5906 -0.0434 -0.0371 0.9275 0 220.8385
0.0645 0.0645 12.2558 0.5115 -0.0434 -0.0343 0.9275 -1.5465 132.4356

0.50 1.50 0.10 -0.0631 0.0631 11.7801 0.5199 -0.2659 -0.2724 0.9287 1.4296 73.1052
0 0.0631 11.7801 0.4456 -0.2659 -0.2556 0.9287 0 62.3516

0.0631 0.0631 11.7801 0.3712 -0.2659 -0.2389 0.9287 -2.0020 54.3559
0.50 -0.0632 0.0632 11.8476 0.5215 -0.2553 -0.2804 0.9287 1.4361 71.0871

0 0.0632 11.8476 0.4466 -0.2553 -0.2643 0.9287 0 60.7861
0.0632 0.0632 11.8476 0.3717 -0.2553 -0.2482 0.9287 -2.0148 53.0927

3.00 0.10 -0.0635 0.0635 11.9433 0.5910 -0.2220 -0.1901 0.9284 1.2832 108.5250
0 0.0635 11.9433 0.5152 -0.2220 -0.1760 0.9284 0 85.4968

0.0635 0.0635 11.9433 0.4394 -0.2220 -0.1619 0.9284 -1.7262 70.5307
0.50 -0.0636 0.0636 11.9723 0.5974 -0.2173 -0.1923 0.9284 1.2736 107.0297

0 0.0636 11.9723 0.5213 -0.2173 -0.1785 0.9284 0 84.4867
0.0636 0.0636 11.9723 0.4452 -0.2173 -0.1647 0.9284 -1.7090 69.7877

0.50 0.10 1.50 0.10 -0.1249 0.1249 11.3354 0.6580 -0.0500 -0.0584 0.8995 1.1896 373.4164
0 0.1249 11.3354 0.5800 -0.0500 -0.0550 0.8995 0 172.2991

0.1249 0.1249 11.3354 0.5020 -0.0500 -0.0515 0.8995 -1.5590 111.9852
0.50 -0.1250 0.1250 11.3475 0.6581 -0.0481 -0.0592 0.8995 1.1910 366.8698

0 0.1250 11.3475 0.5801 -0.0481 -0.0559 0.8995 0 170.7540
0.1250 0.1250 11.3475 0.5020 -0.0481 -0.0526 0.8995 -1.5614 111.2719

3.00 0.10 -0.1251 0.1251 11.3657 0.6726 -0.0417 -0.0401 0.8994 1.1683 595.4562
0 0.1251 11.3657 0.5944 -0.0417 -0.0372 0.8994 0 206.9870

0.1251 0.1251 11.3657 0.5161 -0.0417 -0.0344 0.8994 -1.5227 125.2653
0.50 -0.1251 0.1251 11.3708 0.6734 -0.0408 -0.0401 0.8994 1.1677 594.4551

0 0.1251 11.3708 0.5951 -0.0408 -0.0373 0.8994 0 206.7718
0.1251 0.1251 11.3708 0.5168 -0.0408 -0.0345 0.8994 -1.5217 125.1520

0.50 1.50 0.10 -0.1223 0.1223 10.9294 0.5244 -0.2505 -0.2743 0.9012 1.4063 67.0321
0 0.1223 10.9294 0.4509 -0.2505 -0.2575 0.9012 0 57.6209

0.1223 0.1223 10.9294 0.3775 -0.2505 -0.2407 0.9012 -1.9536 50.5271
0.50 -0.1225 0.1225 10.9917 0.5241 -0.2409 -0.2802 0.9011 1.4176 65.7690

0 0.1225 10.9917 0.4502 -0.2409 -0.2640 0.9011 0 56.6044
0.1225 0.1225 10.9917 0.3762 -0.2409 -0.2479 0.9011 -1.9752 49.6815

3.00 0.10 -0.1231 0.1231 11.0847 0.5973 -0.2085 -0.1919 0.9007 1.2609 99.0052
0 0.1231 11.0847 0.5223 -0.2085 -0.1778 0.9007 0 78.9194

0.1231 0.1231 11.0847 0.4473 -0.2085 -0.1638 0.9007 -1.6839 65.6089
0.50 -0.1232 0.1232 11.1109 0.6007 -0.2043 -0.1929 0.9007 1.2579 98.4599

0 0.1232 11.1109 0.5254 -0.2043 -0.1791 0.9007 0 78.5024
0.1232 0.1232 11.1109 0.4502 -0.2043 -0.1653 0.9007 -1.6785 65.2719
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Figure 6.14: CASE IV-M: plots showing the behaviour of ϕ′, γ, Φ and Γ for Rm = 1,
βm = 0.5, β − α = 0, c1 = 0.5, c2 = 3.0 fixed, and for different values of c3.
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Figure 6.15: CASE IV-M: plots showing the behaviour of ϕ′, γ, Φ and Γ for Rm = 1,
βm = 0.5, β − α = 0, c1 = 0.5, c3 = 0.5 fixed, and for different values of c2.



284 6. MHD oblique stagnation-point flow with H and v parallel at infinity

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

η

ϕ′
← c1 =0.1

Rm =1, βm =0.5, β −α =0, c2 =3, c3 =0.5.

← c1 =0.5

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

η

γ
← c1 =0.1

Rm =1, βm =0.5, β −α =0, c2 =3, c3 =0.5.

← c1 =0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

η

Φ

← c1 =0.1

Rm =1, βm =0.5, β −α =0, c2 =3, c3 =0.5.

← c1 =0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

η

Γ

← c1 =0.1

Rm =1, βm =0.5, β −α =0, c2 =3, c3 =0.5.

← c1 =0.5

Figure 6.16: CASE IV-M: plots showing the behaviour of ϕ′, γ, Φ and Γ for Rm = 1,
βm = 0.5, β − α = 0, c2 = 3.0, c3 = 0.5 fixed, and for different values of c1.
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Figure 6.17: CASE IV-M: plots showing the behaviour of ϕ, ϕ′, ϕ′′ and Φ, Φ′,
respectively, for Rm = 1, βm = 0.5, c1 = 0.5, c2 = 3.0, c3 = 0.5.
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Figure 6.18: CASE IV-M: figures 1.151 and 1.152 show γ and γ′ for Rm = 1, βm =
0.5, c1 = 0.5, c2 = 3.0, c3 = 0.5 and with, from above, β − α = −α, 0, α,
respectively.
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Figure 6.19: CASE IV-M: figures 1.161 and 1.162 show Γ and Γ′ for Rm = 1,
βm = 0.5, c1 = 0.5, c2 = 3.0, c3 = 0.5 and with, from above, β − α = −α, 0, α,
respectively.
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Figure 6.20: CASE IV-M: plots showing the behaviour of Ψ, Ψ′ and K, respectively,
for Rm = 1, βm = 0.5, c1 = 0.5, c2 = 3.0, c3 = 0.5 (for K from above β − α =
−α, 0, α).
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Table 6.7: CASE IV-M: thickness of the boundary layer for some values of Rm, βm,
c1, c2, c3 and β − α.

Rm βm c1 c2 c3 β − α ηϕ ηγ ηΦ ηΓ δv δw δ

0.01 0.00 0.10 1.50 0.10 -0.0645 2.3341 23.0077 0.7669 49.3831 23.0077 49.3831 49.3831
0 2.3341 23.0077 0.7669 49.3831 23.0077 49.3831 49.3831

0.0645 2.3341 23.0077 0.7669 49.3831 23.0077 49.3831 49.3831
0.50 -0.0645 2.3508 23.0077 0.7169 47.0990 23.0077 47.0990 47.0990

0 2.3508 23.0077 0.7169 47.0990 23.0077 47.0990 47.0990
0.0645 2.3508 23.0077 0.7169 47.0990 23.0077 47.0990 47.0990

3.00 0.10 -0.0645 2.3508 23.0077 0.6669 49.2664 23.0077 49.2664 49.2664
0 2.3508 23.0077 0.6669 49.2664 23.0077 49.2664 49.2664

0.0645 2.3508 23.0077 0.6669 49.2664 23.0077 49.2664 49.2664
0.50 -0.0645 2.3675 23.0077 0.6335 46.7656 23.0077 46.7656 46.7656

0 2.3675 23.0077 0.6335 46.7656 23.0077 46.7656 46.7656
0.0645 2.3675 23.0077 0.6335 46.7656 23.0077 46.7656 46.7656

0.50 1.50 0.10 -0.0631 2.1340 47.0490 0.7669 49.8833 47.0490 49.8833 49.8833
0 2.1340 47.0490 0.7669 49.8833 47.0490 49.8833 49.8833

0.0631 2.1340 47.0490 0.7669 49.8833 47.0490 49.8833 49.8833
0.50 -0.0632 2.1841 23.0077 0.7169 49.4498 23.0077 49.4498 49.4498

0 2.1841 23.0077 0.7169 49.4498 23.0077 49.4498 49.4498
0.0632 2.1841 23.0077 0.7169 49.4498 23.0077 49.4498 49.4498

3.00 0.10 -0.0635 2.2174 48.3161 0.6836 49.8833 48.3161 49.8833 49.8833
0 2.2174 48.3161 0.6836 49.8833 48.3161 49.8833 49.8833

0.0635 2.2174 48.3161 0.6836 49.8833 48.3161 49.8833 49.8833
0.50 -0.0636 2.2508 23.0077 0.6502 49.4498 23.0077 49.4498 49.4498

0 2.2508 23.0077 0.6502 49.4498 23.0077 49.4498 49.4498
0.0636 2.2508 23.0077 0.6502 49.4498 23.0077 49.4498 49.4498

0.50 0.10 1.50 0.10 -0.1249 19.3731 39.1797 0.7836 49.3831 39.1797 49.3831 49.3831
0 19.3731 39.4798 0.7836 49.3831 39.4798 49.3831 49.3831

0.1249 19.3731 39.7466 0.7836 49.3831 39.7466 49.3831 49.3831
0.50 -0.1250 19.3731 34.3114 0.7169 47.1324 34.3114 47.1324 47.1324

0 19.3731 34.7783 0.7169 47.1324 34.7783 47.1324 47.1324
0.1250 19.3731 35.2117 0.7169 47.1324 35.2117 47.1324 47.1324

3.00 0.10 -0.1251 19.3898 38.0293 0.6836 49.2831 38.0293 49.2831 49.2831
0 19.3898 38.3961 0.6836 49.2831 38.3961 49.2831 49.2831

0.1251 19.3898 38.7296 0.6836 49.2831 38.7296 49.2831 49.2831
0.50 -0.1251 19.3898 34.5282 0.6502 46.8156 34.5282 46.8156 46.8156

0 19.3898 34.9950 0.6502 46.8156 34.9950 46.8156 46.8156
0.1251 19.3898 35.4118 0.6502 46.8156 35.4118 46.8156 46.8156

0.50 1.50 0.10 -0.1223 19.1731 48.4495 0.7836 49.9000 48.4495 49.9000 49.9000
0 19.1731 48.4662 0.7836 49.9000 48.4662 49.9000 49.9000

0.1223 19.1731 48.4662 0.7836 49.9000 48.4662 49.9000 49.9000
0.50 -0.1225 19.1897 37.7793 0.7336 49.4665 37.7793 49.4665 49.4665

0 19.1897 38.0460 0.7336 49.4665 38.0460 49.4665 49.4665
0.1225 19.1897 38.2794 0.7336 49.4665 38.2794 49.4665 49.4665

3.00 0.10 -0.1231 19.2397 48.9663 0.6836 49.8833 48.9663 49.8833 49.8833
0 19.2397 48.9663 0.6836 49.8833 48.9663 49.8833 49.8833

0.1231 19.2397 48.9663 0.6836 49.8833 48.9663 49.8833 49.8833
0.50 -0.1232 19.2564 39.1964 0.6502 49.4498 39.1964 49.4498 49.4498

0 19.2564 39.4298 0.6502 49.4498 39.4298 49.4498 49.4498
0.1232 19.2564 39.6465 0.6502 49.4498 39.6465 49.4498 49.4498
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Table 6.8: CASE IV-M: continuum of Table 6.7.

Rm βm c1 c2 c3 β − α ηϕ ηγ ηΦ ηΓ δv δw δ

1.00 0.00 0.10 1.50 0.10 -0.6446 2.3258 3.0010 1.6005 1.8323 3.0010 1.8323 3.0010
0 2.3258 3.0827 1.6005 2.2424 3.0827 2.2424 3.0827

0.6446 2.3258 3.1427 1.6005 2.4925 3.1427 2.4925 3.1427
0.50 -0.6448 2.3374 3.0027 1.3338 1.7773 3.0027 1.7773 3.0027

0 2.3374 3.0894 1.3338 2.0473 3.0894 2.0473 3.0894
0.6448 2.3374 3.1511 1.3338 2.2174 3.1511 2.2174 3.1511

3.00 0.10 -0.6453 2.3474 3.0594 1.0020 0.6886 3.0594 1.0020 3.0594
0 2.3474 3.1377 1.0020 1.3354 3.1377 1.3354 3.1377

0.6453 2.3474 3.1977 1.0020 1.7339 3.1977 1.7339 3.1977
0.50 -0.6454 2.3525 3.0610 0.8469 0.7186 3.0610 0.8469 3.0610

0 2.3525 3.1427 0.8469 1.3088 3.1427 1.3088 3.1427
0.6454 2.3525 3.2027 0.8469 1.6422 3.2027 1.6422 3.2027

0.50 1.50 0.10 -0.6310 2.1274 2.5125 2.9093 3.0510 2.5125 3.0510 3.0510
0 2.1274 2.6409 2.9093 3.3394 2.6409 3.3394 3.3394

0.6310 2.1274 2.7092 2.9093 3.5328 2.7092 3.5328 3.5328
0.50 -0.6321 2.1691 2.5025 2.4325 2.7726 2.5025 2.7726 2.7726

0 2.1691 2.6442 2.4325 2.9160 2.6442 2.9160 2.9160
0.6321 2.1691 2.7242 2.4325 3.0193 2.7242 3.0193 3.0193

3.00 0.10 -0.6350 2.2157 2.8409 2.3441 2.2124 2.8409 2.3441 2.8409
0 2.2157 2.9143 2.3441 2.6109 2.9143 2.6109 2.9143

0.6350 2.2157 2.9627 2.3441 2.8159 2.9627 2.8159 2.9627
0.50 -0.6356 2.2391 2.8459 2.1190 2.2124 2.8459 2.2124 2.8459

0 2.2391 2.9293 2.1190 2.4692 2.9293 2.4692 2.9293
0.6356 2.2391 2.9860 2.1190 2.6125 2.9860 2.6125 2.9860

0.50 0.10 1.50 0.10 -1.0463 4.2864 2.3008 1.8723 1.5055 4.2864 1.8723 4.2864
0 4.2864 2.3458 1.8723 2.9343 4.2864 2.9343 4.2864

1.0463 4.2864 4.8983 1.8723 3.7229 4.8983 3.7229 4.8983
0.50 -1.0462 4.2964 2.3008 1.5038 1.6422 4.2964 1.6422 4.2964

0 4.2964 2.3525 1.5038 2.7142 4.2964 2.7142 4.2964
1.0462 4.2964 4.8966 1.5038 3.3311 4.8966 3.3311 4.8966

3.00 0.10 -1.0474 4.2998 2.3008 0.7469 0.5919 4.2998 0.7469 4.2998
0 4.2998 2.3625 0.7469 1.3004 4.2998 1.3004 4.2998

1.0474 4.2998 4.8983 0.7469 2.4425 4.8983 2.4425 4.8983
0.50 -1.0474 4.3031 2.3008 0.7119 0.6169 4.3031 0.7119 4.3031

0 4.3031 2.3658 0.7119 1.3338 4.3031 1.3338 4.3031
1.0474 4.3031 4.8983 0.7119 2.3041 4.8983 2.3041 4.8983

0.50 1.50 0.10 -1.0265 4.1464 2.4608 3.8913 3.7096 4.1464 3.8913 4.1464
0 4.1464 2.3008 3.8913 4.5282 4.1464 4.5282 4.5282

1.0265 4.1464 4.8916 3.8913 4.6999 4.8916 4.6999 4.8916
0.50 -1.0261 4.2031 2.4592 3.3061 3.6812 4.2031 3.6812 4.2031

0 4.2031 2.3008 3.3061 4.2247 4.2031 4.2247 4.2247
1.0261 4.2031 4.8833 3.3061 4.4181 4.8833 4.4181 4.8833

3.00 0.10 -1.0321 4.2281 2.3008 3.1677 1.4755 4.2281 3.1677 4.2281
0 4.2281 2.3008 3.1677 4.1380 4.2281 4.1380 4.2281

1.0321 4.2281 4.8950 3.1677 4.4465 4.8950 4.4465 4.8950
0.50 -1.0321 4.2464 2.3008 2.8193 1.8289 4.2464 2.8193 4.2464

0 4.2464 2.3008 2.8193 3.9313 4.2464 3.9313 4.2464
1.0321 4.2464 4.8916 2.8193 4.2164 4.8916 4.2164 4.8916
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Table 6.9: CASE IV-M: continuum of Table 6.7.

Rm βm c1 c2 c3 β − α ηϕ ηγ ηΦ ηΓ δv δw δ

100 0.00 0.10 1.50 0.10 -0.6446 2.3258 3.0010 1.6005 1.8323 3.0010 1.8323 3.0010
0 2.3258 3.0827 1.6005 2.2424 3.0827 2.2424 3.0827

0.6446 2.3258 3.1427 1.6005 2.4925 3.1427 2.4925 3.1427
0.50 -0.6448 2.3374 3.0027 1.3338 1.7773 3.0027 1.7773 3.0027

0 2.3374 3.0894 1.3338 2.0473 3.0894 2.0473 3.0894
0.6448 2.3374 3.1511 1.3338 2.2174 3.1511 2.2174 3.1511

3.00 0.10 -0.6453 2.3474 3.0594 1.0020 0.6886 3.0594 1.0020 3.0594
0 2.3474 3.1377 1.0020 1.3354 3.1377 1.3354 3.1377

0.6453 2.3474 3.1977 1.0020 1.7339 3.1977 1.7339 3.1977
0.50 -0.6454 2.3525 3.0610 0.8469 0.7186 3.0610 0.8469 3.0610

0 2.3525 3.1427 0.8469 1.3088 3.1427 1.3088 3.1427
0.6454 2.3525 3.2027 0.8469 1.6422 3.2027 1.6422 3.2027

0.50 1.50 0.10 -0.6310 2.1274 2.5125 2.9093 3.0510 2.5125 3.0510 3.0510
0 2.1274 2.6409 2.9093 3.3394 2.6409 3.3394 3.3394

0.6310 2.1274 2.7092 2.9093 3.5328 2.7092 3.5328 3.5328
0.50 -0.6321 2.1691 2.5025 2.4325 2.7726 2.5025 2.7726 2.7726

0 2.1691 2.6442 2.4325 2.9160 2.6442 2.9160 2.9160
0.6321 2.1691 2.7242 2.4325 3.0193 2.7242 3.0193 3.0193

3.00 0.10 -0.6350 2.2157 2.8409 2.3441 2.2124 2.8409 2.3441 2.8409
0 2.2157 2.9143 2.3441 2.6109 2.9143 2.6109 2.9143

0.6350 2.2157 2.9627 2.3441 2.8159 2.9627 2.8159 2.9627
0.50 -0.6356 2.2391 2.8459 2.1190 2.2124 2.8459 2.2124 2.8459

0 2.2391 2.9293 2.1190 2.4692 2.9293 2.4692 2.9293
0.6356 2.2391 2.9860 2.1190 2.6125 2.9860 2.6125 2.9860

0.50 0.10 1.50 0.10 -0.9166 3.2928 4.1797 1.9590 1.9240 4.1797 1.9590 4.1797
0 3.2928 4.2881 1.9590 2.8093 4.2881 2.8093 4.2881

0.9166 3.2928 4.3631 1.9590 3.1727 4.3631 3.1727 4.3631
0.50 -0.9169 3.3178 4.1747 1.6189 2.0440 4.1747 2.0440 4.1747

0 3.3178 4.2848 1.6189 2.5709 4.2848 2.5709 4.2848
0.9169 3.3178 4.3631 1.6189 2.8193 4.3631 2.8193 4.3631

3.00 0.10 -0.9184 3.3311 4.2214 1.0854 0.6019 4.2214 1.0854 4.2214
0 3.3311 4.3231 1.0854 1.7022 4.3231 1.7022 4.3231

0.9184 3.3311 4.3965 1.0854 2.3441 4.3965 2.3441 4.3965
0.50 -0.9186 3.3411 4.2181 0.7786 0.6335 4.2181 0.7786 4.2181

0 3.3411 4.3231 0.7786 1.6922 4.3231 1.6922 4.3231
0.9186 3.3411 4.3965 0.7786 2.2107 4.3965 2.2107 4.3965

0.50 1.50 0.10 -0.8887 2.9460 3.7029 3.4378 3.6112 3.7029 3.6112 3.7029
0 2.9460 3.8429 3.4378 4.0013 3.8429 4.0013 4.0013

0.8887 2.9460 3.9296 3.4378 4.2064 3.9296 4.2064 4.2064
0.50 -0.8907 3.0527 3.6679 2.9210 3.3378 3.6679 3.3378 3.6679

0 3.0527 3.8429 2.9210 3.5478 3.8429 3.5478 3.8429
0.8907 3.0527 3.9496 2.9210 3.6812 3.9496 3.6812 3.9496

3.00 0.10 -0.8984 3.1327 4.0330 2.8459 2.8626 4.0330 2.8626 4.0330
0 3.1327 4.1364 2.8459 3.4161 4.1364 3.4161 4.1364

0.8984 3.1327 4.2097 2.8459 3.6546 4.2097 3.6546 4.2097
0.50 -0.8993 3.1794 4.0213 2.5792 2.8810 4.0213 2.8810 4.0213

0 3.1794 4.1380 2.5792 3.2144 4.1380 3.2144 4.1380
0.8993 3.1794 4.2197 2.5792 3.3878 4.2197 3.3878 4.2197
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Table 6.10: CASE IV-M: thickness of the boundary layer for some values of βm, c1,
c2, c3, β − α and Rm = 0.01.

Rm βm c1 c2 c3 β − α ξϕ∗
ξγ∗ ξΦ∗

ξΓ∗
δv∗ δw∗ δ∗

0.01 0.00 0.10 1.50 0.10 -0.0645 0.2334 2.3008 0.0767 4.9383 2.3008 4.9383 4.9383
0 0.2334 2.3008 0.0767 4.9383 2.3008 4.9383 4.9383

0.0645 0.2334 2.3008 0.0767 4.9383 2.3008 4.9383 4.9383
0.50 -0.0645 0.2351 2.3008 0.0717 4.7099 2.3008 4.7099 4.7099

0 0.2351 2.3008 0.0717 4.7099 2.3008 4.7099 4.7099
0.0645 0.2351 2.3008 0.0717 4.7099 2.3008 4.7099 4.7099

3.00 0.10 -0.0645 0.2351 2.3008 0.0667 4.9266 2.3008 4.9266 4.9266
0 0.2351 2.3008 0.0667 4.9266 2.3008 4.9266 4.9266

0.0645 0.2351 2.3008 0.0667 4.9266 2.3008 4.9266 4.9266
0.50 -0.0645 0.2367 2.3008 0.0634 4.6766 2.3008 4.6766 4.6766

0 0.2367 2.3008 0.0634 4.6766 2.3008 4.6766 4.6766
0.0645 0.2367 2.3008 0.0634 4.6766 2.3008 4.6766 4.6766

0.50 1.50 0.10 -0.0631 0.2134 4.7049 0.0767 4.9883 4.7049 4.9883 4.9883
0 0.2134 4.7049 0.0767 4.9883 4.7049 4.9883 4.9883

0.0631 0.2134 4.7049 0.0767 4.9883 4.7049 4.9883 4.9883
0.50 -0.0632 0.2184 2.3008 0.0717 4.9450 2.3008 4.9450 4.9450

0 0.2184 2.3008 0.0717 4.9450 2.3008 4.9450 4.9450
0.0632 0.2184 2.3008 0.0717 4.9450 2.3008 4.9450 4.9450

3.00 0.10 -0.0635 0.2217 4.8316 0.0684 4.9883 4.8316 4.9883 4.9883
0 0.2217 4.8316 0.0684 4.9883 4.8316 4.9883 4.9883

0.0635 0.2217 4.8316 0.0684 4.9883 4.8316 4.9883 4.9883
0.50 -0.0636 0.2251 2.3008 0.0650 4.9450 2.3008 4.9450 4.9450

0 0.2251 2.3008 0.0650 4.9450 2.3008 4.9450 4.9450
0.0636 0.2251 2.3008 0.0650 4.9450 2.3008 4.9450 4.9450

0.50 0.10 1.50 0.10 -0.1249 1.9373 3.9180 0.0784 4.9383 3.9180 4.9383 4.9383
0 1.9373 3.9480 0.0784 4.9383 3.9480 4.9383 4.9383

0.1249 1.9373 3.9747 0.0784 4.9383 3.9747 4.9383 4.9383
0.50 -0.1250 1.9373 3.4311 0.0717 4.7132 3.4311 4.7132 4.7132

0 1.9373 3.4778 0.0717 4.7132 3.4778 4.7132 4.7132
0.1250 1.9373 3.5212 0.0717 4.7132 3.5212 4.7132 4.7132

3.00 0.10 -0.1251 1.9390 3.8029 0.0684 4.9283 3.8029 4.9283 4.9283
0 1.9390 3.8396 0.0684 4.9283 3.8396 4.9283 4.9283

0.1251 1.9390 3.8730 0.0684 4.9283 3.8730 4.9283 4.9283
0.50 -0.1251 1.9390 3.4528 0.0650 4.6816 3.4528 4.6816 4.6816

0 1.9390 3.4995 0.0650 4.6816 3.4995 4.6816 4.6816
0.1251 1.9390 3.5412 0.0650 4.6816 3.5412 4.6816 4.6816

0.50 1.50 0.10 -0.1223 1.9173 4.8449 0.0784 4.9900 4.8449 4.9900 4.9900
0 1.9173 4.8466 0.0784 4.9900 4.8466 4.9900 4.9900

0.1223 1.9173 4.8466 0.0784 4.9900 4.8466 4.9900 4.9900
0.50 -0.1225 1.9190 3.7779 0.0734 4.9466 3.7779 4.9466 4.9466

0 1.9190 3.8046 0.0734 4.9466 3.8046 4.9466 4.9466
0.1225 1.9190 3.8279 0.0734 4.9466 3.8279 4.9466 4.9466

3.00 0.10 -0.1231 1.9240 4.8966 0.0684 4.9883 4.8966 4.9883 4.9883
0 1.9240 4.8966 0.0684 4.9883 4.8966 4.9883 4.9883

0.1231 1.9240 4.8966 0.0684 4.9883 4.8966 4.9883 4.9883
0.50 -0.1232 1.9256 3.9196 0.0650 4.9450 3.9196 4.9450 4.9450

0 1.9256 3.9430 0.0650 4.9450 3.9430 4.9450 4.9450
0.1232 1.9256 3.9647 0.0650 4.9450 3.9647 4.9450 4.9450
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Figure 6.21: CASE IV-M: plots showing ϕ′ for different βm and Rm, respectively.
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Figure 6.22: CASE IV-M: plots showing Φ for different βm and Rm, respectively.

thickness ηΓ lining the boundary and its thickness is larger that in the orthogonal
stagnation-point flow.
Tables 6.7, 6.8 and 6.9 underline that the thickness of the boundary layer depends
on Rm and βm. More precisely, it increases when βm increases (as is easy to see in
Figures 6.211, 6.221, 6.231, 6.241, 6.251, 6.261, 6.271, 6.281).

The thickness of the boundary layer decreases when Rm increases (as is easy to
see in Figures 6.212, 6.222, 6.232, 6.242, 6.252, 6.262, 6.272, 6.282).
This behaviour is in agreement with the previous chapters.

We underline that the more Rm is small and the more βm is close to 1 the
more the thickness of the boundary layer is larger than in the other cases of oblique
stagnation-point flow treated in this Thesis (Chapters 1.2 and 3).
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Figure 6.23: CASE IV-M: plots showing γ′ for different βm and Rm, respectively,
when β − α = −α.
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Figure 6.24: CASE IV-M: plots showing γ′ for different βm and Rm, respectively,
when β − α = 0.
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Figure 6.25: CASE IV-M: plots showing γ′ for different βm and Rm, respectively,
when β − α = α.
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Figure 6.26: CASE IV-M: plots showing Γ for different βm and Rm, respectively,
when β − α = −α.
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Figure 6.27: CASE IV-M: plots showing Γ for different βm and Rm, respectively,
when β − α = 0.
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Figure 6.28: CASE IV-M: plots showing Γ for different βm and Rm, respectively,
when β − α = α.
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Figures 6.29, 6.30, 6.31 show the streamlines and the points

ξp =

√

a

ν + νr
xp, ξs =

√

a

ν + νr
xs

for βm = 0.8, c = 1 and β − α = −α, 0, α, Rm = 1, 100, respectively.
As it is easy to see from the figures, the flow and the magnetic field are completely

parallel far from the obstacle.
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Figure 6.29: CASE IV-M: plots showing the streamlines and the points ξp, ξs for
c = 1, c1 = 0.5, c2 = 3.0, c3 = 0.5, β − α = −α, βm = 0.8 and Rm = 1, 100,
respectively.
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Figure 6.30: CASE IV-M: plots showing the streamlines and the points ξp, ξs for
c = 1, c1 = 0.5, c2 = 3.0, c3 = 0.5, β − α = 0, βm = 0.8 and Rm = 1, 100,
respectively.
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Figure 6.31: CASE IV-M: plots showing the streamlines and the points ξp, ξs for
c = 1, c1 = 0.5, c2 = 3.0, c3 = 0.5, β − α = α, βm = 0.8 and Rm = 1, 100,
respectively.



Chapter 7

MHD three-dimensional

stagnation-point flow with H and

v parallel at infinity

We now consider the same electromagnetic problem of the previous two chapters for
the three-dimensional MHD stagnation-point flow of a Newtonian or a micropolar
fluid. This problem has never been studied in the literature and so the results
obtained are original ([11]).

As usual, to reach the purpose of the Chapter, it is appropriate to begin with
the same situation for the inviscid fluid.

7.1 Inviscid fluids CASE IV

We start with the analysis of the steady three-dimensional MHD flow of a homoge-
neous, incompressible, electrically conducting inviscid fluid near a stagnation point
filling the half-space S (see Figure 7.1).

As it is well known, in the three-dimensional stagnation-point flow the velocity
field is given by

v1 = ax1, v2 = −a(1 + c)x2, v3 = cax3, (x1, x3) ∈ R
2, x2 ∈ R

+, (7.1)

where a, c are constants.
As in the previous chapters, we suppose a > 0, c 6= 0 and we exclude the case

c ≤ −1.

Remark 7.1.1. If c = 1, then the velocity is axisymmetric:

v1 = ax1, v2 = −2ax2, v3 = ax3. (7.2)

299



300 7. MHD 3D stagnation-point flow with H and v parallel at infinity

x1

x3

x2

O

H

Figure 7.1: Description flow in CASE IV.

The equations governing such a flow are (2.2). As usual, we impose the no-
penetration condition to the velocity field and we suppose that the electromagnetic
field satisfies (2.5) and (2.6).

We suppose that an external magnetic field

He = H
∞
[x1e1 − (1 + c)x2e2 + cx3e3] (7.3)

permeates the whole physical space and that the external electric field is absent.

Remark 7.1.2. As it is easy to verify, the field lines of He have the following
parametric equations

x1 = A1e
H

∞
λ,

x2 = A2e
−(1+c)H

∞
λ,

x3 = A3e
cH

∞
λ, λ ∈ R, (7.4)

where A1, A2, A3 are arbitrary constants. These field lines degenerate if at least one
of the three constants A1, A2, A3 vanishes. Otherwise they belong to the surfaces

x1x2x3 = A1A2A3.

We remark that these surfaces tend to the plane x2 = 0 as |x1|, |x3| → +∞ (see
Figure 7.2).
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Figure 7.2: CASE IV: plot showing the surface x1x2x3 = 10.

Here we seek the total magnetic fields in the fluid and in the solid as

H = H
∞
[x1h

′(x2)e1 − [h(x2) + ck(x2)]e2 + cx3k
′(x2)e3], x2 ≥ 0, and

Hs = H
∞
[x1h

′

s(x2)e1 − [hs(x2) + cks(x2)]e2 + cx3k
′

s(x2)e3], x2 ≤ 0, (7.5)

respectively, where h, k, hs, ks are sufficiently regular unknown functions to be de-
termined (h, k, hs, ks ∈ C2(R+)).

In particular, h, k have to satisfy

lim
x2→+∞

h′(x2) = 1, lim
x2→+∞

k′(x2) = 1,

lim
x2→+∞

[h(x2)− x2] = 0, lim
x2→+∞

[k(x2)− x2] = 0, (7.6)

so that H tends to He as x2 → +∞ in order to have H and v parallel at infinity.

As far as Hs is concerned, we assume that

(i) Hs is not uniform;

(ii) its non-degenerate field lines belong to a surface which tends to the plane
x2 = 0 as |x1|, |x3| → +∞.

We now want to prove the following Theorem.

Theorem 7.1.3. If the solid which occupies S− is a rigid uncharged dielectric at
rest and the magnetic field Hs satisfies (i) and (ii), then Hs is given by

Hs = H
∞
[h′(0)x1e1 − (h′(0) + ck′(0))x2e2 + ck′(0)x3e3], x2 ≤ 0, (7.7)

where h(x2), k(x2) are the unknown functions in (7.5)1.
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Proof. The properties of the solid imply

∇×Hs = 0, in S−,

from which we get

hs(x2) = C1x2 + C2, ks(x2) = C3x2 + C4, x2 ≤ 0, (7.8)

where C1, C2, C3, C4 ∈ R.
By virtue of the continuity of the tangential components of the magnetic field

across the plane x2 = 0, we find

C1 = h′(0), C3 = k′(0),

so that

Hs = H
∞
[h′(0)x1e1 − [(h′(0) + ck′(0))x2 + C2 + cC4]e2 + ck′(0)x3e3]. (7.9)

We remark that Hs is uniform if h′(0) = k′(0) = 0. Hence to satisfy (i) we
proceed assuming h′(0) 6= 0 or k′(0) 6= 0. In this case the magnetic field lines in the
solid are

x1 = B1e
H

∞
h′(0)λ,

x2 = B2e
−H

∞
[h′(0)+ck′(0)]λ − C2 + cC4

h′(0) + ck′(0)
,

x3 = B3e
H

∞
ck′(0)λ, x2 ≤ 0, λ, B1, B2, B3 ∈ R. (7.10)

The non-degenerate field lines belong to the surface

x1x2x3 = B1B2B3 −
C2 + cC4

h′(0) + ck′(0)
x1x3, x2 ≤ 0, B1, B2, B3 6= 0. (7.11)

These surfaces tend to the plane x2 = 0 as |x1|, |x3| → +∞ if, and only if,

C2 + cC4 = 0,

from which we get the assertion.

Remark 7.1.4. Since the solid is an uncharged dielectric, Es = Ei
s = 0 in S−.

We now consider the inviscid fluid filling the half-space S. Thanks to the conti-
nuity of the normal component of the magnetic induction vector across the boundary
x2 = 0 (see (2.6)), we deduce

h(0) + ck(0) = 0, ∀c ∈ (−1,+∞),
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from which follows

h(0) = 0, k(0) = 0. (7.12)

Our aim is now to determine (p, H, E) solution of (2.2) in S with v given by
(7.1) such that H tends to He as x2 goes to infinity. Hence

v×H = 0 at infinity.

Let the electric field E be in the form

Ei = Ei
1e1 + Ei

2e2 + Ei
3e3.

The boundary conditions require that

Ei
1 = 0, Ei

3 = 0 at x2 = 0. (7.13)

From (2.2)4 follows that

E = −∇ψ, (ψ ∈ C2(R3))

and (2.2)3 furnishes

∂ψ

∂x1
= −H∞

σe
cx3[k

′′(x2) + σeµea[(1 + c)k′(x2)x2 − (h(x2) + ck(x2))]],

∂ψ

∂x2
= H

∞
µeacx1x3[h

′(x2)− k′(x2)],

∂ψ

∂x3
= −H∞

σe
x1[−h′′(x2)− σeµea[(1 + c)h′(x2)x2 − (h(x2) + ck(x2))]]. (7.14)

From (2.2)5 and (7.14), we get

H
∞
µeacx1x3[h

′′(x2)− k′′(x2)] = 0, ∀(x1, x3) ∈ R
2, x2 ∈ R

+,

which for the conditions (7.6), (7.12), means

h(x2) = k(x2), ∀x2 ∈ R
+. (7.15)

Substituting (7.15) into (7.14), we get

∂ψ

∂x1
= −H∞

σe
cx3[h

′′(x2) + σeµea(1 + c)(h′(x2)x2 − h(x2))],

∂ψ

∂x3
= −H∞

σe
x1[−h′′(x2)− σeµea(1 + c)(h′(x2)x2 − h(x2))]. (7.16)
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It is possible to find a unique electrostatic scalar potential ψ from (7.16) if, and only
if,

∂2ψ

∂x1∂x3
=

∂2ψ

∂x3∂x1
,

which leads to

h′′(x2) + σeµea(1 + c)[h′(x2)x2 − h(x2)] = 0. (7.17)

Taking into account the boundary conditions (7.12) and (7.6)1, equation (7.17)
has a unique solution h(x2) = x2. This furnishes

E = 0, H = He = H
∞
[x1e1 − (1 + c)x2e2 + cx3e3].

We remark that ∇ ×H = 0 so that the pressure field is not influenced by the
magnetic field.

Therefore we have:

Theorem 7.1.5. Let a homogeneous, incompressible, electrically conducting inviscid
fluid occupy the half-space S and be embedded in the external electromagnetic field
He = H

∞
[x1e1− (1+ c)x2e2+ cx3e3], Ee = 0. If the total magnetic field in the solid

is given by (7.7), then the steady three-dimensional MHD stagnation-point flow of
such a fluid has the following form

v = a[x1e1 − (1 + c)x2e2 + cx3e3], E = 0, H = He,

p = −1
2
ρa2[x21 + (1 + c)2x22 + c2x23] + p0, (x1, x3) ∈ R

2, x2 ∈ R
+. (7.18)

Remark 7.1.6. In order to study the MHD three-dimensional stagnation-point flow
for other models of fluid, we suppose that the inviscid fluid impinges on the flat plane
x2 = C and

v = a[x1e1 − (1 + c)(x2 − C)e2 + cx3e3],

He = H
∞
[x1e1 − (1 + c)(x2 − C)e2 + cx3e3], (x1, x3) ∈ R

2, x2 ≥ C,

H→ H
∞
[x1e1 − (1 + c)(x2 − C)e2 + cx3e3] as x2 → +∞. (7.19)

with C some constant.
In this way, the stagnation point is (0, C, 0) and the pressure and the total mag-

netic field in Theorem 7.1.5 must be modified by replacing x2 with x2 − C:

p = −1
2
ρa2[x21 + (1 + c)2(x2 − C)2 + c2x23] + p0,

He = H
∞
[x1e1 − (1 + c)(x2 − C)e2 + cx3e3], (x1, x3) ∈ R

2, x2 ≥ C. (7.20)
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7.2 Newtonian fluids CASE IV-N

Consider now the steady three-dimensional MHD flow of a homogeneous, incompres-
sible, electrically conducting Newtonian fluid near a stagnation point filling the
half-space S.

The equations governing such a flow in the absence of external mechanical body
forces and free electric charges are (2.22) together with boundary conditions (2.23),
(2.5), (2.6).

The three-dimensional stagnation-point flow of such a fluid is determined by a
velocity field of the form

v1 = ax1f
′(x2), v2 = −a[f(x2)+cg(x2)], v3 = cax3g

′(x2), (x1, x3) ∈ R
2, x2 ∈ R

+,
(7.21)

with f, g sufficiently regular unknown functions (f, g ∈ C3(R+)) to be determined
so that

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0. (7.22)

The above conditions arise from the behaviour of the fluid near the obstacle (con-
dition (2.23)).

As for the inviscid fluid, we suppose that an external magnetic field

He = H
∞
[x1e1 − (1 + c)x2e2 + cx3e3]

permeates the whole physical space and that the external electric field is absent.
We seek the total magnetic field in the fluid in the following form

H = H
∞
[x1h

′(x2)e1 − (h(x2) + ck(x2))e2 + cx3k
′(x2)e3], x2 ≥ 0, (7.23)

where h, k are sufficiently regular unknown functions (h, k ∈ C2(R+)).
From Theorem 7.1.3, the total magnetic field in the solid has the form Hs =

H
∞
[h′(0)x1e1 − (h′(0) + ck′(0))x2e2 + ck′(0)x3e3], which gives the additional condi-

tions

h(0) = 0, k(0) = 0. (7.24)

Further we impose

Condition P. At infinity, the MHD three-dimensional stagnation-point flow of
a viscous fluid approaches the flow of an inviscid fluid whose velocity, magnetic field
and pressure are given by (7.19)1, (7.20)1 and (7.20)2, respectively.

We then append to (2.22) the following conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1, (7.25)

lim
x2→+∞

h′(x2) = 1, lim
x2→+∞

k′(x2) = 1, (7.26)



306 7. MHD 3D stagnation-point flow with H and v parallel at infinity

so that

v ×H = 0 at infinity. (7.27)

More precisely, the functions f , g, h and k at infinity depend on the costant C
in (7.19) as

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B, (7.28)

lim
x2→+∞

[h(x2)− x2] = −A, lim
x2→+∞

[k(x2)− x2] = −B, (7.29)

lim
x2→+∞

[f(x2) + cg(x2)− (1 + c)x2] = −(1 + c)C,

lim
x2→+∞

[h(x2) + ck(x2)− (1 + c)x2] = −(1 + c)C, (7.30)

so that

C =
A+ cB

1 + c
.

The constants A,B,C are not assigned a priori, but their values can be found by
solving the problem.

Our purpose is now to determine (p, f, g, H, E) solution in S of (2.22) with v

given by (7.21) such that Condition P is satisfied.
More precisely, we will prove in the following Theorem that, under the no-

restrictive hypothesis on h:

(h) there is no interval included in R
+ where h′ vanishes,

the only possibility is the axisymmetric flow.

Theorem 7.2.1. Let a homogeneous, incompressible, electrically conducting Newto-
nian fluid occupy the half-space S and be embedded in the external electromagnetic
field He = H

∞
[x1e1− (1+ c)x2e2+ cx3e3], Ee = 0. If the total magnetic field in the

solid is (7.7) and the hypothesis (h) holds, then the steady three-dimensional MHD
stagnation-point flow of such a fluid is possible if, and only if, the flow is axisym-
metric (f = g, h = k, c = 1).
Further it has the following form

v =a[x1f
′(x2)e1 − 2f(x2)e2 + cx3f

′(x2)e3],

H =H
∞
[x1h

′(x2)e1 − 2h(x2)e2 + cx3h
′(x2)e3], E = 0,

p =− ρ
a2

2
[x21 + 4f 2(x2) + x23]− 2ρaνf ′(x2)

− µe

H2
∞

2
(x1

2 + x23)[h
′2(x2)− 1] + p0, (x1, x3) ∈ R

2, x2 ∈ R
+,
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where (f, h) satisfies problem

ν

a
f ′′′ + 2ff ′′ − f ′

2
+ 1− µe

ρ

H2
∞

a2
(2hh′′ − h′

2
+ 1) = 0,

h′′ + 2σeµea(fh
′ − hf ′) = 0,

f(0) = 0, f ′(0) = 0, h(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

h′(x2) = 1. (7.31)

Proof. As for the inviscid fluid, let the electric field E be in the form

Ei = Ei
1e1 + Ei

2e2 + Ei
3e3.

Conditions (2.5) require that

Ei
1 = 0, Ei

3 = 0 at x2 = 0. (7.32)

From (2.22)4 follows that

E = −∇ψ.

Moreover, (2.22)3 provides

∂ψ

∂x1
= −H∞

σe
cx3[k

′′(x2) + σeµea[(f(x2) + cg(x2))k
′(x2)− (h(x2) + ck(x2))g

′(x2)]],

∂ψ

∂x2
= H

∞
µeacx1x3[h

′(x2)g
′(x2)− k′(x2)f

′(x2)],

∂ψ

∂x3
= −H∞

σe
x1[−h′′(x2)− σeµea[(f(x2) + cg(x2))h

′(x2)− (h(x2) + ck(x2))f
′(x2)]].

(7.33)

Since E is divergence free (see (2.22)5), from (7.33)2, we get

H
∞
µeacx1x3[h

′(x2)g
′(x2)− k′(x2)f

′(x2)]
′ = 0, ∀(x1, x3) ∈ R

2, x2 ∈ R
+,

which for the conditions at infinity (7.25) and (7.26), gives

h′(x2)g
′(x2) = k′(x2)f

′(x2), ∀x2 ∈ R
+, (7.34)

and so

E2 = 0.
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We remark that the equality (7.34) means the following relationships of proportion-
ality

k′(x2) = l(x2)h
′(x2),

g′(x2) = l(x2)f
′(x2), (7.35)

where l = l(x2) is a sufficiently regular unknown function (l ∈ C2(R+)) satisfying
the condition

lim
x2→+∞

l(x2) = 1. (7.36)

From (7.34) we have ψ = ψ(x1, x3). Then from (7.33)1,3 we deduce

k′′(x2) + σeµea[(f(x2) + cg(x2))k
′(x2)− (h(x2) + ck(x2))g

′(x2)] = 0,

h′′(x2) + σeµea[(f(x2) + cg(x2))h
′(x2)− (h(x2) + ck(x2))f

′(x2)] = 0. (7.37)

Hence

E = 0.

If we substitute (7.35)1 into (7.37)1, then we obtain

lh′′ + l′h′ + σeµea[(f + cg)lh′ − (h+ ck)lf ′] = 0, (7.38)

which by virtue of (7.37)2 reduces to

l′(x2)h
′(x2) = 0, ∀x2 ∈ R

+. (7.39)

From relation (7.39), hypothesis (h) and (7.36), we find

l(x2) ≡ 1, ∀x2 ∈ R
+.

The last equivalence reduces the relationships (7.35) to

k′(x2) = h′(x2), g′(x2) = f ′(x2). (7.40)

In particular, we stress that (7.40) involves

k(x2) = h(x2), g(x2) = f(x2), A = B = C, ∀x2 ∈ R
+. (7.41)

Substituting (7.40) into (7.37), we find that h has to satisfy

h′′(x2) + σeµea(1 + c)[f(x2)h
′(x2)− h(x2)f

′(x2)] = 0. (7.42)



7.2 Newtonian fluids CASE IV-N 309

We now proceed in order to determine p, f . We substitute (7.40), (7.41), and
(7.21) into (2.22)1 to obtain

ax1

[

νf ′′′ + a(1 + c)ff ′′ − af ′
2 − µe

ρa
H2

∞
(1 + c)hh′′

]

=
1

ρ

∂p

∂x1
,

νa(1 + c)f ′′ − a2(1 + c)2ff ′ +
µe

ρ
H2

∞
(x21 + c2x23)h

′h′′ = −1
ρ

∂p

∂x2
,

acx3

[

νf ′′′ + a(1 + c)ff ′′ − acf ′
2 − µe

ρa
Hc

∞
x3(1 + c)hh′′

]

=
1

ρ

∂p

∂x3
. (7.43)

Then, by integrating (7.43)2, we find

p =− ρ
a2

2
(1 + c)2f 2(x2)− ρaν(1 + c)f ′(x2)− µe

H2
∞

2
[x21 + c2x23]h

′2(x2) + P (x1, x3),

where the function P (x1, x3) is determined supposing that, far from the wall, the
pressure p has the same behaviour as for an inviscid fluid, whose pressure is given
by (7.20)1.
Therefore, by virtue of (7.26), and (7.29), we get

P (x1, x3) = −ρ
a2

2
(x1

2 + c2x23) + µe

H2
∞

2
(x1

2 + c2x23) + p∗0.

Finally, the pressure field assumes the form

p =− ρ
a2

2
[x21 + (1 + c)2f 2(x2) + c2x23]− ρaν(1 + c)f ′(x2)

− µe

H2
∞

2
(x1

2 + c2x23)[h
′2(x2)− 1] + p0. (7.44)

In consideration of (7.43), we have

ν

a
f ′′′ + (1 + c)ff ′′ − f ′

2
+ 1− µe

ρ

H2
∞

a2
[(1 + c)hh′′ − h′

2
+ 1] = 0,

ν

a
f ′′′ + (1 + c)ff ′′ − cf ′

2
+ c− µe

ρ

H2
∞

a2
[(1 + c)hh′′ − ch′

2
+ c] = 0. (7.45)

Equations (7.45) are compatible if, and only if,

(c− 1)[f ′
2 − 1− βm(h

′2 − 1)] = 0, (7.46)

where βm =
µe

ρ

H2
∞

a2
.
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From the previous assumptions, we will prove that c = 1.
Actually, by contradiction, suppose that c 6= 1, so that

f ′
2 − 1− βm(h

′2 − 1) = 0. (7.47)

From (7.47) we get

h′
2
(0) =

βm − 1

βm
, (7.48)

which gives an absurdum if βm < 1.

We now turn to the case βm ≥ 1.
On substituting (7.47) into (7.45)1 and taking into account (7.42), we find that

(f, h) satisfies

ν

a
f ′′′ + (1 + c)ff ′′ − βm(1 + c)hh′′ = 0,

h′′ + σeµea(1 + c)(fh′ − hf ′) = 0, (7.49)

together with the boundary conditions

f(0) = 0, f ′(0) = 0, h(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

h′(x2) = 1. (7.50)

Combining (7.49)2 and the twice differentiating of (7.47), we obtain f
′′(0) = 0.

If we consider the Cauchy problem obtained by adding to (7.49) the initial conditions

f(0) = 0, f ′(0) = 0, f ′′(0) = 0,

h(0) = 0, h′(0) = ±
√

βm − 1

βm
, (7.51)

then its unique solution is given by

f(x2) = 0, h(x2) = ±
√

βm − 1

βm
x2, ∀x2 ∈ R

+, (7.52)

which is clearly absurdum for boundary conditions (7.50)4,5.

Using (5.33), the boundary value problem (7.31) can be written in dimensionless



7.2 Newtonian fluids CASE IV-N 311

form:

ϕ′′′ + 2ϕϕ′′ − ϕ′
2
+ 1− βm(2ΨΨ

′′ −Ψ′
2
+ 1) = 0,

Ψ′′ + 2Rm(ϕΨ
′ −Ψϕ′) = 0,

ϕ(0) = 0, ϕ′(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Ψ′(η) = 1. (7.53)

We now turn to analyze the numerical solution of problem (7.53) gotten through
the bvp4cMATLAB routine. The values of Rm and βm are chosen as in the previous
chapters.
For small values of Rm, thanks to transformation (5.35) we solve the following
analogous problem

Rmϕ
′′′

∗
+ 2ϕ∗ϕ

′′

∗
− ϕ′

∗

2
+ 1− βm(2Ψ∗Ψ

′′

∗
−Ψ′

∗

2
+ 1) = 0,

Ψ′′
∗
+ 2(ϕ∗Ψ

′

∗
−Ψ∗ϕ

′

∗
) = 0,

ϕ∗(0) = 0, ϕ′
∗
(0) = 0, Ψ∗(0) = 0,

lim
ξ→+∞

ϕ′
∗
(ξ) = 1, lim

ξ→+∞
Ψ′
∗
(ξ) = 1. (7.54)

Remark 7.2.2. The numerical solution (ϕ, Ψ) of problem (7.53) (or (7.54)) satisfies
the conditions at infinity; therefore as in Remark 1.3.9, we define :

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99,

so that if η > ηϕ, then ϕ
∼= η − α and the influence of the viscosity appears only in

a layer lining the boundary whose thickness is δ = ηϕ.
As well as ϕ, in this case we also have that

lim
η→+∞

Ψ′(η) = 1 and lim
η→+∞

[Ψ(η)− η] = −α.

The numerical results show that the values computed of α for ϕ and Ψ are in
good agreement, especially when βm is small or Rm is big.

We provide Table 7.1 to show the values of α, ϕ′′(0), Ψ′(0) when Rm and βm
change.

Table 7.1 has been obtained for small values of Rm recomputing the correspond-
ing values of η, ϕ and Ψ. More precisely, for Rm = 0.01, 0.1 with transformation
(5.35) we get Table 7.2.

We underline that α increases, while ϕ′′(0) and Ψ′(0) decrease as βm increases.
Further α, ϕ′′(0) and Ψ′(0) decrease as Rm increases.

In Figure 7.31 we can see the profiles ϕ, ϕ
′, ϕ′′ for Rm = 1 and βm = 0.5, while

Figure 7.32 shows the behaviour of Ψ,Ψ
′ for the same values of Rm and βm.
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Table 7.1: CASE IV-N: descriptive quantities of the motion for several values of Rm

and βm.

Rm βm ϕ′′(0) Ψ′(0) α ηϕ
0.01 0.00 1.3119 0.9121 0.5689 1.9455

0.20 1.2755 0.9029 0.6981 5.9815
0.50 1.2025 0.8834 1.0257 13.3883
0.70 1.1335 0.8642 1.4131 16.6692
0.90 1.0364 0.8367 2.0672 18.6097

0.10 0.00 1.3119 0.7792 0.5689 1.9453
0.20 1.2298 0.7604 0.6836 3.9364
0.50 1.0737 0.7237 0.9548 5.5480
0.70 0.9377 0.6916 1.2478 5.9940
0.90 0.7628 0.6510 1.7039 6.1885

1 0.00 1.3119 0.5592 0.5689 1.9455
0.20 1.1812 0.5312 0.6675 2.5056
0.50 0.9370 0.4718 0.9298 3.5809
0.70 0.7192 0.4104 1.2977 4.5299
0.90 0.4162 0.3131 2.0947 4.9300

100 0.00 1.3119 0.1729 0.5689 1.9455
0.20 1.1711 0.1613 0.6377 2.1780
0.50 0.9220 0.1392 0.8100 2.7632
0.70 0.7113 0.1183 1.0483 3.5634
0.90 0.4140 0.0840 1.7043 4.7912

1000 0.00 1.3119 0.0842 0.5689 1.9455
0.20 1.1729 0.0783 0.6363 2.1755
0.50 0.9265 0.0673 0.8052 2.7519
0.70 0.7172 0.0570 1.0391 3.5434
0.90 0.4201 0.0402 1.6866 4.7849
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Table 7.2: CASE IV-N: descriptive quantities of the motion for several values of βm
when Rm is less than 1.

Rm βm ϕ′′
∗
(0) Ψ′

∗
(0) α∗ ξϕ∗

0.01 0.00 13.1194 0.9121 0.0569 0.1945
0.20 12.7551 0.9029 0.0698 0.5981
0.50 12.0252 0.8834 0.1026 1.3388
0.70 11.3354 0.8642 0.1413 1.6669
0.90 10.3636 0.8367 0.2067 1.8610

0.10 0.00 4.1487 0.7792 0.1799 0.6152
0.20 3.8889 0.7604 0.2162 1.2448
0.50 3.3955 0.7237 0.3019 1.7544
0.70 2.9653 0.6916 0.3946 1.8955
0.90 2.4122 0.6510 0.5388 1.9570



314 7. MHD 3D stagnation-point flow with H and v parallel at infinity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

η

Rm =1, βm =0.5.

ϕ

ϕ′

ϕ′′

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

η

Rm =1, βm =0.5.

Ψ

Ψ′

Figure 7.3: CASE IV-N: the first figure shows ϕ, ϕ′, ϕ′′ for Rm = 1 and βm = 0.5,
while the second shows Ψ,Ψ′ for Rm = 1 and βm = 0.5.

When Rm 6= 1 and βm 6= 0.5, the profiles of ϕ, ϕ′, ϕ′′,Ψ,Ψ′ are analogous to
those shown in Figure 7.3.

Table 7.1 elucidates that the thickness δ of the boundary layer depends on Rm

and βm; more precisely

• δ increases when βm increases (Figure 7.41);

• δ decreases when Rm increases (Figure 7.42).

This fact is the same as in the previous two chapters. In particular, we have that
the thickness of the boundary layer is now bigger than that in Chapters 1.3.2 and
4.2.

As in the case in the absence of the magnetic field and in Chapter 4, it is
possible to classify the stagnation-point as nodal or saddle point and as attachment
or separation point (see Remarks 1.3.8 and 4.2.10). Since ϕ′′(0) is positive for
any choice of the values of the parameters, the origin is always a nodal point of
attachment.

7.3 Micropolar fluids CASE IV-M

We now study the previous problem for a homogeneous, incompressible, electrically
conducting micropolar fluid.
In the absence of free electric charges and external mechanical body forces and body
couples, the MHD equations for such a fluid are (2.44). We prescribe the boundary
conditions (2.45), (2.5) and (2.6).
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Figure 7.4: CASE IV-N: plots showing ϕ′ for different βm and Rm, respectively.

The three-dimensional stagnation-point flow is determined by v, w in the fol-
lowing form

v1 = ax1f
′(x2), v2 = −a[f(x2) + cg(x2)], v3 = acx3g

′(x2),

w1 = −cx3F (x2), w2 = 0, w3 = x1G(x2), (x1, x3) ∈ R
2, x2 ∈ R

+, (7.55)

where f, g, F,G are sufficiently regular unknown functions (f, g ∈ C3(R+), F, G ∈
C2(R+)).

To satisfy conditions (2.45) we ask

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0,

F (0) = 0, G(0) = 0. (7.56)

We suppose that an external magnetic field

He = H
∞
[x1e1 − (1 + c)x2e2 + cx3e3]

permeates the whole physical space and that the external electric field is absent.
Moreover, the total magnetic field in the fluid is taken in the following form

H = H
∞
[x1h

′(x2)e1 − (h(x2) + ck(x2))e2 + cx3k
′(x2)e3], (7.57)

where h, k are sufficiently regular unknown functions (h, k ∈ C2(R+)).
From Theorem 7.1.3 we have Hs = H

∞
[h′(0)x1e1− (h′(0)+ ck′(0))x2e2+ ck′(0)x3e3]

in S−, which implies that h, k satisfy

h(0) = 0, k(0) = 0. (7.58)
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We assume at infinity the Condition P, i.e.

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = 0. (7.59)

lim
x2→+∞

h′(x2) = 1, lim
x2→+∞

k′(x2) = 1. (7.60)

The constant C is related to the asymptotic behaviour of f , g, h and k at infinity
as for the Newtonian case. So relations (7.28), (7.29) and (7.30) continue to hold.

As in the Newtonian case, our aim is now to prove the following:

Theorem 7.3.1. Let a homogeneous, incompressible, electrically conducting micro-
polar fluid occupy the half-space S and be embedded in the external electromag-
netic field He = H

∞
[x1e1 − (c + 1)x2e2 + cx3e3], Ee = 0. If the total magnetic

field in the solid is (7.7) and the hypothesis (h) is satisfied, under the assumption
f ∈ C5(R+), F, G, h ∈ C7(R+), then the steady three-dimensional MHD stagnation-
point flow of such a fluid is possible if, and only if, the flow is axisymmetric (c = 1,
f = g, h = k, F = G).

Therefore it has the following form

v =a[x1f
′(x2)e1 − 2f(x2)e2 + x3f

′(x2)e3], w = F (x2)(−x3e1 + e3),

H =H
∞
[x1h

′(x2)e1 − 2h(x2)e2 + x3h
′(x2)e3], E = 0,

p =− ρ
a2

2
[x21 + 4f 2(x2) + 4x23]− 2ρa(ν + νr)f

′(x2)− 4νrρ

∫ x2

0

F (s)ds

− µe

H2
∞

2
(x1

2 + 4x23)[h
′2(x2)− 1] + p0, (x1, x3) ∈ R

2, x2 ∈ R
+,

where (f, h, F ) satisfies problem

ν + νr
a

f ′′′ + 2ff ′′ − f ′
2
+ 1− 2

νr
a
F ′ − µe

ρ

H2
∞

a2
(2hh′′ − h′

2
+ 1) = 0,

λF ′′ + Ia(2F ′f − Ff ′)− 2νr(2F + af ′′) = 0,

h′′ + 2σeµea(fh
′ − hf ′) = 0,

f(0) = 0, f ′(0) = 0, F (0) = 0, h(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

F ′(x2) = 0, lim
x2→+∞

h′(x2) = 1, (7.61)

provided F ∈ L1([0,+∞)).
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Proof. First of all, from equations (2.44) H, E depend only on the velocity field,
which is the same as that of the Newtonian fluid. Hence, proceeding as in the
previous section, we get

E = 0, k′(x2) = h′(x2), g′(x2) = f ′(x2). (7.62)

In particular, the magnetic field H depends only on h, which satisfies equation

h′′(x2) + σeµea(1 + c)[f(x2)h
′(x2)− h(x2)f

′(x2)] = 0. (7.63)

In order to determine p, f, F, G, we substitute (7.62), and (7.55) into (2.44)1,3
so that we have

ax1

[

(ν + νr)f
′′′ + a(1 + c)ff ′′ − af ′

2
+
2νr
a
G′ − µe

ρa
H2

∞
(1 + c)hh′′

]

=
1

ρ

∂p

∂x1
,

(ν + νr)a(1 + c)f ′′ − a2(1 + c)2ff ′ + 2νr(cF +G) +
µe

ρ
H2

∞
[x21 + c2x23]h

′h′′ = −1
ρ

∂p

∂x2
,

acx3

[

(ν + νr)f
′′′ + a(1 + c)ff ′′ − acf ′

2
+
2νr
a
F ′ − µe

ρa
H2

∞
(1 + c)hh′′

]

=
1

ρ

∂p

∂x3
,

c[λF ′′ + Ia[F ′(f + cg)− cFg′]− 2νr(2F + ag′′)] = 0,

λG′′ + Ia[G′(f + cg)−Gf ′]− 2νr(2G+ af ′′) = 0. (7.64)

Since we are interested in three-dimensional flow, we assume c 6= 0 and so equa-
tion (7.64)4 can be replaced by

λF ′′ + Ia[F ′(f + cg)− cFg′]− 2νr(2F + ag′′) = 0. (7.65)

By integrating (7.64)2, we find

p =− ρ
a2

2
(c+ 1)2f 2(x2)− ρa(ν + νr)(c+ 1)f ′(x2)

− 2νrρ

∫ x2

0

[cF (s) +G(s)]ds− µe

H2
∞

2
[x21 + c2x23]h

′2(x2) + P (x1, x3),

where the function P (x1, x3) is determined supposing that, far from the wall, the
pressure p has the same behaviour as for an inviscid fluid, whose pressure is given
by (7.20)1.
Therefore, by virtue of (7.59), (7.60), (7.28) and (7.29), we get

P (x1, x3) = −ρ
a2

2
(x1

2 + c2x23) + µe

H2
∞

2
(x1

2 + c2x23) + p∗0,
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so that p is given by

p =− ρ
a2

2
[x21 + (c+ 1)2f 2(x2) + c2x23]− ρa(ν + νr)(c+ 1)f ′(x2)

− 2νrρ

∫ x2

0

[cF (s) +G(s)]ds− µe

H2
∞

2
(x1

2 + c2x23)[h
′2(x2)− 1] + p0. (7.66)

In consideration of (7.64), we obtain the ordinary differential system

ν + νr
a

f ′′′ + (c+ 1)ff ′′ − f ′
2
+ 1 +

2νr
a2
G′ − µe

ρ

H2
∞

a2
[(c+ 1)hh′′ − h′

2
+ 1] = 0,

ν + νr
a

f ′′′ + (c+ 1)ff ′′ − cf ′
2
+ c+

2νr
a2
F ′ − µe

ρ

H2
∞

a2
[(c+ 1)hh′′ − ch′

2
+ c] = 0,

(7.67)

together with equations (7.64)5 and (7.65) and boundary conditions (7.56), (7.59),
(7.60) and (7.58).

It is now convenient to rewrite the previous boundary value problem (7.67),
(7.64)5, (7.65),(7.56), (7.59), (7.60) and (7.58) in dimensionless form in order to
reduce the number of the material parameters. To this end we use (1.49) and we
put

Ψ(η) =

√

a

ν + νr
h

(

√

ν + νr
a

η

)

.

So system (7.67), (7.64)5 and (7.65) can be written as

ϕ′′′ + (c+ 1)ϕϕ′′ − ϕ′
2
+ 1 + Γ′ − βm[(c + 1)ΨΨ′′ −Ψ′

2
+ 1] = 0,

ϕ′′′ + (c+ 1)ϕϕ′′ − cϕ′
2
+ c+ Φ′ − βm[(c+ 1)ΨΨ′′ − cΨ′

2
+ c] = 0,

Φ′′ + c3(c+ 1)Φ′ϕ− Φ(cc3ϕ
′ + c2)− c1ϕ

′′ = 0,

Γ′′ + c3(c+ 1)Γ′ϕ− Γ(c3ϕ
′ + c2)− c1ϕ

′′ = 0,

Ψ′′ +Rm(c+ 1)(ϕΨ′ −Ψϕ′) = 0, (7.68)

where c1, c2, c3 are given by (1.25), while βm, Rm are provided in (5.49).
The boundary conditions (7.56), (7.59), (7.60) and (7.58) in dimensionless form
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become:

ϕ(0) = 0, ϕ′(0) = 0,

Φ(0) = 0, Γ(0) = 0,

Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1,

lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = 0,

lim
η→+∞

Ψ′(η) = 1. (7.69)

We note that the equations (7.68)1,2 are compatible if, and only if,

(c− 1)[ϕ′
2 − 1− βm(Ψ

′2 − 1)] + Γ′ − Φ′ = 0. (7.70)

We now show that from the previous assumptions follows c = 1.
By contradiction, suppose that c 6= 1.

Computing (7.70), (7.68) at η = 0, gives

Φ′(0)− Γ′(0) = (c− 1)[−βmΨ′2(0) + βm − 1],

Γ′(0) = βm[1−Ψ′
2
(0)]− ϕ′′′(0)− 1,

Φ′(0) = cβm[1−Ψ′
2
(0)]− ϕ′′′(0)− c,

Ψ′′(0) = 0,

Φ′′(0) = Γ′′(0) = c1ϕ
′′(0). (7.71)

If we differentiate (7.68)3,4, then we have

Φ′′′ + c3(c+ 1)ϕΦ′′ + (c3ϕ
′ − c2)Φ

′ − cc3ϕ
′′Φ− c1ϕ

′′′ = 0,

Γ′′′ + c3(c+ 1)ϕΓ′′ + (cc3ϕ
′ − c2)Γ

′ − c3ϕ
′′Γ− c1ϕ

′′′ = 0, (7.72)

from which in η = 0, it follows

Γ′′′(0) = −c2[βmΨ′2(0) + 1− βm] + (c1 − c2)ϕ
′′′(0),

Φ′′′(0)− Γ′′′(0) = −c2(c− 1)[βmΨ
′2(0) + 1− βm], (7.73)

where we have used (7.71)1,2.
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Differentiating (7.68)5 and (7.70), we obtain

Ψ′′′ = −Rm(c+ 1)[ϕΨ′′ −Ψϕ′′],

Φ′′′ − Γ′′′ = 2(c− 1)[ϕ′′
2
+ ϕ′ϕ′′′ − βm(Ψ

′′2 +Ψ′Ψ′′′)], (7.74)

which in η = 0 furnish

Ψ′′′(0) = 0, Φ′′′(0)− Γ′′′(0) = 2(c− 1)ϕ′′
2
(0). (7.75)

By virtue of (7.73)2 and (7.75)2, we get

Ψ′
2
(0) =

1

βm

[

− 2

c2
ϕ′′

2
(0) + βm − 1

]

, (7.76)

which gives the absurdum if βm < 1.

We now turn to the case βm ≥ 1.
Substituting (7.76) into (7.71)2,3, hold

Γ′(0) =
2

c2
ϕ′′

2
(0)− ϕ′′′(0),

Φ′(0) =
2c

c2
ϕ′′

2
(0)− ϕ′′′(0). (7.77)

Now we differentiate (7.72):

ΦIV + c3(c + 1)ϕΦ′′′ + [c3(c+ 2)ϕ′ − c2]Φ
′′ − c3(c− 1)ϕ′′Φ′ − cc3ϕ

′′′Φ− c1ϕ
IV = 0,

ΓIV + c3(c+ 1)ϕΓ′′′ + [c3(2c+ 1)ϕ′ − c2]Γ
′′ + c3(c− 1)ϕ′′Γ′ − c3ϕ

′′′Γ− c1ϕ
IV = 0,
(7.78)

which together with (7.77) gives

ΦIV (0)− ΓIV (0) = 2c3(c− 1)ϕ′′(0)

[

1

c2
(c + 1)ϕ′′

2
(0)− ϕ′′′(0)

]

. (7.79)

By differentiating (7.74), we get

ΨIV = −Rm(c+ 1)[ϕ′Ψ′′ + ϕΨ′′′ −Ψ′ϕ′′ −Ψϕ′′′],

ΦIV − ΓIV = 2(c− 1)[3ϕ′′ϕ′′′ + ϕ′ϕIV − βm(3Ψ
′′Ψ′′′ +Ψ′ΨIV )], (7.80)

which evaluated in η = 0 thanks to (7.76) furnish

ΨIV (0) = Rm(c+ 1)Ψ′(0)ϕ′′(0),

ΦIV (0)− ΓIV (0) = 2(c− 1)ϕ′′(0)

[

3ϕ′′′(0) +Rm(c+ 1)

(

2

c2
ϕ′′

2
(0) + 1− βm

)]

.

(7.81)
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If we equate (7.79) and (7.81)2, taking into account that c 6= 1, we arrive at
[

(3 + c3)ϕ
′′′(0) +

(c+ 1)

c2
(2Rm − c3)ϕ

′′2(0) +Rm(c+ 1)(1− βm)

]

ϕ′′(0) = 0.

(7.82)

From the last equation, the proof falls naturally into two cases

(A) ϕ′′(0) 6= 0 and

ϕ′′′(0) = − c+ 1

3 + c3

[

2Rm − c3
c2

ϕ′′
2
(0) +Rm(1− βm)

]

; (7.83)

(B) ϕ′′(0) = 0.

We first consider case (A).
Differentiating of (7.78) gives

ΦV + c3(c+ 1)ϕΦIV + [c3(2c+ 3)ϕ′ − c2]Φ
′′′ + 3c3ϕ

′′Φ′′ − c3(2c− 1)ϕ′′′Φ′

− cc3ϕ
IVΦ− c1ϕ

V = 0,

ΓV + c3(c+ 1)ϕΓIV + [c3(3c+ 2)ϕ′ − c2]Γ
′′′ + 3cc3ϕ

′′Γ′′ + c3(c− 2)ϕ′′′Γ′

− c3ϕ
IV Γ− c1ϕ

V = 0, (7.84)

which furnish

ΦV (0)− ΓV (0) =(c− 1)
[

(3c3c1 + 2c2)ϕ
′′2(0)

+ c3

[ 4

c2
(c+ 1)ϕ′′

2
(0)− 3ϕ′′′(0)

]

ϕ′′′(0)
]

, (7.85)

where we used previous relations at η = 0.
By differentiating (7.80), we get

ΨV = −Rm(c+ 1)[2ϕ′Ψ′′′ + ϕΨIV − 2Ψ′ϕ′′′ −ΨϕIV ],

ΦV − ΓV = 2(c− 1)[3ϕ′′′
2
+ 4ϕ′′ϕIV + ϕ′ϕV − βm(3Ψ

′′′2 + 4Ψ′′ΨIV +Ψ′ΨV )].
(7.86)

To calculate (7.86) in η = 0, we must first compute ϕIV (0). If we differentiate
(7.68)1, we obtain

ϕIV + (c− 1)ϕ′ϕ′′ + (c+ 1)ϕϕ′′′ + Γ′′ − βm[(c− 1)Ψ′Ψ′′ + (1 + c)ΨΨ′′′] = 0,
(7.87)
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which gives through (7.71)5

ϕIV (0) = −c1ϕ′′(0). (7.88)

Thanks to (7.88), from (7.86) we get

ΨV (0) = 2Rm(c+ 1)[Ψ′(0)ϕ′′′(0)],

ΦV (0)− ΓV (0) =2(c− 1)
[

3ϕ′′′
2
(0) + 2Rm(c+ 1)

[ 2

c2
ϕ′′

2
(0) + 1− βm

]

− 4c1ϕ
′′2(0)

]

. (7.89)

Matching (7.85) and (7.89)2, since c 6= 1, it holds

3(2 + c3)ϕ
′′′2(0) + 4(c+ 1)

[

2Rm − c3
c2

ϕ′′
2
(0) +Rm(1− βm)

]

ϕ′′′(0)

−(8c1 + 3c1c3 + 2c2)ϕ
′′2(0) = 0. (7.90)

Substituting (7.83) into (7.90), we get the absurdum

ϕ′′′
2
(0) = −8c1 + 3c1c3 + 2c2

6 + c3
ϕ′′

2
(0), (7.91)

because c1, c2, c3 are positive constants and ϕ
′′(0) 6= 0 by assumption.

We now proceed with case (B).
The hypothesis ϕ′′(0) = 0 simplifies the previous relationships in the following

way

ϕIV (0) = 0,

Ψ′
2
(0) =

βm − 1

βm
, ΨIV (0) = 0,

Φ′(0) = Γ′(0) = −ϕ′′′(0),
Φ′′(0) = Γ′′(0) = 0,

Φ′′′(0) = Γ′′′(0) = (c1 − c2)ϕ
′′′(0),

ΦIV (0) = ΓIV (0) = 0. (7.92)

Equation (7.90) reduces to

[3(2 + c3)ϕ
′′′(0) + 4(c+ 1)Rm(1− βm)]ϕ

′′′(0) = 0, (7.93)

which gives rise to two subcases:
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(B1) ϕ
′′′(0) 6= 0, βm 6= 0 and

ϕ′′′(0) = −4Rm(c+ 1)(1− βm)

3(2 + c3)
; (7.94)

(B2) ϕ
′′′(0) = 0.

We now analyze case (B1).
If we differentiate (7.87), then we have

ϕV + (c− 1)(ϕ′′
2
+ ϕ′ϕ′′′) + (c+ 1)ϕϕIV + Γ′′′

− βm[(c− 1)(Ψ′′
2
+Ψ′Ψ′′′) + (c+ 1)ΨΨIV ] = 0, (7.95)

from which

ϕV (0) = −(c1 − c2)ϕ
′′′(0). (7.96)

The differentiation of (7.84) gives

ΦV I + c3(c+ 1)ϕΦV + [c3(3c+ 4)ϕ′ − c2]Φ
IV + 2c3(c+ 3)ϕ′′Φ′′′

− 2c3(c− 2)ϕ′′′Φ′′ − c3(3c− 1)ϕIVΦ′ − cc3ϕ
VΦ− c1ϕ

V I = 0,

ΓV I + c3(c+ 1)ϕΓV + [c3(4c+ 3)ϕ′ − c2]Γ
IV + 2c3(3c+ 1)ϕ′′Γ′′′

+ 2c3(2c− 1)ϕ′′′Γ′′ + c3(c− 3)ϕIV Γ′ − c3ϕ
V Γ− c1ϕ

V I = 0, (7.97)

which furnish

ΦV I(0)− ΓV I(0) = 0. (7.98)

By differentiating (7.86), we get

ΨV I = −Rm(c+ 1)[2ϕ′′Ψ′′′ + 3ϕ′ΨIV + ϕΨV − 2Ψ′′ϕ′′′ − 3Ψ′ϕIV −ΨϕV ],

ΦV I − ΓV I = 2(c− 1)[10ϕ′′′ϕIV + 5ϕ′′ϕV + ϕ′ϕV I

− βm(10Ψ
′′′ΨIV + 5Ψ′′ΨV +Ψ′ΨV I)], (7.99)

which in η = 0 give

ΨV I(0) = 0,

ΦV I(0)− ΓV I(0) = 0. (7.100)
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Hence to get more information, we must differentiate once again.
Actually, differentiating of (7.97) furnishes

ΦV II + c3(c+ 1)ϕΦV I + [c3(4c+ 5)ϕ′ − c2]Φ
V + 5c3(c+ 2)ϕ′′ΦIV + 10c3ϕ

′′′Φ′′′

− 5c3(c− 1)ϕIVΦ′′ − c3(4c− 1)ϕVΦ′ − cc3ϕ
V IΦ− c1ϕ

V II = 0,

ΓV II + c3(c+ 1)ϕΓV I + [c3(5c+ 4)ϕ′ − c2]Γ
V + 5c3(2c+ 1)ϕ′′ΓIV + 10cc3ϕ

′′′Γ′′′

+ 5c3(c− 1)ϕIV Γ′′ + c3(c− 4)ϕV Γ′ − c3ϕ
V IΓ− c1ϕ

V II = 0, (7.101)

from which it follows

ΦV II(0)− ΓV II(0) =(c− 1)[[15(c1 − c2)c3 + 6c2]ϕ
′′′(0)

+ 4Rmc2(c+ 1)(1− βm)]ϕ
′′′(0). (7.102)

Now by differentiating (7.99), we get

ΨV II = −Rm(c+1)[5ϕ
′′ΨIV + 4ϕ′ΨV + ϕΨV I − 5Ψ′′ϕIV − 4Ψ′ϕV −ΨϕV I ],

ΦV II − ΓV II =2(c− 1)[10(ϕIV )2 + 15ϕ′′′ϕV + 6ϕ′′ϕV I + ϕ′ϕV II

− βm[10(Ψ
IV )2 + 15Ψ′′′ΨV + 6Ψ′′ΨV I +Ψ′ΨV II ]]. (7.103)

If we evaluate (7.103) in η = 0, then we deduce

ΨV II(0) = −4Rm(c+ 1)(c1 − c2)ϕ
′′′(0)Ψ′(0),

ΦV II(0)− ΓV II(0) = 2(c− 1)(c1 − c2)[−15ϕ′′′(0)− 4Rm(1− βm)(1 + c)]ϕ′′′(0).
(7.104)

Equating (7.102) and (7.104)2, we find

ϕ′′′(0) = −4Rm(c+ 1)(1− βm)(2c1 − c2)

15(2 + c3)(c1 − c2) + 6c2
. (7.105)

Relations (7.94) and (7.105) hold simultaneously if, and only if,

c3 =
6(c2 − c1)

3c1 − 4c2
. (7.106)

If we substitute

c2 = c1 +
4ννr
λa

into (7.106) (see (1.25)), then we get the absurdum c3 < 0.

To conclude the proof it remains to analyze case (B2).



7.3 Micropolar fluids CASE IV-M 325

The hypotheses ϕ′′(0) = ϕ′′′(0) = 0 furnish

Ψ′(0) = ±
√

βm − 1

βm
,

Φ′(0) = 0, Γ′(0) = 0. (7.107)

Taking into account (7.70), system (7.68) reduces to

ϕ′′′ + (c+ 1)ϕϕ′′ +
cΓ′ − Φ′

c− 1
− βm(c+ 1)ΨΨ′′ = 0,

Φ′′ + c3(c+ 1)Φ′ϕ− Φ(cc3ϕ
′ + c2)− c1ϕ

′′ = 0,

Γ′′ + c3(c+ 1)Γ′ϕ− Γ(c3ϕ
′ + c2)− c1ϕ

′′ = 0,

Ψ′′ +Rm(c+ 1)(ϕΨ′ −Ψϕ′) = 0. (7.108)

If we consider the Cauchy problem obtained by adding to (7.108) the initial condi-
tions

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) = 0,

Φ(0) = 0, Φ′(0) = 0,

Γ(0) = 0, Γ′(0) = 0,

Ψ(0) = 0, Ψ′(0) = ±
√

βm − 1

βm
, (7.109)

then its unique solution is given by

ϕ(η) = 0, Φ(η) = 0, Γ(η) = 0, Ψ(η) = ±
√

βm − 1

βm
η, ∀η ∈ R

+, (7.110)

which is clearly absurdum for boundary conditions (7.69)6,9.
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Problem (7.61) in dimensionless form becomes

ϕ′′′ + 2ϕϕ′′ − ϕ′
2
+ 1 + Φ′ − βm(2ΨΨ

′′ −Ψ′
2
+ 1) = 0,

Φ′′ + 2c3Φ
′ϕ− Φ(c3ϕ

′ + c2)− c1ϕ
′′ = 0,

Ψ′′ + 2Rm(ϕΨ
′ −Ψϕ′) = 0,

ϕ(0) = 0, ϕ′(0) = 0, Φ(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0, lim
η→+∞

Ψ′(η) = 1. (7.111)

As usual, the previous problem was solved using the bvp4c MATLAB routine.
The values of c1, c2, c3, βm and Rm are chosen according to the previous chapters.
As far as the value of βm is concerned, it has to be less than 1 in order to preserve
the parallelism of H and v at infinity, as it is underlined in the previous chapters.
Further for small values ofRm, using transformation (5.51), we consider the following
analogous problem

Rmϕ
′′′

∗
+ 2ϕ∗ϕ

′′

∗
− ϕ′

∗

2
+ 1 + Φ′

∗
− βm(2Ψ∗Ψ

′′

∗
−Ψ′

∗

2
+ 1) = 0,

RmΦ
′′

∗
+ 2c3Φ

′

∗
ϕ∗ − Φ∗(c3ϕ

′

∗
+ c2)− Rmc1ϕ

′′

∗
= 0,

Ψ′′
∗
+ 2(ϕ∗Ψ

′

∗
−Ψ∗ϕ

′

∗
) = 0,

ϕ∗(0) = 0, ϕ′
∗
(0) = 0, Φ∗(0) = 0, Ψ∗(0) = 0,

lim
ξ→+∞

ϕ′
∗
(ξ) = 1, lim

ξ→+∞
Φ∗(ξ) = 0, lim

ξ→+∞
Ψ′
∗
(ξ) = 1. (7.112)

Remark 7.3.2. From the numerical integration, we see that the solution (ϕ,Φ,Ψ)
of problem (7.111) satisfies the conditions (7.111)8,9,10; therefore we apply Remark
1.3.17, where we denoted by:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99;

• ηΦ the value of η such that Φ(ηΦ) = −0.01.
If η > ηϕ then ϕ ∼= η − α, and if η > ηΦ, then Φ ∼= 0.
Hence the influence of the viscosity on the velocity and on the microrotation appears
only in a layer lining the boundary whose thickness is ηϕ for the velocity and ηΦ for
the microrotation. The thickness δ of the boundary layer for the flow is defined as

δ = max(ηϕ, ηΦ).

As well as in the Newtonian case, now we also have that

lim
η→+∞

Ψ′′(η) = 0, lim
η→+∞

Ψ′(η) = 1, lim
η→+∞

[Ψ(η)− η] = −α.

The numerical results reveal that the values computed of α for ϕ and Ψ are in good
agreement.
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Figure 7.5: CASE IV-M: ϕ′,Φ profiles for Rm = 1, βm = 0.5, c2 = 3, c3 = 0.5 when
c1 = 0.1 and c1 = 0.5.

Table 7.3 shows the numerical results of the descriptive quantities of problem
(5.48)-(5.50) in dependence of some values on c1, c2, c3, βm and Rm.

The first lines of Table 7.3 have been obtained for small values of Rm recomputing
the corresponding values of η, ϕ, Φ, and Ψ. More precisely, for Rm = 0.01 with
transformation (5.51) we get Table 7.4.

If we fix βm and Rm, then we see that the considerations of the case in the
absence of the external magnetic field (Chapter 1.3.3) continue to hold (Figures
from 7.5 to 7.7).

As far as the dependence on Rm and βm is concerned, from Table 7.3 we have
that:

• if βm increases, then α and Φ′(0) increase, while ϕ′′(0) and Ψ′(0) decrease;

• if Rm increases, then α, ϕ′′(0), |Φ′(0)| and Ψ′(0) decrease.

In Figure 7.81 we plot the profiles ϕ, ϕ
′, ϕ′′ when c1 = 0.5, c2 = 3.0, c3 = 0.5,

Rm = 1 and βm = 0.5, while Figure 7.82 shows the behaviour of Φ,Φ
′ for the same

values of the parameters. The trend of Ψ,Ψ′ is given in Figure 7.83.
We have plotted the profiles of ϕ, ϕ′, ϕ′′, Φ, Φ′, Ψ, Ψ′ only for these values

of the parameters because they have an analogous behaviour for c1 6= 0.5, c2 6= 3.0,
c3 6= 0.5, Rm 6= 1 and βm 6= 0.5.

Table 7.3 underlines that the thickness of the boundary layer depends on Rm

and βm. More precisely, it increases when βm increases (as is easy to see in Figures
7.91 and 7.92), while it decreases when Rm increases (as is easy to see in Figure 7.93
and 7.94). This behaviour is the same as in the Newtonian case and in the previous
two chapters (e.g. 5.2).
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Table 7.3: CASE IV-M: descriptive quantities of the motion for several values of c1,
c2, c3, Rm and βm.

Rm βm c1 c2 c3 ϕ′′(0) Ψ′(0) Φ′(0) α ηϕ ηΦ δ

0.01 0.00 0.10 1.50 0.10 1.3013 0.9123 -0.0558 0.5665 1.9073 0.7069 1.9073
0.50 1.3030 0.9123 -0.0531 0.5667 1.9206 0.6402 1.9206

3.00 0.10 1.3043 0.9123 -0.0470 0.5670 1.9206 0.6269 1.9206
0.50 1.3051 0.9123 -0.0458 0.5671 1.9273 0.5869 1.9273

0.50 1.50 0.10 1.2583 0.9134 -0.2793 0.5568 1.7739 0.7069 1.7739
0.50 1.2669 0.9134 -0.2657 0.5576 1.8073 0.6402 1.8073

3.00 0.10 1.2734 0.9132 -0.2354 0.5593 1.8273 0.6335 1.8273
0.50 1.2774 0.9131 -0.2292 0.5598 1.8473 0.5869 1.8473

0.50 0.10 1.50 0.10 1.1927 0.8838 -0.0521 1.0213 13.3645 0.7269 13.3645
0.50 1.1943 0.8838 -0.0496 1.0216 13.3711 0.6536 13.3711

3.00 0.10 1.1956 0.8837 -0.0437 1.0223 13.3711 0.6402 13.3711
0.50 1.1963 0.8837 -0.0426 1.0224 13.3711 0.6002 13.3711

0.50 1.50 0.10 1.1528 0.8852 -0.2609 1.0038 13.2778 0.7269 13.2778
0.50 1.1608 0.8852 -0.2487 1.0052 13.2911 0.6536 13.2911

3.00 0.10 1.1673 0.8849 -0.2189 1.0085 13.3044 0.6402 13.3044
0.50 1.1709 0.8849 -0.2135 1.0092 13.3111 0.6002 13.3111

1 0.00 0.10 1.50 0.10 1.3013 0.5592 -0.0558 0.5665 1.9073 1.4572 1.9073
0.50 1.3030 0.5594 -0.0531 0.5667 1.9173 1.1537 1.9173

3.00 0.10 1.3043 0.5593 -0.0470 0.5670 1.9206 0.9787 1.9206
0.50 1.3051 0.5594 -0.0458 0.5671 1.9256 0.8019 1.9256

0.50 1.50 0.10 1.2583 0.5593 -0.2793 0.5568 1.7706 2.6109 2.6109
0.50 1.2669 0.5602 -0.2657 0.5576 1.8056 2.0340 2.0340

3.00 0.10 1.2734 0.5599 -0.2354 0.5594 1.8256 2.1207 2.1207
0.50 1.2774 0.5603 -0.2292 0.5598 1.8473 1.8306 1.8473

0.50 0.10 1.50 0.10 0.9267 0.4717 -0.0447 0.9255 3.5395 1.8389 3.5395
0.50 0.9284 0.4720 -0.0427 0.9256 3.5579 1.3855 3.5579

3.00 0.10 0.9301 0.4719 -0.0365 0.9265 3.5579 0.8936 3.5579
0.50 0.9308 0.4720 -0.0357 0.9266 3.5645 0.6886 3.5645

0.50 1.50 0.10 0.8845 0.4712 -0.2234 0.9084 3.3661 3.4512 3.4512
0.50 0.8934 0.4726 -0.2138 0.9089 3.4612 2.7409 3.4612

3.00 0.10 0.9020 0.4723 -0.1825 0.9134 3.4628 2.8860 3.4628
0.50 0.9056 0.4729 -0.1787 0.9136 3.4995 2.4692 3.4995

100 0.00 0.10 1.50 0.10 1.3013 0.1724 -0.0558 0.5665 1.9073 1.4572 1.9073
0.50 1.3030 0.1726 -0.0531 0.5667 1.9173 1.1537 1.9173

3.00 0.10 1.3043 0.1726 -0.0470 0.5670 1.9206 0.9787 1.9206
0.50 1.3051 0.1727 -0.0458 0.5671 1.9256 0.8019 1.9256

0.50 1.50 0.10 1.2583 0.1704 -0.2793 0.5568 1.7706 2.6109 2.6109
0.50 1.2669 0.1711 -0.2657 0.5576 1.8056 2.0340 2.0340

3.00 0.10 1.2734 0.1714 -0.2354 0.5594 1.8256 2.1207 2.1207
0.50 1.2774 0.1717 -0.2292 0.5598 1.8473 1.8306 1.8473

0.50 0.10 1.50 0.10 0.9114 0.1386 -0.0465 0.8048 2.6976 1.8156 2.6976
0.50 0.9133 0.1388 -0.0442 0.8052 2.7226 1.4238 2.7226

3.00 0.10 0.9149 0.1389 -0.0378 0.8061 2.7259 1.1354 2.7259
0.50 0.9156 0.1389 -0.0369 0.8063 2.7359 0.8886 2.7359

0.50 1.50 0.10 0.8683 0.1363 -0.2329 0.7835 2.4475 3.0644 3.0644
0.50 0.8778 0.1371 -0.2218 0.7856 2.5475 2.4408 2.5475

3.00 0.10 0.8858 0.1375 -0.1892 0.7904 2.5709 2.5675 2.5709
0.50 0.8898 0.1379 -0.1848 0.7914 2.6209 2.2274 2.6209
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Table 7.4: CASE IV-M: descriptive quantities of the motion for several values of c1,
c2, c3, βm and Rm = 0.01.

Rm βm c1 c2 c3 ϕ′′
∗
(0) Ψ′

∗
(0) Φ′

∗
(0) α∗ ξϕ∗

ξΦ∗
δ∗

0.01 0.00 0.10 1.50 0.10 13.0133 0.9123 -0.0558 0.0566 0.1907 0.0707 0.1907
0.50 13.0301 0.9123 -0.0531 0.0567 0.1921 0.0640 0.1921

3.00 0.10 13.0430 0.9123 -0.0470 0.0567 0.1921 0.0627 0.1921
0.50 13.0507 0.9123 -0.0458 0.0567 0.1927 0.0587 0.1927

0.50 1.50 0.10 12.5826 0.9134 -0.2793 0.0557 0.1774 0.0707 0.1774
0.50 12.6689 0.9134 -0.2657 0.0558 0.1807 0.0640 0.1807

3.00 0.10 12.7340 0.9132 -0.2354 0.0559 0.1827 0.0634 0.1827
0.50 12.7735 0.9131 -0.2292 0.0560 0.1847 0.0587 0.1847

0.50 0.10 1.50 0.10 11.9270 0.8838 -0.0521 0.1021 1.3364 0.0727 1.3364
0.50 11.9425 0.8838 -0.0496 0.1022 1.3371 0.0654 1.3371

3.00 0.10 11.9555 0.8837 -0.0437 0.1022 1.3371 0.0640 1.3371
0.50 11.9625 0.8837 -0.0426 0.1022 1.3371 0.0600 1.3371

0.50 1.50 0.10 11.5278 0.8852 -0.2609 0.1004 1.3278 0.0727 1.3278
0.50 11.6077 0.8852 -0.2487 0.1005 1.3291 0.0654 1.3291

3.00 0.10 11.6733 0.8849 -0.2189 0.1009 1.3304 0.0640 1.3304
0.50 11.7091 0.8849 -0.2135 0.1009 1.3311 0.0600 1.3311

1.3 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39
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Figure 7.6: CASE IV-M: ϕ′,Φ profiles for Rm = 1, βm = 0.5, c1 = 0.5, c3 = 0.5
when c2 = 1.5 and c2 = 3.
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Figure 7.7: CASE IV-M: ϕ′,Φ profiles for Rm = 1, βm = 0.5, c1 = 0.5, c2 = 3 when
c3 = 0.1 and c3 = 0.5.

As previously, the micropolar nature of the fluid reduces all the descriptive quan-
tities of the motion in comparison to those of the Newtonian fluid, especially the
thickness of the boundary layer for the velocity.

Finally, as it is explained in Remarks 1.3.16 and 4.3.9, it is possible to clas-
sify the stagnation-point as nodal or saddle point and as attachment or separation
point. Since ϕ′′(0) is positive, the origin is always a nodal point of attachment, as
it happened in the previous section for the Newtonian fluid.
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Chapter 8

Conclusions

In this Thesis we have studied the influence of an external electromagnetic field on
the stagnation-point flow of a Newtonian or a micropolar fluid. We have considered
three types of stagnation-point flow: plane orthogonal, plane oblique and three-
dimensional. For each of these motions, four relevant physical situations have been
analyzed.
In particular, we have proved that if the external magnetic field is uniform and the
induced magnetic field is neglected, then the stagnation-point flow exists if, and
only, if the external magnetic field has some suitable directions (see Theorems 2.1.6,
2.2.3, 2.3.4, 3.1.5, 3.2.3, 3.3.5, 4.1.1, 4.2.1, 4.3.1, 7.1.5, 7.2.1, 7.3.1). We point out
that this aspect has never been considered in the literature.

We recall that

• E0, H0, H∞
, a, b, c, A, B, C are suitable constants;

• f(x2), g(x2), F (x2), G(x2), h(x2), k(x2) are sufficiently regular functions;

• (He,Ee) is the external electromagnetic field;

• (H,E) is the total electromagnetic field in the fluid;

• M2 =
σeB

2
0

ρa
is the Hartmann number;

• βm =
µe

ρ

H2
∞

a2
;

• Rm is the magnetic Reynolds number.

The obstacle towards which the flow is pointed is represented by the plane x2 = 0,
which is supposed to be rigid and fixed. The coordinate axes are fixed in such a
way that the stagnation-point is the origin. In the first three situations, the vacuum
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occupies the region under the obstacle, while in the last one the plane x2 = 0
coincides with the boundary of a solid which is a rigid uncharged dielectric at rest.

As far as the boundary conditions are concerned, we prescribe the no-slip and
the strict adherence conditions to the velocity and to the microrotation fields, re-
spectively. As it is customary in electromagnetism, we suppose that the tangential
components of the electromagnetic field and the normal components of the magnetic
induction and the electric displacement field are continuous across the boundary.
In the fourth physical situation taken into consideration, our analysis is based upon
an assumption assuring that H and v are parallel far from the obstacle.
Further, as it is reasonable from the physical point of view, we assume that at infin-
ity the flow of a viscous fluid approaches the flow of an inviscid fluid. However the
stagnation-point of the inviscid fluid is shifted from the origin. Hence the viscosity
appears only in a small region near the obstacle and far from it there is no trace of
the viscous nature of the flow.

In all the cases here considered, the MHD PDEs have been reduced to a system of
nonlinear ODEs. These boundary values problems have been integrated numerically
and some graphics and tables were furnished in order to show the behaviour of the
solution near the obstacle. These solutions provide useful information about the
MHD stagnation-point flow and there is a good agreement with the cases in the
absence of the electromagnetic field.

In this chapter, we summarize and compare the results obtained underlining the
more significant features.

8.1 Newtonian fluids

In this section we recall briefly the results obtained for a homogeneous, incompres-
sible electrically conducting Newtonian fluid (Table 8.1).

Influence of the velocity field on H:

• In orthogonal and oblique CASEs I-N and II-N, the magnetic field in the fluid
is formally obtained as function of f .

• In CASE IV-N the velocity field and the magnetic field influence each other.

Thickness of the boundary layer:

• In orthogonal and oblique CASEs I-N and II-N it is the same as in the absence
of the external electromagnetic field;

• In orthogonal and oblique CASE III-N, in three-dimensional CASEs I-N, II-N,
III-N it decreases as M2 increases;
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Table 8.1: Results obtained for the MHD stagnation-point flow of a Newtonian fluid.

MHD orthogonal: velocity v = a[x1f
′(x2)e1 − f(x2)e2],

velocity at infinity v = a[x1(x2)e1 − (x2 − A)e2].

CASE He Ee H E Influence of the electromagnetic
field on the flow

I-N 0 E0e3 h(x2)e1 E0e3 Only on the pressure field

II-N H0e1 0 [h(x2) +H0]e1 0 Only on the pressure field

III-N H0e2 0 induced magnetic 0 On the pressure and
field neglected on the velocity through M2

IV-N H
∞
(x1e1 − x2e2) 0 H

∞
[x1h

′(x2)e1 − h(x2)e2] 0 On the pressure and
on the velocity through

βm, Rm, h(x2)

MHD oblique: velocity v = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2,

velocity at infinity v = [ax1 + b(x2 − B)]e1 − a(x2 − A)e2.

CASE He Ee H E Influence of the electromagnetic
field on the flow

I-N 0 E0e3 h(x2)e1 E0e3 Only on the pressure field

II-N H0e1 0 [h(x2) +H0]e1 0 Only on the pressure field

III-N
H0√

4a2 + b2
(−be1 + 2ae2) 0 induced magnetic 0 On the pressure and

field neglected on the velocity through M2

IV-N H
∞
[(x1 + cx2)e1 − x2e2] −cH∞

σe
e3 H

∞
[(x1h

′(x2) + ck(x2))e1 −cH∞

σe
e3 On the pressure and

−h(x2)e2] on the velocity through
βm, Rm, h(x2), k(x2)

MHD three-dimensional: velocity v = a[x1f
′(x2)e1 − [f(x2) + cg(x2)]e2 + cx3g

′(x2)e3],
velocity at infinity v = a[x1e1 − (1 + c)(x2 − C)e2 + cx3g

′(x2)e3].

CASE He Ee H E Influence of the electromagnetic
field on the flow

I-N H0e1 0 induced magnetic 0 On the pressure and on
field neglected the velocity (second equation)

through M2

II-N H0e2 0 induced magnetic 0 On the pressure and on
field neglected the velocity (both equations)

through M2

III-N H0e3 0 induced magnetic 0 On the pressure and on
field neglected the velocity (first equation)

through M2

IV-N H
∞
[x1e1 − (1 + c)x2e2 0 H

∞
[x1h

′(x2)e1 − 2h(x2)e2 0 The flow is
+cx3e3] +x3h

′(x2)e3] necessarily axisymmetric.
On the pressure and on the velocity

through βm, Rm, h(x2)
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• In CASE IV-N it increases (decreases) as βm (Rm) increases;

• the more Rm is small and the more βm is close to 1 the more the thickness of
the boundary layer in CASE IV-N is larger than in the other cases;

• In the oblique cases it is larger than that of the orthogonal situations.

Origin in the oblique stagnation-point flow:
Differently from the orthogonal stagnation-point flow, along the wall x2 = 0 the
origin is now only the stagnation-point, while the point x1 = xp of maximum pressure
and the point x1 = xs of zero tangential stress are shifted. In CASE III-N (IV-N)
they depend on M2 (βm, h

′(0)).

Reverse flow:
In three-dimensional CASEs I-N, II-N, III-N, for some negative values of c the reverse
flow appears. We have seen that the presence of the external magnetic field tends
to prevent the occurrence of the reverse flow (this behaviour is more clear in CASEs
I-N and II-N).

Classification of the origin in the three-dimensional stagnation-point flow:

• In CASEs I-N, II-N and III-N if c > 0 or where there is the reverse flow, the
origin is a nodal point, while when c < 0 and the reverse flow does not appear,
it is a saddle point.

• In CASE I-N if M2 is sufficiently large (reverse flow doesn’t appear), then the
origin becomes a separation point.

• In CASEs II-N and III-N the origin is a point of attachment.

• In CASE IV-N the origin is a nodal point of attachment.

8.2 Micropolar fluids

The physical situations analyzed for a homogeneous, incompressible, electrically
conducting micropolar fluid are reported in Tables 8.2, 8.3.

As far as the influence of the velocity field on H, the thickness of the boundary
layer and the classification of the origin, the physical considerations are similar to
the Newtonian cases.
It is interesting to underline that in three-dimensional CASEs I-M, II-M, III-M,
for some negative values of c the reverse microrotation appears also as well as the
reverse flow. We have shown that the presence of the external magnetic field tends to
prevent the occurrence of the reverse microrotation (this behaviour is more clear in
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Table 8.2: Results obtained for the MHD stagnation-point flow of a micropolar fluid.

MHD orthogonal: velocity v = a[x1f
′(x2)e1 − f(x2)e2],

velocity at infinity v = a[x1(x2)e1 − (x2 −A)e2],
microrotation w = x1F (x2)e3.

CASE He Ee H E Influence of the electromagnetic
field on the flow

I-M 0 E0e3 h(x2)e1 E0e3 Only on the pressure field

II-M H0e1 0 [h(x2) +H0]e1 0 Only on the pressure field

III-M H0e2 0 induced magnetic 0 On the pressure,
field neglected on the velocity and on

the microrotation through M2

IV-M H
∞
(x1e1 − x2e2) 0 H

∞
[x1h

′(x2)e1 − h(x2)e2] 0 On the pressure,
on the velocity and on

the microrotation through
βm, Rm, h(x2)

MHD oblique: velocity v = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2,

velocity at infinity v = [ax1 + b(x2 − B)]e1 − a(x2 −A)e2,
microrotation w = [x1F (x2) +G(x2)]e3.

CASE He Ee H E Influence of the electromagnetic
field on the flow

I-M 0 E0e3 h(x2)e1 E0e3 Only on the pressure field

II-M H0e1 0 [h(x2) +H0]e1 0 Only on the pressure field

III-M
H0√

4a2 + b2
(−be1 + 2ae2) 0 induced magnetic 0 On the pressure,

field neglected on the velocity and on
the microrotation through M2

IV-N H
∞
[(x1 + cx2)e1 − x2e2] −cH∞

σe
e3 H

∞
[(x1h

′(x2) + ck(x2))e1 −cH∞

σe
e3 On the pressure, on

−h(x2)e2] the velocity and on
the microrotation through
βm, Rm, h(x2), k(x2)
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Table 8.3: Continuum of Table 8.2

MHD three-dimensional: velocity v = a[x1f
′(x2)e1 − [f(x2) + cg(x2)]e2 + cx3g

′(x2)e3],
velocity at infinity v = a[x1e1 − (1 + c)(x2 − C)e2 + cx3g

′(x2)e3],
microrotation w = −cx3F (x2)e1 + x1G(x2)e3.

CASE He Ee H E Influence of the electromagnetic
field on the flow

I-M H0e1 0 induced magnetic 0 On the pressure, on
field neglected the velocity (second equation)

and on the microrotation
through M2

II-M H0e2 0 induced magnetic 0 On the pressure, on
field neglected the velocity (both equations)

and on the microrotation
through M2

III-M H0e3 0 induced magnetic 0 On the pressure, on
field neglected the velocity (first equation)

and on the microrotation
through M2

IV-M H
∞
[x1e1 − (1 + c)x2e2 0 H

∞
[x1h

′(x2)e1 − 2h(x2)e2 0 The flow is
+cx3e3] +x3h

′(x2)e3} necessarily axisymmetric.
On the pressure, on the velocity

and on the microrotation
through βm, Rm, h(x2)
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CASEs I-M and II-M). Moreover, the range of c for which the reverse microrotation
appears is included in the range of c for which the reverse flow occurs.
If we compare the results of the micropolar fluid with the corresponding results for
the Newtonian fluid, then we have that the micropolar fluids reduce the thickness
of the boundary layer, and in general all the descriptive quantities of the motion.

8.3 Concluding remarks and open problems

In all the cases considered here the results continue to hold even if there are external
conservative body forces by modifying the pressure field appropriately.
In our studies the obstacle is a rigid wall and there is only one stagnation-point; the
results obtained are true even if the obstacle is the surface of a body with any shape,
because near the stagnation-point the body may be represented by its tangent plane.

The original results given in Chapters 3 and 4 have mostly been published in
[4], [5], [6], while the remaining ones have been submitted for publication ([7], [8]).
The studies contained in sections 5.3, 6.3 and Chapter 7 are new ([9], [10], [11]).
Chapters 1 and 2 extend the literature. In anyway, we underline that the purpose
of this Ph.D. Thesis is to present a self-contained and comprehensive exposition,
instead of a collection of papers.

In this Thesis some mathematical questions remain open: the existence of the
solution in the micropolar cases, the non-existence of the solution for any M2 and
any c < −1 in three-dimensional CASEs I-N and II-N, the proof of βm < 1 in
Chapter 5. Moreover, it is a challenge for a mathematician to take into account the
induced magnetic field when it is neglected for physical motivations.

Our results can be extended to other physical situations if we take into account
the influence of the temperature or the time dependence. Few papers discussing
these topics in the three-dimensional stagnation-point flow and for the micropolar
fluids have been published in the literature up to now.
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